首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Dalmatian cyprinid genus Phoxinellus is characterized by reductive characters most likely associated with the environmental conditions of small karstic streams, where all species of this genus occur. Based on 33 morphological traits, nuclear and mtDNA sequences Phoxinellus was found to be paraphyletic and included three not closely related monophyletic units. The scientific name Phoxinellus should therefore be restricted to species having plain coloration, small or absent postcleithrum, no genital papilla and an almost entirely naked body such as P. alepidotus, P. dalmaticus, and P. pseudalepidotus. Species that also have a small or absent postcleithrum and no genital papilla but display a dark stripe from the head to the caudal peduncle, and are entirely covered by distinct, not overlapping scales should be positioned closely to Telestes. Thus, we suggest inclusion of Phoxinellus croaticus, P. fontinalis and Paraphoxinus metohiensis in the genus Telestes. The Phoxinellus species that have a irregularly spotted color pattern, a large postcleithrum, an increased number of precaudal anal-fin pterygiophores, and a large genital papilla in females represent its own evolutionary line closely related to the Balkan species of Pseudophoxinus. For this monophyletic group, we propose to introduce a new genus: Delminichthys. This genus includes the species D. adspersus, D. ghetaldii, D. krbavensis and D. jadovensis.  相似文献   

2.
? Premise of the study: Long-distance dispersal can affect speciation processes in two opposing ways. Dispersal can promote geographic isolation or it can bring together geographically distant and distantly related genotypes, thus counteracting local differentiation. We used the Gulf Coast of North America (GC), a "hot spot" of reed diversity and evolutionary dynamics, as a model system to study the diversification processes within the invasive, cosmopolitan, polyploid grass Phragmites. ? Methods: Genetic diversity was studied using collections representing all species of the genus and from all continents (except Antarctica). A range of molecular markers, including chloroplast and nuclear sequences, microsatellites, and AFLPs, was analyzed to detect DNA variation from the population to the species level and to infer phylogenetic relationships across continents. ? Key results: An interspecific hybrid, Phragmites mauritianus × P. australis, and four P. australis cp-DNA haplotypes from Africa, Europe, and North America have been dispersed to the GC and interbreed with each other. ? Conclusions: Long-distance dispersal and weak breeding barriers appear to be recurring phenomena, not only in the GC, but worldwide. We present data strongly suggesting that interspecific hybridization and introgression among different Phragmites species take place and appear to have contributed significantly to the diversification processes within the genus. Hence, the application of traditional species concepts within Phragmites might be inappropriate.  相似文献   

3.
The spatial subdivision of species often plays a pivotal role in speciation. Across their entire range, species are rarely panmictic and crucial consequences of spatial subdivision are (1) random genetic drift including historical factors, (2) uniform selection, and (3) divergent selection. Each of these consequences may result in geographic variation and eventually reproductive isolation, but their relative importance in speciation is still unclear. In this study, we used a combination of genetic, morphological, and climatic data to obtain a comprehensive picture of differentiation among three closely related, parapatrically distributed taxa of the land snail genus Theba occurring along the Atlantic coasts of South Morocco and Western Sahara. We conducted Mantel and partial Mantel tests to relate phenotypic and genotypic variation of these species to geography and/or climate. As null hypothesis for an evolutionary scenario, we assumed nonadaptive speciation and expected a pattern of isolation by distance among taxa. Rejection of the null hypothesis would indicate isolation by environment due to adaptation. Generally, genetic drift plays an important role but is rarely considered as sole driver of speciation. It is the combination of drift and selection that predominantly drives speciation. This study, however, provides a potential example, in which nonadaptive speciation, that is, genetic drift, is apparently the main driver of shaping the diversity of Theba in NW Africa. Restriction of gene flow between populations caused by geographic isolation probably has played an important role. Climate oscillations during the Plio‐ and Pleistocene may have led to repeated ecological changes in NW Africa and disruptions of habitats promoting differentiation by geographic isolation. The inferred evolutionary scenario, however, did not fully explain the incongruence between the AFLP‐ and mtDNA‐tree topologies. This incongruence might indicate past hybridization among the studied Theba forms.  相似文献   

4.
Abstract Beginning with E. Mayr's study in 1954, tropical sea urchins have played an important role in studies of speciation in the sea, but what are the processes of cladogenesis and divergence that give rise to new species in this group? We attempt to answer this question in the genus Lytechinus. Unlike the majority of other tropical sea urchin genera, which have circumtropical distributions, Lytechinus is mostly confined to the tropics and subtropics of the New World. We sequenced a region of mitochondrial cytochrome oxidase I and the entire molecule of nuclear bindin (a sperm gamete recognition protein) of nearly all species in the genus, and we assayed isozymes of three partially sympatric closely related species and subspecies. We found that in both mitochondrial DNA (mtDNA) and in bindin the genus Lytechinus is paraphyletic, encompassing Sphaerechinus granularis as the sister species of L. euerces. The rest of the species are arranged in an Atlantic clade composed of L. williamsi and L. variegatus, and a Pacific clade containing L. anamesus, L. pictus, L. semituberculatus, and L. panamensis. Divergence between these clades suggests that they were separated no later than the closure of the Isthmus of Panama, and possibly before this time. Our data confirm that L. anamesus and L. pictus from California are a single species, and provide no evidence of differentiation between L. variegatus variegatus from the Caribbean and L. variegatus atlanticus from Bermuda. Lytechinus variegatus variegatus mtDNA is distinct from that of L. variegatus carolinus from the North American seaboard and the Gulf of Mexico, whereas their bindins are very similar. However, there is clear evidence of introgression of mtDNA between the two subspecies and they share alleles in all sampled isozyme loci. Lytechinus williamsi from the Caribbean shares mtDNA haplotypes with L. variegatus variegatus, and they also share isozymes in all assayed loci. Their bindin, however, is distinct and coalesces within each morphospecies. A private clade of mtDNA in L. williamsi may be indicative of former differentiation in the process of being swamped by introgression, or of recent speciation. Recent sudden expansions in effective population size may explain the predominance of a few mitochondrial haplotypes common to the two species. Despite the high divergence of bindin (relative to differentiation of mtDNA) between L. variegatus and L. williamsi, comparison of amino acid replacement to silent substitutions by various methods uncovered no evidence for positive selection on the bindin of any clade of Lytechinus. With the possible exception of L. williamsi and L. variegatus, our results are consistent with a history of allopatric speciation in Lytechinus. The molecular results from Lytechinus, along with those of other similar studies of sea urchins, suggest that the general speciation patterns deduced in the middle of last century by Mayr from morphology and geography have held up, but also have uncovered peculiarities in the evolution of each genus.  相似文献   

5.
The identification of loci under selection (outliers) is a major challenge in evolutionary biology, being critical to comprehend evolutionary processes leading to population differentiation and speciation, and for conservation purposes, also in light of recent climate change. However, detection of selected loci can be difficult when populations are weakly differentiated. This is the case of marine fish populations, often characterized by high levels of gene flow and connectivity, and particularly of fish living in the Antarctic marine environment, characterized by a complex and strong circulating system promoting individual dispersal all around the continent. With the final aim of identifying outlier loci putatively under selection in the Chionodraco genus, we used 21 microsatellites, including both genomic (Type II) and EST-linked loci (Type I), to investigate the genetic differentiation among the three recently derived Chionodraco species that are endemic to the freezing Antarctic waters. Neutrality tests were applied in interspecific comparisons in order to identify candidate loci showing high levels of genetic differentiation, which might reveal imprints of past selection. Three outlier loci were identified, detecting a higher differentiation between species than did neutral loci. Outliers showed sequence similarity to a calmodulin gene, to an antifreeze glycoprotein/trypsinogen-like protease gene and to nonannotated fish mRNAs. Selective pressures acting on outlier loci identified in this study might reflect past evolutionary processes, which led to species divergence and local adaptation in the Chionodraco genus. Used loci will provide a valuable tool for future population genetic studies in Antarctic notothenioids.  相似文献   

6.
Identification of species in natural populations has recently received increased attention with a number of investigators proposing rigorous methods for species delimitation. Morphologically conservative species (or species complexes) with deep phylogenetic histories (and limited gene flow) are likely to pose particular problems when attempting to delimit species, yet this is crucial to comparative studies of the geography of speciation. We apply two methods of species delimitation to an ancient group of lizards (genus Xantusia) that occur throughout southwestern North America. Mitochondrial cytochrome b and nicotinamide adenine dinucleotide dehydrogenase subunit 4 gene sequences were generated from samples taken throughout the geographic range of Xantusia. Maximum likelihood, Bayesian, and nested cladogram analyses were used to estimate relationships among haplotypes and to infer evolutionary processes. We found multiple well-supported independent lineages within Xantusia, for which there is considerable discordance with the currently recognized taxonomy. High levels of sequence divergence (21.3%) suggest that the pattern in Xantusia may predate the vicariant events usually hypothesized for the fauna of the Baja California peninsula, and the existence of deeply divergent clades (18.8%-26.9%) elsewhere in the complex indicates the occurrence of ancient sundering events whose genetic signatures were not erased by the late Wisconsin vegetation changes. We present a revised taxonomic arrangement for this genus consistent with the distinct mtDNA lineages and discuss the phylogeographic history of this genus as a model system for studies of speciation in North American deserts.  相似文献   

7.
The spectacularly diverse cichlid fish species flocks of the East African Rift Lakes have elicited much debate on the potential evolutionary mechanisms responsible for the origin of these adaptive radiations. An historical perspective on population structure may offer insights into the processes driving population differentiation and possibly speciation. Here, we examine mitochondrial DNA (mtDNA) sequence variation in two endemic species of rock-dwelling cichlids, Simochromis babaulti and S. diagramma , from Lake Tanganyika. Phylogeographic analyses were used to infer what factors might have been important in the genetic structuring of Simochromis populations. Patterns of mtDNA differentiation in Simochromis were compared to those of other rock-dwelling cichlids to distinguish between competing hypotheses concerning the processes underlying their evolution. In striking contrast to previous findings, populations of Simochromis , even those separated by up to 300 km, were found to share mitochondrial DNA haplotypes. There is no correspondence between mtDNA genealogies and the geographical distribution of populations. Only S. babaulti , but not S. diagramma was found to have a significant association between genetic and geographical distance. These phylogeographic patterns suggest that the evolutionary effects of abiotic and biotic factors shaping population genetic structure may differ substantially even among closely related species of rock-dwelling cichlids. Physical events and barriers to gene flow that are believed to have had a major impact on the geographical distribution and intralacustrine speciation of Tropheus do not seem to have equally strongly affected its close relative Simochromis . These findings emphasize that no single mechanism can be responsible for the formation of population structure, speciation, and the adaptive radiation of all cichlid fishes.  相似文献   

8.
DNA barcoding has been touted as a program that will efficiently and relatively cheaply inform on biological diversity; yet many exemplars purporting to demonstrate the efficacy of the method have been undertaken by its principal proponents. Critics of DNA barcoding identify insufficient within-taxon sampling coupled with the knowledge that levels of haplotypic paraphyly are rather high as key reasons to be sceptical of the value of an exclusively DNA-based taxonomic. Here I applied a DNA barcoding approach using mtDNA sequences from the cytochrome oxidase I gene to examine diversity in a group of endemic New Zealand grasshoppers belonging to the genus Sigaus . The mtDNA data revealed high genetic distances among individuals of a single morpho-species, but this diversity was geographically partitioned. Phylogenetic analysis supported at least four haplogroups within one species ( Sigaus australis ) but paraphyly of this species with respect to several others. In some instances two morphologically and ecologically distinct species shared identical mtDNA haplotypes. The mismatch of genealogy and taxonomy revealed in the Sigaus australis complex indicates that, if used in isolation, DNA barcoding data can be highly misleading about biodiversity. Furthermore, failure to take into account evidence from natural history and morphology when utilizing DNA barcoding will tend to conceal the underlying evolutionary processes associated with speciation.
© The Willi Hennig Society 2007.  相似文献   

9.
The Crassulacean genus Aeonium is a well‐known example for plant species radiation on oceanic archipelagos. However, while allopatric speciation among islands is documented for this genus, the role of intra‐island speciation due to population divergence by topographical isolation or ecological heterogeneity has not yet been addressed. The aim of this study was to investigate intraspecific genetic structures and to identify spatial and ecological drivers of genetic population differentiation on the island scale. We analyzed inter simple sequence repeat variation within two island‐endemic Aeonium species of La Palma: one widespread generalist that covers a large variety of different habitat types (Ae. davidbramwellii) and one narrow ecological specialist (Ae. nobile), in order to assess evolutionary potentials on this island. Gene pool differentiation and genetic diversity patterns were associated with major landscape structures in both species, with phylogeographic implications. However, overall levels of genetic differentiation were low. For the generalist species, outlier loci detection and loci–environment correlation approaches indicated moderate signatures of divergent selection pressures linked to temperature and precipitation variables, while the specialist species missed such patterns. Our data point to incipient differentiation among populations, emphasizing that ecological heterogeneity and topographical structuring within the small scales of an island can foster evolutionary processes. Very likely, such processes have contributed to the radiation of Aeonium on the Canary Islands. There is also support for different evolutionary mechanisms between generalist and specialist species.  相似文献   

10.
Despite many ecological and evolutionary studies, the history of several species complexes within the freshwater crustacean genus Daphnia (Branchiopoda, Anomopoda) is poorly understood. In particular, the Daphnia longispina group, comprising several large-lake species, is characterized by pronounced phenotypic plasticity, many hybridizing species and backcrossing. We studied clonal assemblages from lakes and ponds comprising daphnids from several species complexes. In order to reveal patterns of reticulate evolution and introgression among species, we analysed three data sets and compared nuclear, mtDNA and morphological divergence using animals from 158 newly established clonal cultures. By examining 15 nuclear and 11 mitochondrial (12S/16S rDNA) genetic characters (allozymes/restriction enzymes), and 48 morphological traits, we found high clonal diversity and discontinuities in genotypic and morphological space which allowed us to group clones by cytonuclear differentiation into seven units (outgroup D. pulex). In contrast to six groups emerging from nuclear divergence (related to three traditional species, D. cucullata, D. galeata, D. hyalina and three pairwise intermediate hybrids), a seventh group of clones was clearly resolved by morphological divergence: distinct mtDNA haplotypes within one nuclear defined cluster, ‘D. hyalina’, resembled traditional D. hyalina and D. rosea phenotypes, respectively. In other nuclear defined clusters, association between mtDNA haplotype and morphology was low, despite hybridization being bidirectional (reciprocal crosses). Morphological divergence was greatest between young sister species which are separated on the lake/pond level, suggesting a significant role for divergent selection during speciation along with habitat shifts. Phylogenetic analyses were restricted to four cytonuclear groups of clones related to species. mtDNA and nuclear phylogenies were consistent in low genetic divergence and monophyly of D. hyalina and D. rosea. Incongruent patterns of phylogenies and different levels of genetic differentiation between traditional species suggest reticulate evolutionary processes.  相似文献   

11.
The genetic relationships among morphologically and geographically divergent populations of whitefish (genus: Coregonus ) from Denmark and the Baltic Sea region were studied by analysis of microsatellites and polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP) analysis of mitochondrial DNA (mtDNA) segments. The endangered North Sea houting (classified as C. oxyrhynchus ) differs morphologically and physiologically from other Danish whitefish ( C. lavaretus ). However, limited divergence of North Sea houting was observed both at the level of mtDNA and microsatellites. The implications of these results for the conservation status of North Sea houting are discussed in the light of current definitions of evolutionary significant units. Both mtDNA and microsatellite data indicated that postglacial recolonization by C. lavaretus in Denmark was less likely to have taken place from the Baltic Sea. Instead, the data suggested a recent common origin of all Danish whitefish populations, including North Sea houting, probably by recolonization via the postglacial Elbe River system. Estimates of genetic differentiation among populations based on mtDNA and microsatellites were qualitatively different. In addition, for both classes of markers analyses of genetic differentiation yielded different results, depending on whether molecular distances between alleles or haplotypes were included.  相似文献   

12.
Triant DA  Dewoody JA 《Genetica》2006,128(1-3):95-108
Microtus is one of the most taxonomically diverse mammalian genera, including over 60 extant species. These rodents have evolved rapidly, as the genus originated less than 2 million years ago. If these numbers are taken at face value, then an average of 30 microtine speciation events have occurred every million years. One explanation for the rapid rate of cladogenesis in Microtus could be the karyotypic differentiation exhibited across the genus: diploid numbers range from 17 to 64. Despite the striking chromosomal variability within Microtus, phenotypic variation is unremarkable. To determine whether nucleotide substitution rates are also elevated in voles, we sequenced the entire mitochondrial DNA (mtDNA) genome of the Eurasian sibling vole (Microtus rossiaemeridionalis). We compared this genome to another previously sequenced vole mtDNA genome (Microtus kikuchii) and performed pairwise sequence comparisons with the mtDNA genomes of ten additional mammalian genera. We found that microtine mtDNA genomes are evolving more rapidly than any other mammalian lineage we sampled, as gauged by the rate of nucleotide substitution across the entire mtDNA genome as well as at each individual protein-coding gene. Additionally, we compared substitution rates within the cytochrome b gene to seven other rodent genera and found that Microtus mtDNA is evolving fastest. The root cause of accelerated evolution in Microtus remains uncertain, but merits further investigation. The mitochondrial genome sequence from this article has been deposited with the GenBank database under accession number DQ015676.  相似文献   

13.
Ten novel polymorphic microsatellites (seven with perfect motifs) were isolated from vairone species (Telestes souffia and Telestes muticellus), which are endangered European cyprinid species. Together with 11 previously published cyprinid-specific loci, five multiplex sets were optimized, allowing the genotyping of 21 polymorphic loci. The level of genetic diversity was assessed in 97 individuals from the two species T. souffia and T. muticellus. We also successfully applied the 21 microsatellites to nine related species. These primers will thus be useful in assessing population structure of the vairone and other cyprinid species, with application for conservation issues and phylogeographical approaches.  相似文献   

14.
Well-studied model systems present ideal opportunities to understand the relative roles of contemporary selection versus historical processes in determining population differentiation and speciation. Although guppy populations in Trinidad have been a model for studies of evolutionary ecology and sexual selection for more than 50 years, this work has been conducted with little understanding of the phylogenetic history of this species. We used variation in nuclear (X-src) and mitochondrial DNA (mtDNA) sequences to examine the phylogeographic history of Poecilia reticulata Peters (the guppy) across its entire natural range, and to test whether patterns of morphological divergence are a consequence of parallel evolution. Phylogenetic, nested clade, population genetic, and demographic analyses were conducted to investigate patterns of genetic structure at several temporal scales and are discussed in relation to vicariant events, such as tectonic activity and glacial cycles, shaping northeast South American river drainages. The mtDNA phylogeny defined five major lineages, each associated with one or more river drainages, and analysis of molecular variance also detected geographic structuring among these river drainages in an evolutionarily conserved nuclear (X-src) locus. Nested clade and other demographic analyses suggest that the eastern Venezuela/ western Trinidad region is likely the center of origin of P. reticulata. Mantel tests show that the divergence of morphological characters, known to differentiate on a local scale in response to natural and sexual selection pressures, is not associated with mtDNA genetic distance; however, TreeScan analysis identified several significant associations of these characters with the haplotype tree. Parallel upstream/downstream patterns of morphological adaptation in response to selection pressures reported in P. reticulata within Trinidad rivers appears to persist across the natural range. Our results together with previous studies suggest that, although morphological variation in P. reticulata is primarily attributed to selection, phylogeographic history may also play a role.  相似文献   

15.
The pine-oak woodlands of the Mexican highlands harbour significant biological diversity, yet little is known about the evolutionary history of organisms inhabiting this region. We assessed genetic and phenotypic differentiation in 482 individuals representing 27 populations of the Mexican jay ( Aphelocoma ultramarina ) — a widespread bird species of the Mexican highlands — to test whether populations in the central and northern Mexican sierras display discrete breaks between groups, which would be consistent with a role for the different mountain chains in divergence and speciation. We found abrupt breaks in mitochondrial DNA (mtDNA; ND2 and control region) delineating four major genetic groups found in the Sierra Madre Occidental, Sierra Madre Oriental, southern Central Plateau (Bajio), and Transvolcanic Belt. These mtDNA groups were largely corroborated by data from nuclear microsatellites and phenotypic data, except that clades from the Central Plateau and Sierra Madre Oriental showed clinal change in these data sets. Uncertainty about the mutation rate for our mitochondrial markers warrants considerable caution with regard to estimating divergence times, but the major genetic groups appear to have split before the most extreme period of glacial cycling that marked the last 0.7 million years and after Mexico's period of major mountain formation. The fact that some genetic breaks do not coincide with well-known geographic barriers suggests a role for ecology in divergence and speciation, and we discuss implications for taxonomy and conservation.  相似文献   

16.
We ask whether the observed mitochondrial DNA (mtDNA) population subdivision of Drosophila simulans is indicative of organismal structure or of specific processes acting on the mitochondrial genome. Factors either intrinsic or extrinsic to the host genome may influence the evolutionary dynamics of mtDNA. Potential intrinsic factors include adaptation of the mitochondrial genome and of nucleomitochondrial gene complexes specific to the local environment. An extrinsic force that has been shown to influence mtDNA evolution in invertebrates is the bacterial endosymbiont Wolbachia. Evidence presented in this study suggests that mtDNA is not a good indicator of organismal subdivision in D. simulans. Furthermore, there is no evidence to suggest that Wolbachia causes any reduction in nuclear gene flow in this species. The observed differentiation in mtDNA is not corroborated by data from NADH: ubiquinone reductase 75kD subunit precursor or the Alcohol dehydrogenase-related loci, from the shape or size of the male genital arch, or from assortative premating behavior. We discuss these results in relation to a mitochondrial genetic species concept and the potential for Wolbachia-induced incompatibility to be a mechanism of speciation in insects. We conclude with an iterated appeal to include phylogenetic and statistical tests of neutrality as a supplement to phylogenetic and population genetic analyses when using mtDNA as an evolutionary marker.  相似文献   

17.
Biogeographical hypotheses of European freshwater fishes were inferred using phylogeographic analysis of the complete cytochrome b and ATP synthase 8 and 6 mitochondrial genes (1982bp). To test the relative importance of drainage origin versus Pleistocene glaciations in the origin of primary freshwater fishes in Europe, we reconstructed the phylogenetic relationships of the genus Sabanejewia which is distributed in European waters. The phylogenetic relationships recovered for the genus Sabanejewia (n=75) provide support for the monophyly of six main evolutionary mtDNA lineages: Sabanejewia larvata, Sabanejewia romanica, Sabanejewia aurata/Sabanejewia caucasica, Sabanejewia kubanica, Sabanejewia baltica, and the Danubian-Balkanian complex. The Caucasian-Caspian mtDNA lineages, S. kubanica, S. aurata/S. caucasica, and the Northern European S. baltica represents the sister group of the Danubian-Balkanian complex mtDNAclade, supporting a Caucasian-Northern European origin of most of mtDNA lineages of the Central European freshwater fish fauna. The mtDNA divergence observed between the Danubian Sabanejewia species is too dissimilar to support their contemporary origin. Rather, the mtDNA data suggest that the Danubian Sabanejewia lineages most likely have a double origin, indicating that the European Sabanejewia lineages have experienced different historical processes for the following reasons. First, the origin of the S. larvata and S. romanica mtDNA clades predates the origin of the Danubian-Balkanian complex, and our results showed that the completion of the Alps and the origin of the Danube drainage seem to have promoted the speciation of the earliest Sabanejewia clades in the Miocene. Second, small genetic distances and the geographical pattern found within the Danubian-Balkanian complex clade indicate that the lineages included in this clade spread recently across the Danube and Greek river drainages. The inclusion of the S. balcanica species within all mtDNA lineages suggests that cyclical cold periods during the Pleistocene glaciations have favoured its rapid expansion and genetic homogenisation across Central European and Greek waters.  相似文献   

18.
The species within the now well-defined Arabidopsis genus provide biological materials suitable to investigate speciation and the development of reproductive isolation barriers between related species. Even within the model species A. thaliana, genetic differentiation between populations due to environmental adaptation or demographic history can lead to cases where hybrids between accessions are non-viable. Experimental evidence supports the importance of genome duplications and genetic epistatic interactions in the occurrence of reproductive isolation. Other examples of adaptation to specific environments can be found in Arabidopsis relatives where hybridization and chromosome doubling lead to new amphidiploid species. Molecular signals of speciation found in the Arabidopsis genus should provide a better understanding of speciation processes in plants from a genetic, molecular and evolutionary perspective.  相似文献   

19.
Fishes of the genus Prochilodus are ecologically and commercially important, ubiquitous constituents of large river biota in South America. Recent ecologic and demographic studies indicate that these fishes exist in large, stable populations with adult census numbers exceeding one million individuals. Abundance data present a stark contrast to very low levels of genetic diversity (theta) and small effective population sizes (Ne) observed in a mitochondrial (mt) DNA dataset obtained for two species, Prochilodus mariae, and its putative sister taxon, Prochilodus rubrotaeniatus. Both species occupy major river drainages (Orinoco, Essequibo, and Negro) of northeastern South America. Disparity between expectations based on current abundance and life history information and observed genetic data in these lineages could result from historical demographic bottlenecks, or alternatively, natural selection (i.e., a mtDNA selective sweep). To ascertain underlying processes that affect mtDNA diversity in these species we compared theta and Ne estimates obtained from two, unlinked nuclear loci (calmodulin intron-4 and elongation factor-1alpha intron-6) using an approach based on coalescent theory. Genetic diversity and Ne estimated from mtDNA and nuclear sequences were uniformly low in P. rubrotaeniatus from the Rio Negro, suggesting that this population has encountered a historical bottleneck. For all P. mariae populations, theta and Ne based on nuclear sequences were comparable to expectations based on current adult census numbers and were significantly greater than mtDNA estimates, suggesting that a selective mtDNA sweep has occurred in this species. Comparative genetic analysis indicates that a suite of evolutionary processes involving historical demography and natural selection have influenced patterns of genetic variation and speciation in this important Neotropical fish group.  相似文献   

20.
Many examples of cryptic marine species have been demonstrated with biochemical and molecular studies. In most cases, a broadly distributed taxon is actually a group of sibling species that can be distinguished (upon closer examination) by ecological or morphological characters. Fishes of the family Albulidae constitute a notable exception. Bonefish (Albula spp.) morphology and ecology are highly conserved around the globe, and their extended pelagic larval stage could allow population connections on a vast geographic scale. Based on this perceived homogeneity, bonefishes were classified as a single pantropical species, A. vulpes. However, allozyme studies of Hawaiian populations indicated that two sympatric species (A. glossodonta and A. neoguinaica) are included in the synonymy of A. vulpes. To ascertain the number and distribution of evolutionary partitions in Albula, we surveyed 564 bp of mitochondrial DNA (mtDNA) cytochrome b from 174 individuals collected at 26 locations. Sequence comparisons reveal eight deep lineages (d = 5.56-30.6%) and significant population structure within three of the four lineages that could be tested (phiST = 0.047-0.678). These findings confirm the genetic distinctiveness of the three species noted above and invoke the possibility of five additional species. Clock estimates for mtDNA indicate that these putative species arose 4-20 million years ago. Distinct evolutionary lineages coexist in several sample locations, yet show little morphological or ecological differentiation in sympatry. Thus, bonefish species seem to defy the evolutionary conventions of morphological differentiation over time and ecological displacement in sympatry. Despite multiple cases of sympatry, sister-taxa relationships inferred from mtDNA indicate that divergence in allopatry has been the predominant speciation mechanism in Albula. Stabilizing selection in the homogeneous habitat occupied by bonefishes (tropical sand flats) could promote the retention of highly conserved morphology and ecology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号