首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment with glatiramer acetate (GA, copolymer-1, Copaxone), a drug approved for multiple sclerosis (MS), in a mouse model promoted development of anti-inflammatory type II monocytes, characterized by increased secretion of interleukin (IL)-10 and transforming growth factor (TGF)-beta, and decreased production of IL-12 and tumor necrosis factor (TNF). This anti-inflammatory cytokine shift was associated with reduced STAT-1 signaling. Type II monocytes directed differentiation of T(H)2 cells and CD4+CD25+FoxP3+ regulatory T cells (T(reg)) independent of antigen specificity. Type II monocyte-induced regulatory T cells specific for a foreign antigen ameliorated experimental autoimmune encephalomyelitis (EAE), indicating that neither GA specificity nor recognition of self-antigen was required for their therapeutic effect. Adoptive transfer of type II monocytes reversed EAE, suppressed T(H)17 cell development and promoted both T(H)2 differentiation and expansion of T(reg) cells in recipient mice. This demonstration of adoptive immunotherapy by type II monocytes identifies a central role for these cells in T cell immune modulation of autoimmunity.  相似文献   

2.
Dendritic cells (DCs) are professional antigen-presenting cells that control the generation of adaptive immunity. Consequently, DCs have a central role in the induction of protective immunity to pathogens and also in the pathogenic immune response responsible for the development and progression of autoimmune disorders. Thus the study of the molecular pathways that control DC development and function is likely to result in new strategies for the therapeutic manipulation of the immune response. In this review, we discuss the role and therapeutic value of DCs in autoimmune diseases, with a special focus on multiple sclerosis.  相似文献   

3.
Listeria monocytogenes is a facultative intracellular pathogen that is able to invade the central nervous system causing meningoencephalitis and brain abscesses. The mechanisms allowing bacteria to cross the blood-brain barrier are poorly understood. In this work, we used an experimental model of acute listeriosis in the mouse inducing a reproducible invasion of the central nervous system. At the early phase of infection, we find that bacteria invade and rapidly grow in bone marrow cells identified as bone marrow myelomonocytic cells expressing the phenotype CD31pos:Ly-6Cpos:CD11b(pos):LY-6Glow. We demonstrate that central nervous system invasion is facilitated by injecting L. monocytogenes-infected bone marrow cells in comparison with free bacteria or infected spleen cells. In mice transplanted with bone marrow cells from transgenic donor mice expressing the green fluorescent protein (GFP), we show that infected myeloid GFP+ cells adhere to activated brain endothelial cells, accumulate in brain vessels and participate to the pathogenesis of meningoencephalitis and brain abscesses. Our results demonstrate that bone marrow, the main haematopoietic tissue, is a previously unrecognized reservoir of L. monocytogenes-infected myeloid cells, which can play a crucial role in the pathophysiology of meningoencephalitis by releasing infected cells into the circulation that ultimately invade the central nervous system.  相似文献   

4.
5.
Here, we report that Sau3AI, an unusually large type II restriction enzyme with sequence homology to the mismatch repair protein MutH, is a monomeric enzyme as shown by gel filtration and ultracentrifugation. Structural similarities in the N- and C-terminal halves of the protein suggest that Sau3AI is a pseudo-dimer, i.e. a polypeptide with two similar domains. Since Sau3AI displays a nonlinear dependence of cleavage activity on enzyme concentration and a strong preference for substrates with two recognition sites over those with only one, it is likely that the functionally active form of Sau3AI is a dimer of a pseudo-dimer. Indeed, electron microscopy studies demonstrate that two distant recognition sites are brought together through DNA looping induced by the simultaneous binding of two Sau3AI molecules to the DNA. We suggest that the dimeric form of Sau3AI supplies two DNA-binding sites, one that is associated with the catalytic center and one that serves as an effector site.  相似文献   

6.
7.
Experimental autoimmune encephalomyelitis (EAE) is an instructive model for the human demyelinating disease multiple sclerosis. Lewis (LEW) rats immunized with myelin-basic protein (MBP) develop EAE characterized by a single episode of paralysis, from which they recover spontaneously and become refractory to a second induction of disease. LF 15-0195 is a novel molecule that has potent immunosuppressive effects in several immune-mediated pathological manifestations, including EAE. In the present study, we show that a 30-day course of LF 15-0195 treatment not only prevents MBP-immunized LEW rats from developing EAE but also preserves their refractory phase to reinduction of disease. This effect is Ag driven since it requires priming by the autoantigen during the drug administration. In contrast to other immunosuppressive drugs, short-term treatment with this drug induces a persistent tolerance with no rebound of EAE up to 4 mo after treatment withdrawal. This beneficial effect of LF 15-0195 on EAE does not result from the deletion of MBP-specific Vbeta8.2 encephalitogenic T cells. In contrast, this drug favors the differentiation of MBP-specific CD4 T cells into Foxp3-expressing regulatory T cells that, upon adoptive transfer in syngeneic recipients, prevent the development of actively induced EAE. Finally, we demonstrate that the tolerance induced by LF 15-0195 treatment is not dependent on the presence of TGF-beta. Together, these data demonstrate that short-term treatment with LF 15-0195 prevents MBP-immunized LEW rats from EAE by favoring the development of Foxp-3-expressing regulatory CD4 T cells.  相似文献   

8.
Multiple sclerosis is an inflammatory, demyelinating disease of the central nervous system (CNS) characterized by a wide range of clinical signs. The location of lesions in the CNS is variable and is a crucial determinant of clinical outcome. Multiple sclerosis is believed to be mediated by myelin-specific T cells, but the mechanisms that determine where T cells initiate inflammation are unknown. Differences in lesion distribution have been linked to the HLA complex, suggesting that T cell specificity influences sites of inflammation. We demonstrate that T cells that are specific for different myelin epitopes generate populations characterized by different T helper type 17 (T(H)17) to T helper type 1 (T(H)1) ratios depending on the functional avidity of interactions between TCR and peptide-MHC complexes. Notably, the T(H)17:T(H)1 ratio of infiltrating T cells determines where inflammation occurs in the CNS. Myelin-specific T cells infiltrate the meninges throughout the CNS, regardless of the T(H)17:T(H)1 ratio. However, T cell infiltration and inflammation in the brain parenchyma occurs only when T(H)17 cells outnumber T(H)1 cells and trigger a disproportionate increase in interleukin-17 expression in the brain. In contrast, T cells showing a wide range of T(H)17:T(H)1 ratios induce spinal cord parenchymal inflammation. These findings reveal critical differences in the regulation of inflammation in the brain and spinal cord.  相似文献   

9.

Background

Monocyte subpopulations distinguished by differential expression of chemokine receptors CCR2 and CX3CR1 are difficult to track in vivo, partly due to lack of CCR2 reagents.

Methodology/Principal Findings

We created CCR2-red fluorescent protein (RFP) knock-in mice and crossed them with CX3CR1-GFP mice to investigate monocyte subset trafficking. In mice with experimental autoimmune encephalomyelitis, CCR2 was critical for efficient intrathecal accumulation and localization of Ly6Chi/CCR2hi monocytes. Surprisingly, neutrophils, not Ly6Clo monocytes, largely replaced Ly6Chi cells in the central nervous system of these mice. CCR2-RFP expression allowed the first unequivocal distinction between infiltrating monocytes/macrophages from resident microglia.

Conclusion/Significance

These results refine the concept of monocyte subsets, provide mechanistic insight about monocyte entry into the central nervous system, and present a novel model for imaging and quantifying inflammatory myeloid populations.  相似文献   

10.
Glial elements in the central nervous system of Eisenia fetida were studied at light- and electron microscopic level. Cells were characterized with the aid of toluidine blue, Glial Fibrillary Acidic Protein (GFAP), S100 staining. We identified neurilemmal-, subneurilemmal-, supporting-nutrifying- and myelinsheath forming glial cells. Both neuronal and non-neuronal elements are S100-immunoreactive in the CNS. Among glial cells neurilemmal and subneurilemmal cells are S100-immunopositive. With the antibody against the S100 protein one band is visible at 15 kDa. GFA P-immunopositive supporting-nutrifying glial cells are localized around neurons and they often appear as cells with many vacuoles. GFA P-positive cell bodies of elongated neurilemmal glial cells are also visible. Western blot analysis shows a single 57 kDa GFA P immunoreactive band in the Eisenia sample. At ultrastructural level contacts between neuronal and glial cells are recognizable. Glial cell bodies and their filopodia contain a granular and vesicular system. Close contacts between neuronal cell membranes and glial filopodia create a special environment for material transport. Vesicles budding off glial cell granules move towards the cell membranes, probably emptying their content with kiss and run exocytosis. The secreted compounds in return may help neuronal survival, provide nutrition, and filopodia may also support neuronal terminals.  相似文献   

11.
The astrocyte, the major glial cell in the central nervous system, may influence many aspects of inflammation and immune reactivity within the brain. We have established a model of chronically activated T lymphocytes, interacting with neural cells of diverse origin to study the complex immune regulatory system suspected to lead to neuroinflammatory diseases. We show that human astrocytes became reactive following T cell contact, secreting proinflammatory cytokines, matrix metalloproteinases (MMP) and tissue inhibitors of metalloproteinase (TIMP). The altered MMP/TIMP system was shown to be involved in deleterious effects displayed by activated T cells towards human multipotent neural precursers by controlling their sensitivity to T cell-induced Fas-mediated apoptosis. MMP/TIMP was suspected to stabilize Fas at the cell membrane. In a model of mixed rat glial cells in primary culture (astrocytes, oligodendrocytes), activated T lymphocytes induced the collapse of processes and the death of immature oligodendrocytes. These effects were associated with upregulation of Fas at the cell surface of oligodendrocytes and secretion of MMP and TIMP by astrocytes. By amplifying the expression of inflammatory molecules including the MMP/TIMP system, astrocytes appear to be a crucial relay in the deleterious molecular cascade triggered by activated T lymphocytes. Detection of altered MMP/TIMP in patients suffering from myelopathy associated with retroviral infection (HTLV-1) strongly suggests its involvement in the physiopathological process of the disease.  相似文献   

12.
Experimental autoimmune encephalomyelitis (EAE) is a widely used model of multiple sclerosis. In NOD mice, EAE develops as a relapsing-remitting disease that transitions to a chronic progressive disease, making the NOD model the only mouse model that recapitulates the full clinical disease course observed in most multiple sclerosis patients. We have generated a TCR transgenic mouse that expresses the α- and β-chains of a myelin oligodendrocyte glycoprotein (MOG) 35-55-reactive TCR (1C6) on the NOD background. 1C6 TCR transgenic mice spontaneously generate both CD4(+) and CD8(+) T cells that recognize MOG and produce proinflammatory cytokines, allowing for the first time to our knowledge the simultaneous examination of myelin-reactive CD4(+) and CD8(+) T cells in the same host. 1C6 CD8(+) T cells alone can induce optic neuritis and mild EAE with delayed onset; however, 1C6 CD4(+) T cells alone induce severe EAE and predominate in driving disease when both cell types are present. When 1C6 mice are crossed with mice bearing an IgH specific for MOG, the mice develop spontaneous EAE with high incidence, but surprisingly the disease pattern does not resemble the neuromyelitis optica-like disease observed in mice bearing CD4(+) T cells and B cells reactive to MOG on the C57BL/6 background. Collectively, our data show that although myelin-reactive CD8(+) T cells contribute to disease, disease is primarily driven by myelin-reactive CD4(+) T cells and that the coexistence of myelin-reactive T and B cells does not necessarily result in a distinct pathological phenotype.  相似文献   

13.
The protein product of the pseudorabies virus (PRV) Us9 gene is a phosphorylated, type II membrane protein that is inserted into virion envelopes and accumulates in the trans-Golgi network. It is among a linked group of three envelope protein genes in the unique short region of the PRV genome which are absent from the attenuated Bartha strain. We found that two different Us9 null mutants exhibited no obvious phenotype after infection of PK15 cells in culture. Unlike those of gE and gI null mutants, the plaque size of Us9 null mutants on Madin-Darby bovine kidney cells was indistinguishable from that of wild-type virus. However, both of the Us9 null mutants exhibited a defect in anterograde spread in the visual and cortical circuitry of the rat. The visual system defect was characterized by restricted infection of a functionally distinct subset of visual projections involved in the temporal organization of behavior, whereas decreased anterograde spread of virus to the cortical projection targets was characteristic of animals receiving direct injections of virus into the cortex. Spread of virus through retrograde pathways in the brain was not compromised by a Us9 deletion. The virulence of the Us9 null mutants, as measured by time to death and appearance of symptoms of infection, also was reduced after their injection into the eye, but not after cortical injection. Through sequence analysis, construction of revertants, measurement of gE and gI protein synthesis in the Us9 null mutants, and mixed-infection studies of rats, we conclude that the restricted-spread phenotype after infection of the rat nervous system reflects the loss of Us9 and is not an indirect effect of the Us9 mutations on expression of glycoproteins gE and gI. Therefore, at least three viral envelope proteins, Us9, gE, and gI, function together to promote efficient anterograde transneuronal infection by PRV in the rat central nervous system.  相似文献   

14.
15.
16.
Platelet-derived growth factor (PDGF) exerts neurotrophic and neuromodulatory actions in the mammalian central nervous system (CNS). Like the cytokines, PDGF primarily signals through tyrosine phosphorylation-dependent pathways that activate multiple intracellular molecules including Janus family kinases. We previously showed that microinjection of PDGF-BB into the lateral ventricle induced a febrile response in rats that was reduced by pretreatment with Win 41662, a potent inhibitor of PDGF receptors (Pelá IR, Ferreira MES, Melo MCC, Silva CAA, and Valenzuela CF. Ann NY Acad Sci 856: 289-293, 1998). In this study, we further characterized the role of PDGF-BB in the febrile response in rats. Microinjection of PDGF-BB into the third ventricle produced a dose-dependent increase in colonic temperature that peaked 3-4 h postinjection. Win 41662 attenuated fever induced by intraperitoneal injection of bacterial lipopolysaccharide, suggesting that endogenous PDGF participates in the febrile response to this exogenous pyrogen. Importantly, febrile responses induced by tumor necrosis factor-alpha, interleukin-1beta, and interleukin-6 were unchanged by Win 41662. Both indomethacin and dexamethasone blocked the PDGF-BB-induced increase in colonic temperature, and, therefore, we postulate that PDGF-BB may act via prostaglandin- and/or inducible enzyme-dependent pathways. Thus our findings suggest that PDGF-BB is an endogenous CNS mediator of the febrile response in rats.  相似文献   

17.
There are two isoforms of sphingosine kinase (SphK) that catalyze the formation of sphingosine 1-phosphate, a potent sphingolipid mediator. Whereas SphK1 stimulates growth and survival, here we show that SphK2 enhanced apoptosis in diverse cell types and also suppressed cellular proliferation. Apoptosis was preceded by cytochrome c release and activation of caspase-3. SphK2-induced apoptosis was independent of activation of sphingosine 1-phosphate receptors. Sequence analysis revealed that SphK2 contains a 9-amino acid motif similar to that present in BH3-only proteins, a pro-apoptotic subgroup of the Bcl-2 family. As with other BH3-only proteins, co-immunoprecipitation demonstrated that SphK2 interacted with Bcl-xL. Moreover, site-directed mutation of Leu-219, the conserved leucine residue present in all BH3 domains, markedly suppressed SphK2-induced apoptosis. Hence, the apoptotic effect of SphK2 might be because of its putative BH3 domain.  相似文献   

18.
Experimental autoimmune encephalomyelitis (EAE) is a T cell-dependent autoimmune disease induced in susceptible animals by a single immunization with myelin basic protein (MBP). LF 15-0195 is a novel immunosuppressor that has been shown to have a potent immunosuppressive effect in several pathological manifestations. The purpose of this study was to investigate the effect of this drug on the induction and progression of established rat EAE and to dissect the mechanisms involved. We show that LF 15-0195 administration at the time of MBP immunization reduces the incidence and severity of EAE in Lewis rats. This drug also inhibits ongoing and passively induced EAE, indicating that LF 15-0195 affects already differentiated pathogenic lymphocytes. Compared with lymph node cells from untreated rats, lymphocytes from MBP-immunized rats treated with LF 15-0195 proliferated equally well in response to MBP in vitro, while their ability to produce effector cytokines and to transfer EAE into syngeneic recipients was significantly reduced. This phenomenon is stable and long-lasting. Indeed, neither IL-12 nor repeated stimulation with naive APC and MBP in vitro rendered MBP-specific CD4 T cells from protected rats encephalitogenic. In conclusion, LF 15-0195 treatment suppresses EAE by interfering with both the differentiation and effector functions of autoantigen-specific CD4 T cells.  相似文献   

19.
Summary The left cerebral ganglion was ablated from 72 anesthetized, adult Melampus bidentatus (Mollusca: Pulmonata). Skin incisions were well healed and normal feeding and locomotion observed four days after surgery. Dissections of animals sacrificed weekly showed that most nerves and connectives regrew within 30 days, attaching to the swollen end of the major labial nerve. The enlarged end of this nerve later developed into a distinctive bud; some of these buds contained cell bodies as soon as 42 days after surgery. As the first known report of central nervous tissue regeneration in molluscs, this study points to the need for controls in experiments involving section or ablation of nervous tissue in molluscs.I am grateful to Dr. W.D. Russell-Hunter for his guidance in the course of this work. Support was principally provided by a grant from the National Science Foundation to Dr. Russell-Hunter (Research Grant No. GB-36757 continued as BMS-72-02511-A01)and by two successive grants to the author from the Theodore Roosevelt Memorial Fund of the American Museum of Natural History, New York  相似文献   

20.
《遗传学报》2021,48(12):1045-1056
Chromosomes in eukaryotic cell nuclei are highly compacted and finely organized into hierarchical three-dimensional (3D) configuration. In recent years, scientists have gained deeper understandings of 3D genome structures and revealed novel evidence linking 3D genome organization to various important cell events on the molecular level. Most importantly, alteration of 3D genome architecture has emerged as an intriguing higher order mechanism that connects disease-related genetic variants in multiple heterogenous and polygenic neuropsychological disorders, delivering novel insights into the etiology. In this review, we provide a brief overview of the hierarchical structures of 3D genome and two proposed regulatory models, loop extrusion and phase separation. We then focus on recent Hi-C data in the central nervous system and discuss 3D genome alterations during normal brain development and in mature neurons. Most importantly, we make a comprehensive review on current knowledge and discuss the role of 3D genome in multiple neuropsychological disorders, including schizophrenia, repeat expansion disorders, 22q11 deletion syndrome, and others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号