首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photodynamic therapy (PDT) is a promising approach to treat head and neck cancer cells. Here, we investigated whether mitochondrial iron uptake through mitoferrin-2 (Mfrn2) enhanced PDT-induced cell killing. Three human head and neck squamous carcinoma cell lines (UMSCC1, UMSCC14A, and UMSCC22A) were exposed to light and Pc 4, a mitochondria-targeted photosensitizer. The three cell lines responded differently: UMSCC1 and UMSCC14A cells were more resistant, whereas UMSCC22A cells were more sensitive to Pc 4-PDT-induced cell death. In non-erythroid cells, Mfrn2 is an iron transporter in the mitochondrial inner membrane. PDT-sensitive cells expressed higher Mfrn2 mRNA and protein levels compared with PDT-resistant cells. High Mfrn2-expressing cells showed higher rates of mitochondrial Fe2+ uptake compared with low Mfrn2-expressing cells. Bafilomycin, an inhibitor of the vacuolar proton pump of lysosomes and endosomes that causes lysosomal iron release to the cytosol, enhanced PDT-induced cell killing of both resistant and sensitive cells. Iron chelators and the inhibitor of the mitochondrial Ca2+ (and Fe2+) uniporter, Ru360, protected against PDT plus bafilomycin toxicity. Knockdown of Mfrn2 in UMSCC22A cells decreased the rate of mitochondrial Fe2+ uptake and delayed PDT plus bafilomycin-induced mitochondrial depolarization and cell killing. Taken together, the data suggest that lysosomal iron release and Mfrn2-dependent mitochondrial iron uptake act synergistically to induce PDT-mediated and iron-dependent mitochondrial dysfunction and subsequent cell killing. Furthermore, Mfrn2 represents a possible biomarker of sensitivity of head and neck cancers to cell killing after PDT.  相似文献   

2.
Synthetic corticosteroids are routinely administered during the treatment of several diseases, including malignancies. However, recent evidence suggests that corticosteroids may have tumor-promoting effects, particularly in epithelial neoplasms. Our aim was to assess the role of the recently characterized cancer-associated glucocorticoid (GC) system in the resistance to chemotherapy of oral malignant keratinocytes. Human malignant oral keratinocyte cell lines H314/H357/H400/BICR16/BICR56 were tested with: two chemotherapeutic agents, doxorubicin (DOXO) and 5-fluorouracil (5-FU), as well as hydrocortisone (HC), adrenocorticotropic hormone (ACTH), 5-pregnen-3-beta-ol-20-one-16-alfa-carbonitrile (PCN), and two glucose uptake inhibitors, Fasentin and WZB. Both DOXO and 5-FU induced apoptosis in a dose-dependent and time-dependent manner. HC administration (100 nM) reduced the effectiveness of both chemotherapeutic agents to a variable extent in all 5 oral squamous cell carcinoma cell lines. ACTH also reduced the effectiveness of DOXO on 2 cell lines tested (H357 and BICR56). The glucose uptake inhibitors Fasentin and WZB were able to partially block the increased resistance to the cytotoxic drugs induced by HC. In summary, we have demonstrated, for the first time, the importance of cortisol on oral cancer cells ability to proliferate and combat the effectiveness of chemotherapeutic agents. This effect appears to be glucose dependent.  相似文献   

3.
The present study was undertaken to find new ways to improve efficacy of photodynamic therapy (PDT). We investigated the combinatory effect of the photosensitizer Photofrin and ursodeoxycholic acid (UDCA). UDCA is a relatively non-toxic bile acid which is used inter alia as a treatment for cholestatic disorders and was reported to enhance PDT efficiency of two other photosensitizers. Since besides necrosis and autophagic processes apoptosis has been found to be a prominent form of cell death in response to PDT for many cells in culture, several appropriate tests, such as cytochrome c release, caspase activation and DNA fragmentation were performed. Furthermore spectral resolved fluorescence lifetime imaging (SLIM) was used to analyse the cellular composition of Photofrin and the status of the enzymes of the respiratory chain. Our experiments with two human hepatoblastoma cell lines revealed that the combination of Photofrin with UDCA significantly enhanced efficacy of PDT for both cell lines even though the underlying molecular mechanism for the mode of action of Photofrin seems to be different to some extent. In HepG2 cells cell death was clearly the consequence of mitochondrial disturbance as shown by cytochrome c release and DNA fragmentation, whereas in Huh7 cells these features were not observed. Other mechanisms seem to be more important in this case. One reason for the enhanced PDT effect when UDCA is also applied could be that UDCA destabilizes the mitochondrial membrane. This could be concluded from the fluorescence lifetime of the respiratory chain enzymes which turned out to be longer in the presence of UDCA in HepG2 cells, suggesting a perturbation of the mitochondrial membrane. The threshold at which PDT damages the mitochondrial membrane was therefore lower and correlated with the enhanced cytochrome c release observed post PDT. Thus enforced photodamage leads to a higher loss of cell viability.  相似文献   

4.
Clinicians successfully utilize high uptake of radiolabeled glucose via PET scanning to localize metastases in melanoma patients. To take advantage of this altered metabolome, 3-bromopyruvate (BrPA) was used to overcome the notorious resistance of melanoma to cell death. Using four melanoma cell lines, BrPA triggered caspase independent necrosis in two lines, whilst the other two lines were resistant to killing. Mechanistically, sensitive cells differed from resistant cells by; constitutively lower levels of glutathione, reduction of glutathione by BrPA only in sensitive cells; increased superoxide anion reactive oxygen species, loss of outer mitochondrial membrane permeability, and rapid ATP depletion. Sensitive cell killing was blocked by N-acetylcysteine or glutathione. When glutathione levels were reduced in resistant cell lines, they became sensitive to killing by BrPA. Taken together, these results identify a metabolic-based Achilles’ heel in melanoma cells to be exploited by use of BrPA. Future pre-clinical and clinical trials are warranted to translate these results into improved patient care for individuals suffering from metastatic melanoma.  相似文献   

5.
The sensitivity of endothelial cells to oxidative stress and the high concentrations of iron in mitochondria led us to test the hypotheses that (1) changes in respiratory capacity alter iron homeostasis, and (2) lack of aerobic metabolism decreases labile iron stores and attenuates oxidative stress. Two respiration-deficient (rho(o)) endothelial cell lines with selective deletion of mitochondrial DNA (mtDNA) were created by exposing a parent endothelial cell line (EA) to ethidium bromide. Surviving cells were cloned and mtDNA-deficient cell lines were demonstrated to have diminished oxygen consumption. Total cellular and mitochondrial iron levels were measured, and iron uptake and compartmentalization were measured by inductively coupled plasma atomic emission spectroscopy. Iron transport and storage protein expression were analyzed by real-time polymerase chain reaction and Western blot or ELISA, and total and mitochondrial reactive oxygen species (ROS) generation was measured. Mitochondrial iron content was the same in all three cell lines, but both rho(o) lines had lower iron uptake and total cellular iron. Protein and mRNA expressions of major cytosolic iron transport constituents were down-regulated in rho(o) cells, including transferrin receptor, divalent metal transporter-1 (-IRE isoform), and ferritin. The mitochondrial iron-handling protein, frataxin, was also decreased in respiration-deficient cells. The rho(o) cell lines generated less mitochondrial ROS but released more extracellular H(2)O(2), and demonstrated significantly lower levels of lipid aldehyde formation than control cells. In summary, rho(o) cells with a minimal aerobic capacity had decreased iron uptake and storage. This work demonstrates that mitochondria regulate iron homeostasis in endothelial cells.  相似文献   

6.
The effects of various scavengers of reactive oxygen and/or radical species on cell survival in vitro of EMT6 and CHO cells following photodynamic therapy (PDT) or gamma irradiation were compared. None of the agents used exhibited major direct cytotoxicity. Likewise, none interfered with cellular porphyrin uptake, and none except tryptophan altered singlet oxygen production during porphyrin illumination. The radioprotector cysteamine (MEA) was equally effective in reducing cell damage in both modalities. In part, this protection seems to have been induced by oxygen consumption in the system due to MEA autoxidation under formation of H2O2. The addition of catalase, which prevents H2O2 buildup, reduced the effect of MEA to the same extent in both treatments. Whether the remaining protection was due to MEA's radical-reducing action or some remaining oxygen limitation is unclear. The protective action of MEA was not mediated by a doubling of cellular glutathione levels, since addition of buthionine sulfoximine, which prevented glutathione increase, did not diminish the observed MEA protection. The hydroxyl radical scavenger mannitol also afforded protection in both kinds of treatment, but it was approximately twice as effective in gamma irradiation as in PDT. This is consistent with the predominant role of OH radicals in ionizing radiation damage and their presumed minor involvement in PDT damage. Superoxide dismutase, a scavenger of O2, acted as a radiation protector but was not significantly effective in PDT. Catalase, which scavenges H2O2, was ineffective in both modalities. Tryptophan, an efficient singlet oxygen scavenger, reduced cell death through PDT by several orders of magnitude while being totally ineffective in gamma irradiation. These data reaffirm the predominant role of 1O2 in the photodynamic cell killing but also indicate some involvement of free radical species.  相似文献   

7.
Cell death following photodynamic therapy (PDT) with the photosensitizer Pc 4 involves the intrinsic pathway of apoptosis. To evaluate the importance of Bax in apoptosis after PDT, we compared the PDT responses of Bax-proficient (Bax+/−) and Bax knock-out (BaxKO) HCT116 human colon cancer cells. PDT induced a slow apoptotic process in HCT Bax+/− cells following a long delay in the activation of Bax and release of cytochrome c from mitochondria. Although cytochrome c was not released from mitochondria following PDT in BaxKO cells, an alternative mechanism of caspase-dependent apoptosis with extensive chromatin and DNA degradation was found in these cells. This alternative process was less efficient and slower than the normal apoptotic process observed in Bax+/− cells. Early events upon PDT, such as the loss of mitochondrial membrane potential, photodamage to Bcl-2, and activation of p38 MAP kinase, were observed in both HCT116 cell lines. In spite of differences in the efficiency and mode of apoptosis induced by PDT in the Bax+/− and BaxKO cells, they were found to be equally sensitive to killing by PDT, as determined by loss of clonogenicity. Thus, for Pc 4-PDT, the commitment to cell death occurs prior to and independent of Bax activation, but the process of cellular disassembly differs in Bax-expressing vs. non-expressing cells.  相似文献   

8.
Proapoptotic gene transfer to promote death or to augment killing by DNA-damaging agents represents a promising strategy for cancer therapy. We have constructed an adenoviral Tet-Off trade mark vector with tightly controlled expression of Bid (Ad-Bid) (Clontech, Palo Alto, CA). Using the non-small cell lung cancer cell lines H460, H358, and A549, low dose Ad-Bid was shown to induce high levels of full-length Bid as well as caspase-3 and -9 activity. Although only a small fraction of Bid was processed to truncated Bid (a step inhibited by benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone), Ad-Bid gene transfer resulted in mitochondrial changes consistent with apoptosis (mitochondrial depolarization, cytochrome c release), DNA fragmentation, and a dramatic loss of cell viability. The proapoptotic effects of Ad-Bid were independent of p53 status and were augmented markedly by caspase-8 activators such as the DNA-damaging agent cisplatin. When Ad-Bid and cisplatin were used together, chemosensitivity was restored in p53-null H358 cells, increasing death from 35% following treatment with cisplatin and Ad-LacZ to >90% death with Ad-Bid and cisplatin (Ad-Bid alone induced 50% cell death under these conditions). Ad-Bid can induce apoptosis in malignant cells and enhance chemosensitivity in the absence of p53, suggesting this approach as a potential cancer therapy.  相似文献   

9.
Andrzejak M  Price M  Kessel DH 《Autophagy》2011,7(9):979-984
Photodynamic therapy (PDT) is a process that can induce apoptosis, autophagy or both depending on the cell phenotype. Apoptosis is a pathway to cell death while autophagy can protect from photokilling or act as a death pathway. In a previous study, we reported a cytoprotective effect of autophagy in murine leukemia cell lines where both autophagy and apoptosis occur within minutes after irradiation of photosensitized cells. In this study, we examined the effects of mitochondrial photodamage catalyzed by low (≤ 1 μM) concentrations of the photosensitizing agent termed benzoporphyrin derivative (BPD, Verteporfin) on murine hepatoma 1c1c7 cells. Apoptosis was not observed until several hours after irradiation of photosensitized cells. Autophagy was clearly cytoprotective since PDT efficacy was significantly enhanced in a knockdown sub-line (KD) in which the level of a critical autophagy protein (Atg7) was markedly reduced. This result indicates that autophagy can protect from phototoxicity even when apoptosis is substantially delayed. Much higher concentrations (≥ 10 μM) of BPD had previously been shown to inhibit autophagosome formation. Phototoxicity studies performed with 10 μM BPD and a proportionally reduced light dose were consistent with the absence of an autophagic process in wild-type (WT) cells under these conditions.  相似文献   

10.
《Autophagy》2013,9(9):979-984
Photodynamic therapy (PDT) is a process that can induce apoptosis, autophagy or both depending on the cell phenotype. Apoptosis is a pathway to cell death while autophagy can protect from photokilling or act as a death pathway. In a previous study, we reported a cytoprotective effect of autophagy in murine leukemia cell lines where both autophagy and apoptosis occur within minutes after irradiation of photosensitized cells. In this study, we examined the effects of mitochondrial photodamage catalyzed by low (≤1 μM) concentrations of the photosensitizing agent termed benzoporphyrin derivative (BPD, Verteporfin) on murine hepatoma 1c1c7 cells. Apoptosis was not observed until several hours after irradiation of photosensitized cells. Autophagy was clearly cytoprotective since PDT efficacy was significantly enhanced in a knockdown sub-line (KD) in which the level of a critical autophagy protein (Atg7) was markedly reduced. This result indicates that autophagy can protect from phototoxicity even when apoptosis is substantially delayed. Much higher concentrations (≥10 μM) of BPD had previously been shown to inhibit autophagosome formation. Phototoxicity studies performed with 10 μM BPD and a proportionally reduced light dose were consistent with the absence of an autophagic process in wild-type (WT) cells under these conditions.  相似文献   

11.
《Autophagy》2013,9(2):248-255
Photodynamic therapy (PDT) uses a photosensitizer, light, and oxygen to produce extensive oxidative damage to organelles housing the photosensitizer. Although PDT is an efficient trigger of apoptosis, it also induces autophagy in many kinds of cells. Autophagy can serve as both a cell survival and a cell death mechanism. Our previous study indicates that autophagy contributes to cell death after PDT, especially in apoptosis-deficient cells. Here, we provide further evidence to support the role of autophagy in cell killing after PDT. Autophagy was blocked by knockdown of one essential factor, LC3 or Atg7, in MCF-7 cells. The cells were exposed to a range of doses of PDT sensitized by the phthalocyanine Pc 4; steps in autophagy were monitored by western blotting for LC3-II and by fluorescence microscopy for the uptake of monodansylcadaverine or for the distribution of transfected GFP-LC3; and overall cell death was monitored by MTT assay and by clonogenic assay. We find that blocking autophagy increased the survival of MCF-7 cells after PDT and increased the shoulder on the dose-response curve. In response to Pc 4-PDT, Atg7-deficient MCF-7 cells remained capable of robust accumulation of LC3-II, but were defective in comparison to Atg7+ cells in the formation of autophagosomes. We conclude that apoptosis-deficient cells rely on autophagy for cell death after Pc 4-PDT and that the strong activation of LC3 maturation in response to PDT could occur even in cells with limited or no Atg7 expression.  相似文献   

12.
Cationic lipids and polyamines have been used as non-viral gene transfer reagents, both in vitro and in vivo. One of the limitations to their use in vivo is the inhibition of gene delivery by serum. We showed previously that, in the absence of serum, relatively high cytotoxicity in oral cancer cell lines could be achieved via transfection of the Herpes Simplex Virus thymidine kinase (HSV-tk) gene followed by treatment with ganciclovir (GCV), despite the low efficiency of transfection (Konopka et al., Gene Ther. Mol. Biol. 8 (2004) 307-318). In this study we evaluated the effect of high concentrations (20-60%) of fetal bovine serum (FBS) on the transfection efficiency of two novel reagents, the polycationic liposome, Metafectene, and the polyamine reagent, GeneJammer, in HSC-3 and H357 human oral squamous cell carcinoma (OSCC) cells. We also examined whether the HSV-tk gene delivered in the presence of FBS (up to 60%, could induce cell death following treatment with GCV. Transfection was optimized using a luciferase-expressing plasmid. Both Metafectene- and GeneJammer-mediated luciferase gene expression in HSC-3 cells was reduced by 40-50% when transfection was performed in the presence of 20-60% FBS. The delivery of the HSV-tk gene by Metafectene in the absence and the presence of 60% FBS, followed by GCV treatment for 9 days, resulted in 95% and 70% cytotoxicity, respectively. With GeneJammer, transfection in 0% and 60% FBS resulted in 90% and 40% cytotoxicity, respectively, after 9 days. In contrast, very low transfection activity and a much higher inhibitory effect of serum were observed in H357 cells. Nevertheless, about 35% GCV-mediated cytotoxicity was observed with H357 cells at both 0% and 60% FBS, using GeneJamer. Thus, Metafectene and GeneJammer can be used in the delivery of genes in biological milieu and in the gene therapy of OSCC in animal models.  相似文献   

13.
Two sulfonamide derivatives of porphycene, namely PS6 and PS6A, were synthesized, and their photodynamic efficacies on the nasopharyngeal carcinoma (NPC) cell line NPC/CNE-2 were evaluated. By comparing the 50% lethal concentrations (LC(50)) of these photosensitizers, we found that PS6A with a cationic ammonium group on the side chain exhibited potent photocytotoxicity on the NPC cell line. At a light dose of 1 J/cm(2), the LC(50) values of PS6 and PS6A for NPC cells were 11.6 and 1.92 microM, respectively. CNE-2 was found to rapidly take up PS6A in the first hour of incubation, and the uptake kinetics steadily increased to a plateau level after 18 h of incubation. The uptake of PS6A was temperature dependent. Over 99% of CNE-2 cells were sensitized by PS6A 24 h after drug treatment. Collapse of the mitochondrial membrane potential was also observed in PS6A photodynamic therapy (PDT)-treated CNE-2 cells 1.5 h after PDT. Confocal microscopy revealed that PS6A was predominantly localized in the mitochondria, lysosomes and Golgi bodies of NPC cells. Significant genotoxicity was not observed in CNE-2 cells. In functional studies, the in vitro formation of a capillary-like network of human umbilical vein endothelial cells in Matrigel was greatly inhibited by PS6A PDT in a dose-dependent manner. In conclusion, PS6A mediates both in vitro antitumor and antiangiogenic activities. PS6A might be a candidate for photodynamic treatment of NPCs.  相似文献   

14.
Photodynamic therapy (PDT) is an alternative anticancer treatment in which direct tumor-cell killing results from selective accumulation of photosensitizers in the tumor sites and phototoxicity occurs when light-activated photosensitizers transfer the energy to oxygen nearby to produce singlet oxygen. The objective of this study was to investigate the effects of PDT using chlorophyll derivatives such as pheophytin a (phe a), pheophytin b (phe b), pheophorbide a (pho a) and pheophorbide b (pho b) as the photosensitizers, and the 660 nm light-emitting diodes (LEDs) irradiation on human hepatocellular carcinoma cells (HuH-7). The drug concentration-dependent inhibition of HuH-7 cell viability was studied under LEDs irradiation (10 mW cm(-2)) at radiant exposure of 5.1 and 10.2 J cm(-2) by MTT assay. Significant inhibition of the survival of HuH-7 cells (<10%) was observed when an irradiation dose of 10.2 J cm(-2) combined with the concentration of 0.5 microg ml(-1) of phe a, 0.125 microg ml(-1) of pho a, 0.25 microg ml(-1) of phe b, and 0.125 microg ml(-1) of pho b were applied. The results from Annexin V-propidium iodide staining revealed that phe a, phe b, pho a and pho b could induce cell death in HuH-7 cells predominantly via a necrotic process. The results from immunoblot analyses exhibited that chlorophyll derivative-mediated PDT initiated cytochrome c release, caspase-9 and caspase-3 activation, followed by poly ADP-ribose polymerase (PARP) cleavage. Thus, apoptosis also occurred in HuH-7 cells after PDT treatment, and the execution of the apoptotic process may be initiated from the loss of mitochondrial function. Our findings demonstrate that both apoptosis and necrosis can be induced in HuH-7 cells after PDT using phe a, phe b, pho a and pho b and LEDs.  相似文献   

15.
《Autophagy》2013,9(4):289-290
This study was designed to examine modes of cell death after photodynamic therapy (PDT). Murine leukemia L1210 cells and human prostate Bax-deficient DU-145 cells were examined after PDT-induced photodamage to the endoplasmic reticulum (ER). Previous studies indicated that this resulted in a substantial loss of Bcl-2 function. Both apoptosis and autophagy occurred in L1210 after ER photodamage with the latter predominating after 24 hr. These processes were characterized by altered cellular morphology, chromatin condensation, loss of mitochondrial membrane potential, and formation vacuoles containing cytosolic components. Western blots demonstrated processing of LC3-I to LC3-II, a marker for autophagy. Inhibitors of apoptosis and/or autophagy were then used to delineate the contributions of the two pathways to the effects of PDT. In DU145 cells, PDT initiated only autophagy. PI3-kinase inhibitors suppressed autophagy in both cell lines as indicated by inhibition of vacuolization and LC3 processing. Autophagy may play a role in the ability of photodynamic therapy to stimulate immunologic recognition of target cells.

Addendum to

Initiation of Apoptosis and Autophagy by Photodynamic Therapy

D. Kessel, M.G.H. Vicente and J.J. Reiners Jr.

Lasers Surg Med 2006; In press  相似文献   

16.
The purpose of this study was to examine whether the dietary components n-6 and n-3 polyunsaturated fatty acids (PUFAs) may potentiate the effect of photodynamic therapy (PDT) in human cancer cell lines by enhancing the lipid peroxidation. The effects of the porphyrin precursor 5-aminolevulinic acid (5-ALA) and light (320 < lambda < 440 nm, 33 W m(-2)), with or without docosahexaenoic acid (DHA) or arachidonic acid (AA), were tested in the colon carcinoma cell lines SW480 and WiDr, the glioblastoma cell line A-172 and the lung adenocarcinoma cell line A-427. The production of endogenous protoporphyrin IX (PpIX) varied substantially between the cell lines and was approximately 4-fold higher in WiDr as compared with SW480. Cell killing by 5-ALA-PDT also varied between the cell lines, but without clear correlation with PpIX levels. Treatment with DHA or AA (10 or 70 microM, 48 or 72 h) in combination with 5-ALA-PDT (1 or 2 mM) enhanced the cytotoxic effect in A-172 and A-427 cells, but not in SW480 and WiDr cells. While 5-ALA-PDT alone increased the lipid peroxidation in A-172 and WiDr cells only, 5-ALA-PDT plus PUFAs increased the lipid peroxidation substantially in all four cell lines. Interestingly, alpha-tocopherol (50 microM, 48 h) strongly reduced lipid peroxidation after all treatments in all cell lines, while cytotoxicity was only reduced substantially in A-427 cells. This demonstrates that induction of lipid peroxidation is not a general mechanism responsible for the cytotoxicity of 5-ALA-PDT, although it may be important in cell lines with an inherent sensitivity to lipid peroxidation products. Thus, the mechanisms of cell growth inhibition/cell killing by PDT are complex and cell specific.  相似文献   

17.
To examine the photodynamic therapy (PDT) effect on adipocytes, we investigated whether PDT using DH-I-180-3, a new synthetic lipophilic photosensitizer, induced cell death of both undifferentiated and differentiated 3T3-L1. 3T3-L1 pre-adipocytes were differentiated into adipocytes in the culture medium containing pantothenate, insulin, dexamethasone, isobutylmethylxanthine, and troglitazone. PDT was applied to both undifferentiated and differentiated 3T3-L1. Photosensitizer uptake in fat cells was determined by measuring its mean fluorescence intensity. DH-I-180-3 mediated effectively PDT-induced cell death of both pre-adipocytes and adipocytes. And the photosensitizer was accumulated more rapidly in 3T3-L1 adipocytes, compared with other cancer cell lines. These results demonstrate that PDT is a potent cell death inducer in pre-adipocytes and adipocytes. Thus, PDT with DH-I-180-3 may be applied for a new therapeutic modality for obesity treatment.  相似文献   

18.
The strong phototoxicity of the red fluorescent protein KillerRed allows it to be considered as a potential genetically encoded photosensitizer for the photodynamic therapy (PDT) of cancer. The advantages of KillerRed over chemical photosensitizers are its expression in tumor cells transduced with the appropriate gene and direct killing of cells through precise damage to any desired cell compartment. The ability of KillerRed to affect cell division and to induce cell death has already been demonstrated in cancer cell lines in vitro and HeLa tumor xenografts in vivo. However, the further development of this approach for PDT requires optimization of the method of treatment. In this study we tested the continuous wave (593 nm) and pulsed laser (584 nm, 10 Hz, 18 ns) modes to achieve an antitumor effect. The research was implemented on CT26 subcutaneous mouse tumors expressing KillerRed in fusion with histone H2B. The results showed that the pulsed mode provided a higher rate of photobleaching of KillerRed without any temperature increase on the tumor surface. PDT with the continuous wave laser was ineffective against CT26 tumors in mice, whereas the pulsed laser induced pronounced histopathological changes and inhibition of tumor growth. Therefore, we selected an effective regimen for PDT when using the genetically encoded photosensitizer KillerRed and pulsed laser irradiation.  相似文献   

19.
藻红蛋白亚基光敏剂对小鼠移植瘤作用的超微结构研究   总被引:3,自引:1,他引:3  
目的:从形态学角度探讨藻红蛋白(R-PE)β亚基光动力学抗肿瘤效果及其作用机理。方法:用不同密度的波长为496nm的氩离子激光对S180小鼠移植瘤进行β亚基光动力学治疗,并对治疗后的瘤体进行透射电镜的形态学观察。结果:用100μg/m1的β亚基,在200J/cm2激光照射剂量条件下治愈了瘤体直径为0.5cm-0.7cm大小的小鼠移植瘤,发现瘤组织中引起细胞死亡的途经有差异,被PDT抑制的肿瘤内部细胞表现出典型的凋亡细胞特征。结论:R-PE β亚基具较强的光动力学抗肿瘤效果,光动力治疗机理可能涉及肿瘤内部细胞死亡主要是凋亡途径而瘤周为坏死,且与血管系统破坏及白细胞参与的抗炎症反应相关。  相似文献   

20.
Photodynamic action of merocyanine 540 on carcinoma of cervix cells   总被引:2,自引:0,他引:2  
Results of the studies carried out on localization and photodynamic action of merocyanine 540 (MC540) on carcinoma of cervix (HeLa) cells are presented. Fluorescence microscopic study showed that when HeLa cells were incubated with MC540 in dark, the dye localized in plasma membrane of cells. Photoirradiation of cells in presence of MC540 led to enhancement of dye uptake, intracellular localization of dye and a dose dependent decrease in cell survival. Clonogenic assay showed 96% cell killing at a light dose of 42 kJ/m2. Photosensitization of cells resulted in loss of membrane integrity, decrease in plasma membrane fluidity and reduction in mitochondrial dehydrogenase activity as measured by tetrazolium reduction (MTT) assay. At a given light dose, the relative change in plasma membrane properties was higher than the reduction in activity of mitochondrial enzyme. These results suggest plasma membrane is a primary target of photosensitization of HeLa cells by MC540.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号