首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluorescently labeled human immunodeficiency virus (HIV) derivatives, combined with the use of advanced fluorescence microscopy techniques, allow the direct visualization of dynamic events and individual steps in the viral life cycle. HIV proteins tagged with fluorescent proteins (FPs) have been successfully used for live-cell imaging analyses of HIV-cell interactions. However, FPs display limitations with respect to their physicochemical properties, and their maturation kinetics. Furthermore, several independent FP-tagged constructs have to be cloned and characterized in order to obtain spectral variations suitable for multi-color imaging setups. In contrast, the so-called SNAP-tag represents a genetically encoded non-fluorescent tag which mediates specific covalent coupling to fluorescent substrate molecules in a self-labeling reaction. Fusion of the SNAP-tag to the protein of interest allows specific labeling of the fusion protein with a variety of synthetic dyes, thereby offering enhanced flexibility for fluorescence imaging approaches.Here we describe the construction and characterization of the HIV derivative HIV(SNAP), which carries the SNAP-tag as an additional domain within the viral structural polyprotein Gag. Introduction of the tag close to the C-terminus of the matrix domain of Gag did not interfere with particle assembly, release or proteolytic virus maturation. The modified virions were infectious and could be propagated in tissue culture, albeit with reduced replication capacity. Insertion of the SNAP domain within Gag allowed specific staining of the viral polyprotein in the context of virus producing cells using a SNAP reactive dye as well as the visualization of individual virions and viral budding sites by stochastic optical reconstruction microscopy. Thus, HIV(SNAP) represents a versatile tool which expands the possibilities for the analysis of HIV-cell interactions using live cell imaging and sub-diffraction fluorescence microscopy.  相似文献   

2.

Purpose

Preclinical in vivo analyses of treatment responses are an important prerequisite to evaluate new therapeutics. Molecular in vivo imaging in the far red (FR)/near infra red (NIR) is a promising method, as it enables measurements at different time points in individual animals, thereby reducing the number of animals required, while increasing statistical significance. Here, we show the establishment of a method to monitor response to treatment using fluorescent cells, expressing the epidermal growth factor receptor (EGFR), a target already used in therapy.

Methods

We transfected A-431 tumour cells with the far red–emitting protein Katushka (Kat2), resulting in strong fluorescence allowing for the monitoring of tumour growth when implanted in BALB/c nu/nu mice with a CRi Maestro in vivo imager. We targeted A-431 cells with a previously reported immunotoxin (IT), consisting of the anti-EGFR antibody single-chain variable fragment (scFv) 425, fused to Pseudomonas aeruginosa Exotoxin A’ (ETA’). In addition, EGFR expression was verified using the 425(scFv) conjugated to a NIR dye BG-747 through a SNAP-tag linker.

Results

The results show the feasibility to evaluate response to treatment in vivo by FR imaging, while at the same location detecting EGFR expression. Treatment with 425(scFv)-ETA’ resulted in decelerated tumour growth, while not affecting the overall health of the animals. This is in contrast to treatment with Doxorubicin, which, although decreasing the tumour size, resulted in poor health.

Conclusions

We developed a novel method to non-invasively determine treatment responses by in vivo imaging of multiple parameters which showed the efficacy of 425(scFv)-ETA’.  相似文献   

3.
Keppler A  Arrivoli C  Sironi L  Ellenberg J 《BioTechniques》2006,41(2):167-70, 172, 174-5
O6-alkylguanine-DNA alkyltransferase (AGT) fusion proteins can be specifically and covalently labeled with fluorescent O6-benzylguanine (O6-BG) derivatives for multicolor live cell imaging approaches. Here, we characterize several new BG fluorophores suitable for in vivo AGT labeling that display fluorescence emission maxima covering the visible spectrum from 472 to 673 nm, thereby extending the spectral limits set by fluorescent proteins. We show that the photostability of the cell-permeable dyes BG Rhodamine Green (BG505) and CP tetramethylrhodamine (CP-TMR) is in the range of enhanced green fluorescent protein (EGFP) and monomeric red fluorescent protein (mRFP), and that BG diethylaminomethyl coumarin (BGDEAC), a derivative of coumarin, is even more stable than enhanced cyan fluorescent protein (ECFP). Due to the increasing number of new BG derivatives with interesting fluorescence properties, such as far-red emission, fluorescence labeling of AGT fusion proteins is becoming a versatile alternative to existing live cell imaging approaches.  相似文献   

4.
Fibroblast activation protein-alpha (FAPα) is a cell surface glycoprotein which is selectively expressed by tumor-associated fibroblasts in malignant tumors but rarely on normal tissues. FAPα has also been reported to promote tumor growth and invasion and therefore has been of increasing interest as a promising target for designing tumor-targeted drugs and imaging agents. Although medicinal study on FAPα inhibitors has led to the discovery of many FAPα-targeting inhibitors including a drug candidate in a phase II clinical trial, the development of imaging probes to monitor the expression and activity of FAPα in vivo has largely lagged behind. Herein, we report an activatable near-infrared (NIR) fluorescent probe (ANP(FAP)) for in vivo optical imaging of FAPα. The ANP(FAP) consists of a NIR dye (Cy5.5) and a quencher dye (QSY21) which are linked together by a short peptide sequence (KGPGPNQC) specific for FAPα cleavage. Because of the efficient fluorescence resonance energy transfer (FRET) between Cy5.5 and QSY21 in ANP(FAP), high contrast on the NIR fluorescence signal can be achieved after the cleavage of the peptide sequence by FAPα both in vitro and in vivo. In vitro assay on ANP(FAP) indicated the specificity of the probe to FAPα. The in vivo optical imaging using ANP(FAP) showed fast tumor uptake as well as high tumor to background contrast on U87MG tumor models with FAPα expression, while much lower signal and tumor contrast were observed in the C6 tumor without FAPα expression, demonstrating the in vivo targeting specificity of the ANP(FAP). Ex vivo imaging also demonstrated ANP(FAP) had high tumor uptake at 4 h post injection. Collectively, these results indicated that ANP(FAP) could serve as a useful NIR optical probe for early detection of FAPα expressing tumors.  相似文献   

5.
Patient survival depends on the completeness of resection of peritoneal ovarian cancer metastases (POCM), and therefore, it is important to develop methods to enhance detection. Previous probe designs based on activatable galactosyl human serum albumin (hGSA)-fluorophore pairs, which target lectin receptors expressed on POCM, have used only visible range dyes conjugated to hGSA. However, imaging probes emitting fluorescence in the NIR range are advantageous because NIR photons have deeper in vivo tissue penetration and result in lower background autofluorescence than those emitting in the visible range. A NIR-activatable hGSA fluorophore was synthesized using a bacteriochlorin-based dye, NMP1. NMP1 has two unique absorption peaks, one in the green range and the other in the NIR range, but emits at a NIR peak of 780 nm. NMP1, thus, has two different Stokes shifts that have the potential to allow imaging of POCM both at the peritoneal surface and just below it. hGSA was conjugated with 2 NMP1 molecules to create a self-quenching complex (hGSA-NMP1). The activation ratio of hGSA-NMP1 was measured by the fluorescence intensity before and after exposure to 10% SDS. The activation ratio of hGSA-NMP1 was ~100-fold in vitro. Flow cytometry, fluorescence microscopy, and in vivo spectral fluorescence imaging were carried out to compare hGSA-NMP1 with hGSA-IR800 and hGSA-ICG (two always-on control agents with similar emission to NMP1) in terms of comparative fluorescence signal and the ability to detect POCM in mice models. The sensitivity and specificity of hGSA-NMP1 for POCM implant detection were determined by colocalizing NMP1 emission spectra with red fluorescent protein (RFP) expressed constitutively in SHIN3 tumor implants at different depths below the peritoneal surface. In vitro, SHIN3 cells were easily detectable after 3 h of incubation with hGSA-NMP1. In vivo submillimeter POCM foci were clearly detectable with spectral fluorescence imaging using hGSA-NMP1. Among 555 peritoneal lesions, hGSA-NMP, using NIR and green excitation light, respectively, detect 75% of all lesions and 91% of lesions ~0.8 mm or greater in diameter. Few false positives were encountered. Nodules located at a depth below the small bowel surface were only depicted with hGSA-NMP1. We conclude that hGSA-NMP1 is useful in imaging peritoneal ovarian cancer metastases, located both superficially and deep in the abdominal cavity.  相似文献   

6.
We developed a novel near-infrared (NIR) fluorescent probe, GPU-167, for in vivo imaging of tumor hypoxia. GPU-167 comprises a tricarbocyanine dye as an NIR fluorophore and two 2-nitroimidazole moieties as exogenous hypoxia markers that undergo bioreductive activation and then selective entrapment in hypoxic cells. After treatment with GPU-167, tumor cells contained significantly higher levels of fluorescence in hypoxia than in normoxia. In vivo fluorescence imaging specifically detected GPU-167 in tumors 24 h after administration. Ex vivo analysis revealed that fluorescence showed a strong correlation with hypoxia inducible factor (HIF)-1 active hypoxic regions. These data suggest that GPU-167 is a promising in vivo optical imaging probe for tumor hypoxia.  相似文献   

7.
E1/E3-deleted Adenovirus 5 (Ad.5) possesses a great potential in gene therapy because of its high efficacy in gene transfer and low toxicity. Studies have shown that Coxsackie-Adenovirus receptor (CAR) is the determinant factor for the targeting of Adenovirus vectors. To extend the natural targeting of Ad to low CAR expressing tumors, we covalently attached folic acid (FA) to E1/E3-deleted Ad.5 capsids. Near-infrared (NIR) fluorescent dye ICG-Der-02 was subsequently conjugated with FA-Ad particles for in vivo imaging. The cell experiments and acute toxicity studies demonstrated the low toxicity of FA-Ad-ICG02 to normal cell/tissues. The dynamic behavior and targeting ability of FA-Ad-ICG02 to different tumors were investigated by NIR fluorescence imaging. In vitro and in vivo studies demonstrated its high targeting capability to CAR or FR positive tumors. The results support the potential of using ligand-modified Ad probe for tumor diagnosis and targeted therapy.  相似文献   

8.
Extended wavelength analyte-responsive fluorescent probes are highly desired for the imaging applications owing to their deep tissue penetration, and minimum interference from autofluorescence by biomolecules. Near infra-red (NIR) sensitive and self-quenching fluorescent probe based on the dye-peptide conjugate (SQ 1 PC) was designed and synthesized by facile and efficient one-pot synthetic route for the detection of Elastase activity. In the phosphate buffer solution, there was an efficient quenching of fluorescence of SQ 1 PC (86%) assisted by pronounced dye-dye interaction due to H-aggregate formation. Efficient and fast recovery of this quenched fluorescence of SQ 1 PC (> 50% in 30 s) was observed on hydrolysis of this peptide-dye conjugate by elastase enzyme. Presently designed NIR sensitive self-quenching substrate offers the potential application for the detection of diseases related to proteases by efficient and fast detection of their activities.  相似文献   

9.
A specific protein fluorescent labeling method has been used as a tool for bio-imaging in living cells. We developed a novel system of switching “fluorescent turn on” by the recognition of a fluorescent probe to a hexahistidine-tagged (His-tag) protein. The tetramethyl rhodamine bearing three nitrilotriacetic acids, which was used as a fluorescent probe to target a His-tagged protein, formed a reversible complex with the quencher, (Dabcyl)-conjugated oligohistidines, in the homogeneous solution, causing fluorescence of the fluorophore to be quenched. The complex when applied to living cells (COS-7) expressing His-tagged proteins on the cell surface caused the quencher-conjugated oligohistidines to be dissociated from the complex by specific binding of the fluorescent probe to the tagged protein, resulting in the fluorescent emission. The complex that did not participate in the binding event remained in the quenched state to maintain a low level of background fluorescence.  相似文献   

10.
Although methods for light microscopy of chromatin are well established, there are no quantitative data for nucleosome concentrations in vivo. To establish such a method we used a HeLa clone expressing the core histone H2B fused to the enhanced yellow fluorescent protein (H2B-EYFP). Quantitative gel electrophoresis and fluorescence correlation spectroscopy (FCS) of isolated oligonucleosomes show that 5% of the total H2Bs carry the fluorescent tag and an increased nucleosome repeat length of 204 bp for the fluorescent cells. In vivo, the mobility and distribution of H2B-EYFP were studied with a combination of FCS and confocal imaging. With FCS, concentration and brightness of nascent molecules were measured in the cytoplasm, while in the nucleoplasm a background of mobile fluorescent histones was determined by continuous photobleaching. Combining these results allows converting confocal fluorescence images of nuclei into calibrated nucleosome density maps. Absolute nucleosome concentrations in interphase amount up to 250 microM locally, with mean values of 140(+/-28)microM, suggesting that a condensation-controlled regulation of site accessibility takes place at length scales well below 200 nm.  相似文献   

11.
In vivo fluorescence imaging uses a sensitive camera to detect fluorescence emission from fluorophores in whole-body living small animals. To overcome the photon attenuation in living tissue, fluorophores with long emission at the near-infrared (NIR) region are generally preferred, including widely used small indocarbocyanine dyes. The list of NIR probes continues to grow with the recent addition of fluorescent organic, inorganic and biological nanoparticles. Recent advances in imaging strategies and reporter techniques for in vivo fluorescence imaging include novel approaches to improve the specificity and affinity of the probes and to modulate and amplify the signal at target sites for enhanced sensitivity. Further emerging developments are aiming to achieve high-resolution, multimodality and lifetime-based in vivo fluorescence imaging.  相似文献   

12.
Highly tumor selective near-infrared (NIR) pH-activatable probe was developed by conjugating pH-sensitive cyanine dye to a cyclic arginine-glycine-aspartic acid (cRGD) peptide targeting α(v)β(3) integrin (ABIR), a protein that is highly overexpressed in endothelial cells during tumor angiogenesis. The NIR pH-sensitive dye used to construct the probe exhibits high spectral sensitivity with pH changes. It has negligible fluorescence above pH 6 but becomes highly fluorescent below pH 5, with a pK(a) of 4.7. This probe is ideal for imaging acidic cell organelles such as tumor lysosomes or late endosomes. Cell microscopy data demonstrate that binding of the cRGD probe to ABIR facilitated the endocytosis-mediated lysosomal accumulation and subsequent fluorescence enhancement of the NIR pH-activatable dye in tumor cells (MDA-MB-435 and 4T1/luc). A similar fluorescence enhancement mechanism was observed in vivo, where the tumors were evident within 4 h post injection. Moreover, lung metastases were also visualized in an orthotopic tumor mouse model using this probe, which was further confirmed by histologic analysis. These results demonstrate the potential of using the new integrin-targeted pH-sensitive probe for the detection of primary and metastatic cancer.  相似文献   

13.
We report the synthesis and characterization of two amine reactive fluorescent dyes with efficient two-photon absorption (2PA) properties and high fluorescence quantum yields. Bioconjugation of these dyes with the DC-101 antibody proved to be useful for selectively imaging the vascular endothelial growth factor receptor 2 (VEGFR-2) in cells expressing this receptor in vitro and in "whole" mounted excised tumors (ex vivo) by two-photon fluorescence microscopy (2PFM). The penetration depths reached within the tumors by 2PFM was over 800 μm. In addition, the concentration of dye required for incubation of these bioconjugates was in the picomolar domain, the probes possessed very good photostability, and the 2PFM setup did not require any additional means of increasing the collection efficiencies of fluorescent photons to achieve the relatively deep tissue imaging that was realized, due, in large part, to the favorable photophysical properties of the new probes.  相似文献   

14.
There has been recent growth in the development of activatable near-infrared (NIR) fluorescent probes for molecular imaging, generally designed by placing fluorochromes on a cleavable substrate in close proximity to one another, such that they self-quench, but fluoresce on separation via enzymatic cleavage of the substrate. Although these probes offer excellent contrast, the detection of enzyme activity has largely only been described qualitatively. In order to assess the effectiveness of a probe, it is useful to have a quantitative measure, such as the enzyme-substrate kinetic parameters. We have developed an assay to determine kinetic parameters and applied it to an intramolecularly quenched molecule, Pyro-PtdEtn-BHQ, a NIR fluorescent probe specific to phosphatidylcholine-specific phospholipase C. The development of this assay includes corrections for intermolecular quenching, calibration, optimization of reaction mixtures, and determination of kinetic and inhibition parameters. This assay can easily be extended to analyze and compare the efficiency of other fluorescent activatable phospholipase probes as suitable molecular imaging agents.  相似文献   

15.
Optical imaging possesses similar sensitivity to nuclear imaging and has led to the emergence of multimodal approaches with dual-labeled nuclear/near-infrared (NIR) agents. The growing impact of (68)Ga (t(1/2)=68 min) labeled peptides on preclinical and clinical research offers a promising opportunity to merge the high spatial resolution of NIR imaging with the clinically-accepted positron emission tomography (PET). Previously, dual-labeled agents have been prepared with longer-lived radiometals and showed no detrimental effects on optical properties as a result of radiolabeling. In this study, we selected a peptide (M(2)) that targets MMP-2/9 and is dual-labeled with IRDye 800 CW and (68)Ga. Since (68)Ga chelation typically requires low pH (3.5-4) and elevated heating temperatures (95 °C), we sought to evaluate the impact of (68)Ga labeling on the optical properties of M(2). An efficient method for preparation of (68)Ga-M(2) was developed and reaction conditions were optimized. Stability studies in PBS, DTPA, and serum were performed and high levels of intact agent were evident under each condition. The addition of multiple reporters to a targeting agent adds further complexity to the characterization and validation and thus requires not only testing to ensure the agent is stable chemically and radiochemically, but also optically. Therefore, fluorescence properties were evaluated using a spectrofluorometer as well as by fluorescence detection via HPLC. It was determined that (68)Ga-labeling conditions did not impair the fluorescent properties of the agent. The agent was then used for in vivo imaging in a mouse model of heterotopic ossification (HO) with activated MMP-9 expression as an early biomarker which precedes mineralization. Although (68)Ga-complexation greatly reduced binding affinity of the peptide and negated tracer uptake on PET, NIR imaging showed consistent fluorescent signal that correlated to MMP-9 expression. This attests to the feasibility of using (68)Ga/NIR for dual-labeling of other peptides or small molecules for multimodality molecular imaging.  相似文献   

16.
Many imaging probes have been developed for a wide variety of imaging modalities. However, no optical imaging probe could be utilized for both microscopic and whole animal imaging. To fill the gap, the dual-wavelength fluorescent imaging nanoprobe was developed to simultaneously carry both visible-range fluorescent dye and near-infrared (NIR) dye. Emission scan confirms that the nanoprobe exhibits two separate peaks with strong fluorescent intensity in both visible and NIR ranges. Furthermore, the dual-wavelength fluorescent nanoprobe has high photostability and colloidal stability, as well as long shelf-life. In vitro cell culture experiments show that the nanoprobe has the ability to label different types of cells (namely, esophageal, prostate, fibroblast and macrophage cell) for fluorescent microscope imaging. More importantly, cell tracking experiments confirm that cell migration and distribution in various organs can be tracked in real time using in vivo whole-body NIR imaging and in vitro microscopic imaging, respectively.  相似文献   

17.
The Förster resonance energy transfer (FRET) technique is widely used for studying protein interactions within live cells. The effectiveness and sensitivity of determining FRET, however, can be reduced by photobleaching, cross talk, autofluorescence, and unlabeled, endogenous proteins. We present a FRET imaging method using an optical switch probe, Nitrobenzospiropyran (NitroBIPS), which substantially improves the sensitivity of detection to <1% FRET efficiency. Through orthogonal optical control of the colorful merocyanine and colorless spiro states of the NitroBIPS acceptor, donor fluorescence can be measured both in the absence and presence of FRET in the same FRET pair in the same cell. A SNAP-tag approach is used to generate a green fluorescent protein-alkylguaninetransferase fusion protein (GFP-AGT) that is labeled with benzylguanine-NitroBIPS. In vivo imaging studies on this green fluorescent protein-alkylguaninetransferase (GFP-AGT) (NitroBIPS) complex, employing optical lock-in detection of FRET, allow unambiguous resolution of FRET efficiencies below 1%, equivalent to a few percent of donor-tagged proteins in complexes with acceptor-tagged proteins.  相似文献   

18.
We report a novel activatable NIR fluorescent probe for in vivo detection of cancer-related matrix metalloproteinase (MMP) activity. The probe is based on a triple-helical peptide substrate (THP) with high specificity for MMP-2 and MMP-9 relative to other members of the MMP family. MMP-2 and MMP-9 (also known as gelatinases) are specifically associated with cancer cell invasion and cancer-related angiogenesis. At the center of each 5 kDa peptide strand is a gelatinase sensitive sequence flanked by 2 Lys residues conjugated with NIR fluorescent dyes. Upon self-assembly of the triple-helical structure, the 3 peptide chains intertwine, bringing the fluorophores into close proximity and reducing fluorescence via quenching. Upon enzymatic cleavage of the triple-helical peptide, 6 labeled peptide chains are released, resulting in an amplified fluorescent signal. The fluorescence yield of the probe increases 3.8-fold upon activation. Kinetic analysis showed a rate of LS276-THP hydrolysis by MMP-2 (k(cat)/K(M) = 30,000 s(-1) M(-1)) similar to that of MMP-2 catalysis of an analogous fluorogenic THP. Administration of LS276-THP to mice bearing a human fibrosarcoma xenografted tumor resulted in a tumor fluorescence signal more than 5-fold greater than that of muscle. This signal enhancement was reduced by treatment with the MMP inhibitor Ilomostat, indicating that the observed tumor fluorescence was indeed enzyme mediated. These results are the first to demonstrate that triple-helical peptides are suitable for highly specific in vivo detection of tumor-related MMP-2 and MMP-9 activity.  相似文献   

19.
Single-molecule tracking has become a widely used technique for studying protein dynamics and their organization in the complex environment of the cell. In particular, the spatiotemporal distribution of membrane receptors is an active field of study due to its putative role in the regulation of signal transduction. The SNAP-tag is an intrinsically monovalent and highly specific genetic tag for attaching a fluorescent label to a protein of interest. Little information is currently available on the choice of optimal fluorescent dyes for single-molecule microscopy utilizing the SNAP-tag labeling system. We surveyed 6 green and 16 red excitable dyes for their suitability in single-molecule microscopy of SNAP-tag fusion proteins in live cells. We determined the nonspecific binding levels and photostability of these dye conjugates when bound to a SNAP-tag fused membrane protein in live cells. We found that only a limited subset of the dyes tested is suitable for single-molecule tracking microscopy. The results show that a careful choice of the dye to conjugate to the SNAP-substrate to label SNAP-tag fusion proteins is very important, as many dyes suffer from either rapid photobleaching or high nonspecific staining. These characteristics appear to be unpredictable, which motivated the need to perform the systematic survey presented here. We have developed a protocol for evaluating the best dyes, and for the conditions that we evaluated, we find that Dy 549 and CF 640 are the best choices tested for single-molecule tracking. Using an optimal dye pair, we also demonstrate the possibility of dual-color single-molecule imaging of SNAP-tag fusion proteins. This survey provides an overview of the photophysical and imaging properties of a range of SNAP-tag fluorescent substrates, enabling the selection of optimal dyes and conditions for single-molecule imaging of SNAP-tagged fusion proteins in eukaryotic cell lines.  相似文献   

20.
Recently, near-infrared (NIR) fluorescence light has been applied to image various biological events in vivo, because it penetrates tissue more efficiently than light in the visible spectrum. Compounds exhibiting fluorescent properties in the NIR range are key elements for this upcoming optical imaging technology. In this paper, we report the synthesis of four new, water-soluble NIR cyanine fluorochromes which have superior chemical stability and optical properties. Each fluorochrome was designed with a monoreactive carboxyl group for labeling purposes. When multiple fluorochromes were attached to a single macromolecule, fluorescence quenching was observed. On the basis of this property, a novel autoquenched enzyme sensitive NIR fluorescence probe was prepared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号