首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Glucocorticoid-Induced Tumor necrosis factor Receptor GITR, a member of the tumor necrosis factor receptor superfamily, has been shown to be important in modulating immune responses in the context of T cell immunity. B lymphocytes also express GITR, but a role of GITR in humoral immunity has not been fully explored. To address this question, we performed studies to determine the kinetics of GITR expression on naïve and stimulated B cells and the capacity of B cells to develop and mount antibody responses in GITR−/− mice. Results of our studies indicate that all mature B cells express GITR on the cell surface, albeit at different levels. Expression of GITR on naïve mature B cells is upregulated by BCR signaling, but is counteracted by helper T cell-related factors and other inflammatory signals in vitro. In line with these findings, expression of GITR on germinal center and memory B cells is lower than that on naïve B cells. However, the expression of GITR is strongly upregulated in plasma cells. Despite these differences in GITR expression, the absence of GITR has no effect on T cell-dependent and T cell-independent antibody responses to model antigens in GITR−/− mice, or on B cell activation and proliferation in vitro. GITR deficiency manifests only with a slight reduction of mature B cell numbers and increased turnover of naïve B cells, suggesting that GITR slightly contributes to mature B cell homeostasis. Overall, our data indicate that GITR does not play a significant role in B cell development and antibody responses to T-dependent and independent model antigens within the context of a GITR-deficient genetic background.  相似文献   

2.
Immunodeficient mice reconstituted with human hematopoietic stem cells enable the in vivo study of human hematopoiesis. In particular, NOD-scid-IL2Rγnull engrafted mice have been shown to have reasonable levels of T and B cell repopulation and can mount T-cell dependent responses; however, antigen-specific B-cell responses in this model are generally poor. We explored whether developmental defects in the immunoglobulin gene repertoire might be partly responsible for the low level of antibody responses in this model. Roche 454 sequencing was used to obtain over 685,000 reads from cDNA encoding immunoglobulin heavy (IGH) and light (IGK and IGL) genes isolated from immature, naïve, or total splenic B cells in engrafted NOD-scid-IL2Rγnull mice, and compared with over 940,000 reads from peripheral B cells of two healthy volunteers. We find that while naïve B-cell repertoires in humanized mice are chiefly indistinguishable from those in human blood B cells, and display highly correlated patterns of immunoglobulin gene segment use, the complementarity-determining region H3 (CDR-H3) repertoires are nevertheless extremely diverse and are specific for each individual. Despite this diversity, preferential DH-JH pairings repeatedly occur within the CDR-H3 interval that are strikingly similar across all repertoires examined, implying a genetic constraint imposed on repertoire generation. Moreover, CDR-H3 length, charged amino-acid content, and hydropathy are indistinguishable between humans and humanized mice, with no evidence of global autoimmune signatures. Importantly, however, a statistically greater usage of the inherently autoreactive IGHV4-34 and IGKV4-1 genes was observed in the newly formed immature B cells relative to naïve B or total splenic B cells in the humanized mice, a finding consistent with the deletion of autoreactive B cells in humans. Overall, our results provide evidence that key features of the primary repertoire are shaped by genetic factors intrinsic to human B cells and are principally unaltered by differences between mouse and human stromal microenvironments.  相似文献   

3.
MDSC are a heterogeneous population of immature macrophages, dendritic cells and granulocytes that accumulate in lymphoid organs in pathological conditions including parasitic infection, inflammation, traumatic stress, graft-versus-host disease, diabetes and cancer1-7. In mice, MDSC express Mac-1 (CD11b) and Gr-1 (Ly6G and Ly6C) surface antigens7. It is important to note that MDSC are well studied in various tumor-bearing hosts where they are significantly expanded and suppress anti-tumor immune responses compared to naïve counterparts7-10. However, depending on the pathological condition, there are different subpopulations of MDSC with distinct mechanisms and targets of suppression11,12. Therefore, effective methods to isolate viable MDSC populations are important in elucidating their different molecular mechanisms of suppression in vitro and in vivo.Recently, the Ghansah group has reported the expansion of MDSC in a murine pancreatic cancer model. Our tumor-bearing MDSC display a loss of homeostasis and increased suppressive function compared to naïve MDSC 13. MDSC percentages are significantly less in lymphoid compartments of naïve vs. tumor-bearing mice. This is a major caveat, which often hinders accurate comparative analyses of these MDSC. Therefore, enriching Gr-1+ leukocytes from naïve mice prior to Fluorescence Activated Cell Sorting (FACS) enhances purity, viability and significantly reduces sort time. However, enrichment of Gr-1+ leukocytes from tumor-bearing mice is optional as these are in abundance for quick FACS sorting. Therefore, in this protocol, we describe a highly efficient method of immunophenotyping MDSC and enriching Gr-1+ leukocytes from spleens of naïve mice for sorting MDSC in a timely manner. Immunocompetent C57BL/6 mice are inoculated with murine Panc02 cells subcutaneously whereas naïve mice receive 1XPBS. Approximately 30 days post inoculation; spleens are harvested and processed into single-cell suspensions using a cell dissociation sieve. Splenocytes are then Red Blood Cell (RBC) lysed and an aliquot of these leukocytes are stained using fluorochrome-conjugated antibodies against Mac-1 and Gr-1 to immunophenotype MDSC percentages using Flow Cytometry. In a parallel experiment, whole leukocytes from naïve mice are stained with fluorescent-conjugated Gr-1 antibodies, incubated with PE-MicroBeads and positively selected using an automated Magnetic Activated Cell Sorting (autoMACS) Pro Separator. Next, an aliquot of Gr-1+ leukocytes are stained with Mac-1 antibodies to identify the increase in MDSC percentages using Flow Cytometry. Now, these Gr1+ enriched leukocytes are ready for FACS sorting of MDSC to be used in comparative analyses (naïve vs. tumor- bearing) in in vivo and in vitro assays.  相似文献   

4.
The PI3K-Akt-mTOR pathway plays crucial roles in regulating both innate and adaptive immunity. However, the role of TSC1, a critical negative regulator of mTOR, in peripheral T cell homeostasis remains elusive. With T cell-specific Tsc1 conditional knockout (Tsc1 KO) mice, we found that peripheral naïve CD8+ T cells but not CD4+ T cells were severely reduced. Tsc1 KO naïve CD8+ T cells showed profound survival defect in an adoptive transfer model and in culture with either stimulation of IL-7 or IL-15, despite comparable CD122 and CD127 expression between control and KO CD8+ T cells. IL-7 stimulated phosphorylation of Akt(S473) was diminished in Tsc1 KO naïve CD8+T cells due to hyperactive mTOR-mediated feedback suppression on PI3K-AKT signaling. Furthermore, impaired Foxo1/Foxo3a phosphorylation and increased pro-apoptotic Bim expression in Tsc1 KO naïve CD8+T cells were observed upon stimulation of IL-7. Collectively, our study suggests that TSC1 plays an essential role in regulating peripheral naïve CD8+ T cell homeostasis, possible via an mTOR-Akt-FoxO-Bim signaling pathway.  相似文献   

5.
6.
Immune senescence, defined as the age-associated dysregulation and dysfunction of the immune system, is characterised by impaired protective immunity and decreased efficacy of vaccines. Recent clinical, epidemiological and immunological studies suggest that Cytomegalovirus (CMV) infection may be associated with accelerated immune senescence, possibly by restricting the naïve T cell repertoire. However, direct evidence whether and how CMV-infection is implicated in immune senescence is still lacking. In this study, we have investigated whether latent mouse CMV (MCMV) infection with or without thymectomy (Tx) alters antiviral immunity of young and aged mice. After infection with lymphocytic choriomeningitis virus (LCMV) or Vaccinia virus, specific antiviral T cell responses were significantly reduced in old, old MCMV-infected and/or Tx mice compared to young mice. Importantly, control of LCMV replication was more profoundly impaired in aged MCMV-infected mice compared to age-matched MCMV-naïve or young mice. In addition, latent MCMV infection was associated with slightly reduced vaccination efficacy in old Tx mice. In contrast to the prevailing hypothesis of a CMV-mediated restriction of the naïve T cell repertoire, we found similar naïve T cell numbers in MCMV-infected and non-infected mice, whereas ageing and Tx clearly reduced the naïve T cell pool. Instead, MCMV-infection expanded the total CD8+ T cell pool by a massive accumulation of effector memory T cells. Based on these results, we propose a new model of increased competition between CMV-specific memory T cells and any ‘de novo’ immune response in aged individuals. In summary, our results directly demonstrate in a mouse model that latent CMV-infection impairs immunity in old age and propagates immune senescence.  相似文献   

7.
We report that natural killer T (NKT) cells play only a minor physiological role in protection from Leishmania donovani infection in C57BL/6 mice. Furthermore, attempts at therapeutic activation of invariant NKT (iNKT) cells with α-galactosylceramide (α-GalCer) during L. donovani infection exacerbated, rather than ameliorated, experimental visceral leishmaniasis. The inability of α-GalCer to promote anti-parasitic immunity did not result from inefficient antigen presentation caused by infection because α-GalCer–loaded bone marrow–derived dendritic cells were also unable to improve disease resolution. The immune-dampening affect of α-GalCer correlated with a bias towards increased IL-4 production by iNKT cells following α-GalCer stimulation in infected mice compared to naïve controls. However, studies in IL-4–deficient mice, and IL-4 neutralisation in cytokine-sufficient mice revealed that α-GalCer–induced IL-4 production during infection had only a minor role in impaired parasite control. Analysis of liver cell composition following α-GalCer stimulation during an established L. donovani infection revealed important differences, predominantly a decrease in IFNγ+ CD8+ T cells, compared with control-treated mice. Our data clearly illustrate the double-edged sword of NKT cell–based therapy, showing that in some circumstances, such as when sub-clinical or chronic infections exist, iNKT cell activation can have adverse outcomes.  相似文献   

8.
T cell memory is a cornerstone of protective immunity, and is the key element in successful vaccination. Upon encountering the relevant pathogen, memory T cells are thought to initiate cell division much more rapidly than their naïve counterparts, and this is thought to confer a significant biological advantage upon an immune host. Here, we use traceable TCR-transgenic T cells to evaluate this proposed characteristic in CD4+ and CD8+ memory T cells. We find that, even in the presence of abundant antigen that was sufficient to induce in vivo IFNγ production by memory T cells, both memory and naïve T cells show an extended, and indistinguishable, delay in the onset of proliferation. Although memory cells can detect, and respond to, virus infection within a few hours, their proliferation did not begin until ∼3 days after infection, and occurred simultaneously in all anatomical compartments. Thereafter, cell division was extraordinarily rapid for both naïve and memory cells, with the latter showing a somewhat accelerated accumulation. We propose that, by permitting memory T cells to rapidly exert their effector functions while delaying the onset of their proliferation, evolution has provided a safeguard that balances the risk of infection against the consequences of severe T cell–mediated immunopathology.  相似文献   

9.
Naïve CD4+ T helper (Th) cells differentiate into distinct subsets of effector cells (Th1, Th2, Th17, and induced regulatory T cells (iTreg)) expressing different sets of cytokines upon encounter with presented foreign antigens. It has been well established that Th1/Th2 balance is critical for the nature of the following immune responses. Previous reports have demonstrated important roles of c-Jun N-terminal kinase (JNK) in Th1/Th2 balance, whereas the regulatory mechanisms of JNK activity in Th cells have not been elucidated. Here, we show that dual specificity phosphatase 16 (DUSP16, also referred to as MKP-M or MKP-7), which preferentially inactivates JNK, is selectively expressed in Th2 cells. In the in vitro differentiation assay of naïve CD4+ cells, DUSP16 expression is up-regulated during Th2 differentiation and down-regulated during Th1 differentiation. Chromatin immunoprecipitation revealed the increased acetylation of histone H3/H4 at the dusp16 gene promoter in CD4+ T cells under the Th2 condition. Adenoviral transduction of naïve CD4+ T cells with DUSP16 resulted in increased mRNA expression of IL-4 and GATA-3 in Th2 and decreased expression of IFNγ and T-bet in Th1 differentiation. In contrast, transduction of a dominant negative form of DUSP16 had the reverse effects. Furthermore, upon immunization, T cell-specific dusp16 transgenic mice produced antigen-specific IgG2a at lower amounts, whereas DN dusp16 transgenic mice produced higher amounts of antigen-specific IgG2a accompanied by decreased amounts of antigen-specific IgG1 and IgE than those of control mice. Together, these data suggest the functional role of DUSP16 in Th1/Th2 balance.  相似文献   

10.
11.
Epstein-Barr virus (EBV), a lymphomagenic human herpesvirus, colonises the host through polyclonal B cell-growth-transforming infections yet establishes persistence only in IgD+ CD27+ non-switched memory (NSM) and IgD CD27+ switched memory (SM) B cells, not in IgD+ CD27 naïve (N) cells. How this selectivity is achieved remains poorly understood. Here we show that purified N, NSM and SM cell preparations are equally transformable in vitro to lymphoblastoid cells lines (LCLs) that, despite upregulating the activation-induced cytidine deaminase (AID) enzyme necessary for Ig isotype switching and Ig gene hypermutation, still retain the surface Ig phenotype of their parental cells. However, both N- and NSM-derived lines remain inducible to Ig isotype switching by surrogate T cell signals. More importantly, IgH gene analysis of N cell infections revealed two features quite distinct from parallel mitogen-activated cultures. Firstly, following 4 weeks of EBV-driven polyclonal proliferation, individual clonotypes then become increasingly dominant; secondly, in around 35% cases these clonotypes carry Ig gene mutations which both resemble AID products and, when analysed in prospectively-harvested cultures, appear to have arisen by sequence diversification in vitro. Thus EBV infection per se can drive at least some naïve B cells to acquire Ig memory genotypes; furthermore, such cells are often favoured during an LCL''s evolution to monoclonality. Extrapolating to viral infections in vivo, these findings could help to explain how EBV-infected cells become restricted to memory B cell subsets and why EBV-driven lymphoproliferative lesions, in primary infection and/or immunocompromised settings, so frequently involve clones with memory genotypes.  相似文献   

12.

Background

A series of epidemiologic studies have identified the fungus Alternaria as a major risk factor for asthma. The airway epithelium plays a critical role in the pathogenesis of allergic asthma. These reports suggest that activated airway epithelial cells can produce cytokines such as IL-25, TSLP and IL-33 that induce Th2 phenotype. However the epithelium-derived products that mediate the pro-asthma effects of Alternaria are not well characterized. We hypothesized that exposure of the airway epithelium to Alternaria releasing cytokines that can induce Th2 differentiation.

Methodology/Principal Finding

We used ELISA to measure human and mouse cytokines. Alternaria extract (ALT-E) induced rapid release of IL-18, but not IL-4, IL-9, IL-13, IL-25, IL-33, or TSLP from cultured normal human bronchial epithelial cells; and in the BAL fluids of naïve mice after challenge with ALT-E. Both microscopic and FACS indicated that this release was associated with necrosis of epithelial cells. ALT-E induced much greater IL-18 release compared to 19 major outdoor allergens. Culture of naïve CD4 cells with rmIL-18 induced Th2 differentiation in the absence of IL-4 and STAT6, and this effect was abrogated by disrupting NF- κB p50 or with a NEMO binding peptide inhibitor.

Conclusion/Significance

Rapid and specific release of IL-18 from Alternaria-exposed damaged airway epithelial cells can directly initiate Th2 differentiation of naïve CD4+ T-cells via a unique NF-κB dependent pathway.  相似文献   

13.
A high intracellular bacillary load of Mycobacterium tuberculosis in macrophages induces an atypical lysosomal cell death with early features of apoptosis that progress to necrosis within hours. Unlike classical apoptosis, this cell death mode does not appear to diminish M. tuberculosis viability. We previously reported that culturing heavily infected macrophages with naïve macrophages produced an antimicrobial effect, but only if naïve macrophages were added during the pre-necrotic phase of M. tuberculosis-induced cell death. In the present study we investigated the mechanism of antimicrobial activity in co-cultures, anticipating that efferocytosis of bacilli in apoptotic bodies would be required. Confocal microscopy revealed frustrated phagocytosis of M. tuberculosis-infected macrophages with no evidence that significant numbers of bacilli were transferred to the naïve macrophages. The antimicrobial effect of naïve macrophages was retained when they were separated from infected macrophages in transwells, and conditioned co-culture supernatants transferred antimicrobial activity to cultures of infected macrophages alone. Antimicrobial activity in macrophage co-cultures was abrogated when the naïve population was deficient in IL-1 receptor or when the infected population was deficient in inducible nitric oxide synthase. The participation of nitric oxide suggested a conventional antimicrobial mechanism requiring delivery of bacilli to a late endosomal compartment. Using macrophages expressing GFP-LC3 we observed the induction of autophagy specifically by a high intracellular load of M. tuberculosis. Bacilli were identified in LC3-positive compartments and LC3-positive compartments were confirmed to be acidified and LAMP1 positive. Thus, the antimicrobial effect of naïve macrophages acting on M. tuberculosis in heavily-infected macrophages is contact-independent. Interleukin-1 provides an afferent signal that induces an as yet unidentified small molecule which promotes nitric oxide-dependent antimicrobial activity against bacilli in autolysosomes of heavily infected macrophages. This cooperative, innate antimicrobial interaction may limit the maximal growth rate of M. tuberculosis prior to the expression of adaptive immunity in pulmonary tuberculosis.  相似文献   

14.
The aim of the study is to characterize the phenotypes of CD4+ CD25+ T regulatory cells within the liver granulomas and association with both Foxp-3 gene expression and splenic cytokines. Naïve C57BL/6 mice were intravenously injected with multiple doses of the soluble egg antigen (SEA) 7 days before cercarial infection. The immunized and infected control groups were sacrificed 8 and 16 weeks post-infection (PI). Histopathology, parasitological parameters, splenic phenotypes for T regulatory cells, the FOXP-3 expression in hepatic granuloma using real-time PCR, and the associated splenic cytokines were studied. Histopathological examination of the liver revealed remarkable increase in degenerated ova within hepatic granuloma which decreased in diameter at weeks 8 and 16 PI (P<0.01). The percentage of T regulatory cells (CD4+ CD25+) increased significantly (P<0.01) in the immunized group compared to the infected control at weeks 8 and 16 PI. The FOXP-3 expression in hepatic granulomas increased from 10 at week 8 to 30 fold at week 16 PI in the infected control group. However, its expression in the immunized group showed an increase from 30 at week 8 to 70 fold at week 16 PI. The splenic cytokine levels of pro-inflammatory cytokines, IFN-γ, IL-4, and TNF-α, showed significant decreases (P<0.05) compared to the infected control group. In conclusion, the magnitude and phenotype of the egg-induced effects on T helper responses were found to be controlled by a parallel response within the T regulatory population which provides protection in worm parasite-induced immunopathology.  相似文献   

15.
CD4 T-cell help is required for the induction of efficient CD8 T-cells responses and the generation of memory cells. Lack of CD4 T-cell help may contribute to an exhausted CD8 phenotype and viral persistence. Little is known about priming of CD4 T-cells by liver-derived antigen. We used TF-OVA mice expressing ovalbumin in hepatocytes to investigate CD4 T-cell priming by liver-derived antigen and the impact of CD4 T-cell help on CD8 T-cell function. Naïve and effector CD4 T-cells specific for ovalbumin were transferred into TF-OVA mice alone or together with naïve ovalbumin-specific CD8 T-cells. T-cell activation and function were analyzed. CD4 T-cells ignored antigen presented by liver antigen-presenting cells (APCs) in vitro and in vivo but were primed in the liver-draining lymph node and the spleen. No priming occurred in the absence of bone-marrow derived APCs capable of presenting ovalbumin in vivo. CD4 T-cells primed in TF-OVA mice displayed defective Th1-effector function and caused no liver damage. CD4 T-cells were not required for the induction of hepatitis by CD8 T-cells. Th1-effector but not naïve CD4 T-cells augmented the severity of liver injury caused by CD8 T-cells. Our data demonstrate that CD4 T-cells fail to respond to liver-derived antigen presented by liver APCs and develop defective effector function after priming in lymph nodes and spleen. The lack of CD4 T-cell help may be responsible for insufficient CD8 T-cell function against hepatic antigens.  相似文献   

16.
HIV-1-infected adults over the age of 50 years progress to AIDS more rapidly than adults in their twenties or thirties. In addition, HIV-1-infected individuals receiving antiretroviral therapy (ART) present with clinical diseases, such as various cancers and liver disease, more commonly seen in older uninfected adults. These observations suggest that HIV-1 infection in older persons can have detrimental immunological effects that are not completely reversed by ART. As naïve T-cells are critically important in responses to neoantigens, we first analyzed two subsets (CD45RA+CD31+ and CD45RA+CD31-) within the naïve CD4+ T-cell compartment in young (20–32 years old) and older (39–58 years old), ART-naïve, HIV-1 seropositive individuals within 1–3 years of infection and in age-matched seronegative controls. HIV-1 infection in the young cohort was associated with lower absolute numbers of, and shorter telomere lengths within, both CD45RA+CD31+CD4+ and CD45RA+CD31-CD4+ T-cell subsets in comparison to age-matched seronegative controls, changes that resembled seronegative individuals who were decades older. Longitudinal analysis provided evidence of thymic emigration and reconstitution of CD45RA+CD31+CD4+ T-cells two years post-ART, but minimal reconstitution of the CD45RA+CD31-CD4+ subset, which could impair de novo immune responses. For both ART-naïve and ART-treated HIV-1-infected adults, a renewable pool of thymic emigrants is necessary to maintain CD4+ T-cell homeostasis. Overall, these results offer a partial explanation both for the faster disease progression of older adults and the observation that viral responders to ART present with clinical diseases associated with older adults.  相似文献   

17.
Kupffer cells (KCs) represent the major phagocytic population within the liver and provide an intracellular niche for the survival of a number of important human pathogens. Although KCs have been extensively studied in vitro, little is known of their in vivo response to infection and their capacity to directly interact with antigen-specific CD8+ T cells. Here, using a combination of approaches including whole mount and thin section confocal microscopy, adoptive cell transfer and intra-vital 2-photon microscopy, we demonstrate that KCs represent the only detectable population of mononuclear phagocytes within granulomas induced by Leishmania donovani infection that are capable of presenting parasite-derived peptide to effector CD8+ T cells. This restriction of antigen presentation to KCs within the Leishmania granuloma has important implications for the identification of new candidate vaccine antigens and for the design of novel immuno-therapeutic interventions.  相似文献   

18.
Systemic lupus erythematosus (SLE) is characterized by prominent autoinflammatory tissue damage associated with impaired removal of dying cells and DNA. Self DNA-containing immune complexes are able to activate both innate and adaptive immune responses and play an important role in the maintenance and exacerbation of autoimmunity in SLE. In this study, we used DNA from lymphocytes that have undergone activation-induced cell death (ALD-DNA) and analyzed its role on the activation and differentiation of B cells from normal BALB/c mice as well as lupus-prone MRL+/+ and MRL/lpr mice. We found that ALD-DNA directly increased the expression of costimulatory molecules and the survival of naïve B cells in vitro. Although ALD-DNA alone had little effect on the proliferation of naïve B cells, it enhanced LPS-activated B cell proliferation in vitro and in vivo. In addition, ALD-DNA increased plasma cell numbers and IgG production in LPS-stimulated cultures of naïve B cells, in part via enhancing IL-6 production. Importantly, B cells from lupus mice were hyperresponsive to ALD-DNA and/or LPS relative to normal control B cells in terminal plasma cell differentiation, as evidenced by increases in CD138+ cell numbers, IgM production, and mRNA levels of B lymphocyte-induced maturation protein-1 (Blimp-1) and the X-box binding protein 1 (XBP1). Furthermore, ALD-DNA enhanced CD40-activated naïve B cell proliferation. Collectively, these data indicate that self DNA can serve as a DAMP (damage-associated molecular pattern) that cooperates with signals from both innate and adaptive immunity to promote polyclonal B cell activation, a common characteristic of autoimmune diseases.  相似文献   

19.

Introduction

Targeting CD74 as the invariant chain of major histocompatibility complexes (MHC) became possible by the availability of a specific humanized monoclonal antibody, milatuzumab, which is under investigation in patients with hematological neoplasms. CD74 has been reported to regulate chemo-attractant migration of macrophages and dendritic cells, while the role of CD74 on peripheral naïve and memory B cells also expressing CD74 remains unknown. Therefore, the current study addressed the influence of milatuzumab on B-cell proliferation, chemo-attractant migration, and adhesion molecule expression.

Methods

Surface expression of CD74 on CD27- naïve and CD27+ memory B cells as well as other peripheral blood mononuclear cells (PBMCs) obtained from normals, including the co-expression of CD44, CXCR4, and the adhesion molecules CD62L, β7-integrin, β1-integrin and CD9 were studied after binding of milatuzumab using multicolor flow cytometry. The influence of the antibody on B-cell proliferation and migration was analyzed in vitro in detail.

Results

In addition to monocytes, milatuzumab also specifically bound to human peripheral B cells, with a higher intensity on CD27+ memory versus CD27- naïve B cells. The antibody reduced B-cell proliferation significantly but moderately, induced enhanced spontaneous and CXCL12-dependent migration together with changes in the expression of adhesion molecules, CD44, β7-integrin and CD62L, mainly of CD27- naïve B cells. This was independent of macrophage migration-inhibitory factor as a ligand of CD74/CD44 complexes.

Conclusions

Milatuzumab leads to modestly reduced proliferation, alterations in migration, and adhesion molecule expression preferentially of CD27- naïve B cells. It thus may be a candidate antibody for the autoimmune disease therapy by modifying B cell functions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号