首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 241 毫秒
1.
NSC (neural stem cells)/NPC (neural progenitor cells) are multipotent and self-renew throughout adulthood in the SVZ (subventricular zone) of the mammalian CNS (central nervous system). These cells are considered interesting targets for CNS neurodegenerative disorder cell therapies, and understanding their behaviour in vitro is crucial if they are to be cultured prior to transplantation. We cultured the SVZ tissue belonging to newborn rats under the form of NS (neurospheres) to evaluate the effects of Tf (transferrin) on cell proliferation. The NS were heterogeneous in terms of the NSC/NPC markers GFAP (glial fibrillary acidic protein), Nestin and Sox2 and the OL (oligodendrocyte) progenitor markers NG2 (nerve/glia antigen 2) and PDGFRα (platelet-derived growth factor receptor α). The results of this study indicate that aTf (apoTransferrin) is able to increase cell proliferation of SVZ-derived cells in vitro, and that these effects were mediated at least in part by the TfRc1 (Tf receptor 1). Since OPCs (oligodendrocyte progenitor cells) represent a significant proportion of the proliferating cells in the SVZ-derived primary cultures, we used the immature OL cell line N20.1 to show that Tf was able to augment the proliferation rate of OPC, either by adding aTf to the culture medium or by overexpressing rat Tf in situ. The culture medium supplemented with ferric iron, together with aTf, increased the DNA content, while ferrous iron did not. The present work provides data that could have a potential application in human cell replacement therapies for neurodegenerative disease and/or CNS injury that require the use of in vitro amplified NPCs.  相似文献   

2.
We have previously demonstrated that aTf (apotransferrin) accelerates maturation of OLs (oligodendrocytes) in vitro as well as in vivo. The purpose of this study is to determine whether aTf plays a functional role in a model of H/I (hypoxia/ischaemia) in the neonatal brain. Twenty-four hours after H/I insult, neonatal rats were intracranially injected with aTf and the effects of this treatment were evaluated in the CC (corpus callosum) as well as the SVZ (subventricular zone) at different time points. Similar to previous studies, the H/I event produced severe demyelination in the CC. Demyelination was accompanied by microglial activation, astrogliosis and iron deposition. Ferritin levels increased together with lipid peroxidation and apoptotic cell death. Histological examination after the H/I event in brain tissue of aTf-treated animals (H/I aTF) revealed a great number of mature OLs repopulating the CC compared with saline-treated animals (H/I S). ApoTf treatment induced a gradual increase in MBP (myelin basic protein) and myelin lipid staining in the CC reaching normal levels after 15 days. Furthermore, significant increase in the number of OPCs (oligodendroglial progenitor cells) was found in the SVZ of aTf-treated brains compared with H/I S. Specifically, there was a rise in cells positive for OPC markers, i.e. PDGFRα and SHH+ cells, with a decrease in cleaved-caspase-3+ cells compared with H/I S. Additionally, neurospheres from aTf-treated rats were bigger in size and produced more O4/MBP+ cells. Our findings indicate a role for aTf as a potential inducer of OLs in neonatal rat brain in acute demyelination caused by H/I and a contribution to the differentiation/maturation of OLs and survival/migration of SVZ progenitors after demyelination in vivo.  相似文献   

3.
The olfactory bulb (OB) periventricular zone is an extension of the forebrain subventricular zone (SVZ) and thus is a source of neuroprogenitor cells and neural stem cells. While considerable information is available on the SVZ-OB neural stem cell (NSC)/neuroprogenitor cell (NPC) niche in rodents, less work has been done on this system in large animals. The newborn piglet is used as a preclinical translational model of neonatal hypoxic-ischemic brain damage, but information about the endogenous sources of NSCs/NPCs in piglet is needed to implement endogenous or autologous cell-based therapies in this model. We characterized NSC/NPC niches in piglet forebrain and OB-SVZ using western blotting, histological, and cell culture methods. Immunoblotting revealed nestin, a NSC/NPC marker, in forebrain-SVZ and OB-SVZ in newborn piglet. Several progenitor or newborn neuron markers, including Dlx2, musashi, doublecortin, and polysialated neural cell adhesion molecule were also detected in OB-SVZ by immunoblotting. Immunohistochemistry confirmed the presence of nestin, musashi, and doublecortin in forebrain-SVZ and OB-SVZ. Bromodeoxyuridine (BrdU) labeling showed that the forebrain-SVZ and OB-SVZ accumulate newly replicated cells. BrdU-positive cells were immunolabeled for astroglial, oligodendroglial, and neuronal markers. A lateral migratory pathway for newly born neuron migration to primary olfactory cortex was revealed by BrdU labeling and co-labeling for doublecortin and class III β tubulin. Isolated and cultured forebrain-SVZ and OB-SVZ cells from newborn piglet had the capacity to generate numerous neurospheres. Single cell clonal analysis of neurospheres revealed the capacity for self-renewal and multipotency. Neurosphere-derived cells differentiated into neurons, astrocytes, and oligodendrocytes and were amenable to permanent genetic tagging with lentivirus encoding green fluorescent protein. We conclude that the piglet OB-SVZ is a reservoir of NSCs and NPCs suitable to use in autologous cell therapy in preclinical models of neonatal/pediatric brain injury.  相似文献   

4.
The generation of myelinating cells from multipotential neural stem cells in the CNS requires the initiation of specific gene expression programs in oligodendrocytes (OLs). We reasoned that microRNAs (miRNAs) could play an important role in this process by regulating genes crucial for OL development. Here we identified miR-7a as one of the highly enriched miRNAs in oligodendrocyte precursor cells (OPCs), overexpression of which in either neural progenitor cells (NPCs) or embryonic mouse cortex promoted the generation of OL lineage cells. Blocking the function of miR-7a in differentiating NPCs led to a reduction in OL number and an expansion of neuronal populations simultaneously. We also found that overexpression of this miRNA in purified OPC cultures promoted cell proliferation and inhibited further maturation. In addition, miR-7a might exert the effects just mentioned partially by directly repressing proneuronal differentiation factors including Pax6 and NeuroD4, or proOL genes involved in oligodendrocyte maturation. These results suggest that miRNA pathway is essential in determining cell fate commitment for OLs and thus providing a new strategy for modulating this process in OL loss diseases.  相似文献   

5.
Myelination in the central nervous system takes place predominantly during the postnatal development of humans and rodents by myelinating oligodendrocytes (OLs), which are differentiated from oligodendrocyte progenitor cells (OPCs). We recently reported that Sox2 is essential for developmental myelination in the murine brain and spinal cord. It is still controversial regarding the role of Sox2 in oligodendroglial lineage progression in the postnatal murine spinal cord. Analyses of a series of cell- and stage-specific Sox2 mutants reveal that Sox2 plays a biphasic role in regulating oligodendroglial lineage progression in the postnatal murine spinal cord. Sox2 controls the number of OPCs for subsequent differentiation through regulating their proliferation. In addition, Sox2 regulates the timing of OL differentiation and modulates the rate of oligodendrogenesis. Our experimental data prove that Sox2 is an intrinsic positive timer of oligodendroglial lineage progression and suggest that interventions affecting oligodendroglial Sox2 expression may be therapeutic for overcoming OPC differentiation arrest in dysmyelinating and demyelinating disorders.  相似文献   

6.
The postnatal neocortex has traditionally been considered a non-neurogenic region, under non-pathological conditions. A few studies suggest, however, that a small subpopulation of neural cells born during postnatal life can differentiate into neurons that take up residence within the neocortex, implying that postnatal neurogenesis could occur in this region, albeit at a low level. Evidence to support this hypothesis remains controversial while the source of putative neural progenitors responsible for generating new neurons in the postnatal neocortex is unknown. Here we report the identification of self-renewing multipotent neural progenitor cells (NPCs) derived from the postnatal day 14 (PD14) marmoset monkey primary visual cortex (V1, striate cortex). While neuronal maturation within V1 is well advanced by PD14, we observed cells throughout this region that co-expressed Sox2 and Ki67, defining a population of resident proliferating progenitor cells. When cultured at low density in the presence of epidermal growth factor (EGF) and/or fibroblast growth factor 2 (FGF-2), dissociated V1 tissue gave rise to multipotent neurospheres that exhibited the ability to differentiate into neurons, oligodendrocytes and astrocytes. While the capacity to generate neurones and oligodendrocytes was not observed beyond the third passage, astrocyte-restricted neurospheres could be maintained for up to 6 passages. This study provides the first direct evidence for the existence of multipotent NPCs within the postnatal neocortex of the nonhuman primate. The potential contribution of neocortical NPCs to neural repair following injury raises exciting new possibilities for the field of regenerative medicine.  相似文献   

7.
Oligodendroglial progenitor/precursor cells (OPCs) represent the main cellular source for the generation of new myelinating oligodendrocytes in the adult central nervous system (CNS). In demyelinating diseases such as multiple sclerosis (MS) myelin repair activities based on recruitment, activation and differentiation of resident OPCs can be observed. However, the overall degree of successful remyelination is limited and the existence of an MS-derived anti-oligodendrogenic milieu prevents OPCs from contributing to myelin repair. It is therefore of considerable interest to understand oligodendroglial homeostasis and maturation processes in order to enable the development of remyelination therapies. Mesenchymal stem cells (MSC) have been shown to exert positive immunomodulatory effects, reduce demyelination, increase neuroprotection and to promote adult neural stem cell differentiation towards the oligodendroglial lineage. We here addressed whether MSC secreted factors can boost the OPC’s oligodendrogenic capacity in a myelin non-permissive environment. To this end, we analyzed cellular morphologies, expression and regulation of key factors involved in oligodendroglial fate and maturation of primary rat cells upon incubation with MSC-conditioned medium. This demonstrated that MSC-derived soluble factors promote and accelerate oligodendroglial differentiation, even under astrocytic endorsing conditions. Accelerated maturation resulted in elevated levels of myelin expression, reduced glial fibrillary acidic protein expression and was accompanied by downregulation of prominent inhibitory differentiation factors such as Id2 and Id4. We thus conclude that apart from their suggested application as potential anti-inflammatory and immunomodulatory MS treatment, these cells might also be exploited to support endogenous myelin repair activities.  相似文献   

8.
An acute brain injury is commonly characterized by an extended cellular damage. The post-injury process of scar formation is largely determined by responses of various local glial cells and blood-derived immune cells. The role of astrocytes and microglia have been frequently reviewed in the traumatic sequelae. Here, we summarize the diverse contributions of oligodendrocytes (OLs) and their precursor cells (OPCs) in acute injuries. OLs at the lesion site are highly sensitive to a damaging insult, provoked by Ca2+ overload after hyperexcitation originating from increased levels of transmitters. At the lesion site, differentiating OPCs can replace injured oligodendrocytes to guarantee proper myelination that is instrumental for healthy brain function. In contrast to finally differentiated and non-dividing OLs, OPCs are the most proliferative cells of the brain and their proliferation rate even increases after injury. There exist even evidence that OPCs might also generate some type of astrocyte beside OLs. Thereby, OPCs can contribute to the generation and maintenance of the glial scar. In the future, detailed knowledge of the molecular cues that help to prevent injury-evoked glial cell death and that control differentiation and myelination of the oligodendroglial lineage will be pivotal in developing novel therapeutic approaches.  相似文献   

9.
During development, spinal cord oligodendrocyte precursors (OPCs) originate from the ventral, but not dorsal, neuroepithelium. Sonic hedgehog (SHH) has crucial effects on oligodendrocyte production in the ventral region of the spinal cord; however, less is known regarding SHH signalling and oligodendrocyte generation from neural stem cells (NSCs). We show that NSCs isolated from the dorsal spinal cord can generate oligodendrocytes following FGF2 treatment, a MAP kinase dependent phenomenon that is associated with induction of the obligate oligogenic gene Olig2. Cyclopamine, a potent inhibitor of hedgehog signalling, did not block the formation of oligodendrocytes from FGF2-treated neurosphere cultures. Furthermore, neurospheres generated from SHH null mice also produced oligodendrocytes, even in the presence of cyclopamine. These findings are compatible with the idea of a hedgehog independent pathway for oligodendrocyte generation from neural stem cells.  相似文献   

10.

Background

Cell–based therapy holds great promises for demyelinating diseases. Human-derived fetal and adult oligodendrocyte progenitors (OPC) gave encouraging results in experimental models of dysmyelination but their limited proliferation in vitro and their potential immunogenicity might restrict their use in clinical applications. Virtually unlimited numbers of oligodendroglial cells could be generated from long-term self-renewing human (h)-derived neural stem cells (hNSC). However, robust oligodendrocyte production from hNSC has not been reported so far, indicating the need for improved understanding of the molecular and environmental signals controlling hNSC progression through the oligodendroglial lineage. The aim of this work was to obtain enriched and renewable cultures of hNSC-derived oligodendroglial cells by means of epigenetic manipulation.

Methodology/Principal Findings

We report here the generation of large numbers of hNSC-derived oligodendroglial cells by concurrent/sequential in vitro exposure to combinations of growth factors (FGF2, PDGF-AA), neurotrophins (NT3) and hormones (T3). In particular, the combination FGF2+NT3+PDGF-AA resulted in the maintenance and enrichment of an oligodendroglial cell population displaying immature phenotype (i.e., proliferation capacity and expression of PDGFRα, Olig1 and Sox10), limited self-renewal and increased migratory activity in vitro. These cells generate large numbers of oligodendroglial progeny at the early stages of maturation, both in vitro and after transplantation in models of CNS demyelination.

Conclusions/Significance

We describe a reliable method to generate large numbers of oligodendrocytes from a renewable source of somatic, non-immortalized NSC from the human foetal brain. We also provide insights on the mechanisms underlying the pro-oligodendrogenic effect of the treatments in vitro and discuss potential issues responsible for the limited myelinating capacity shown by hNSC-derived oligodendrocytes in vivo.  相似文献   

11.
Liu X  Li Y  Zhang Y  Lu Y  Guo W  Liu P  Zhou J  Xiang Z  He C 《PloS one》2011,6(6):e21058

Background

Oligodendrocyte precursor cells (OPCs) differentiate into oligodendrocytes (OLs), which are responsible for myelination. Myelin is essential for saltatory nerve conduction in the vertebrate nervous system. However, the molecular mechanisms of maturation and myelination by oligodendrocytes remain elusive.

Methods and Findings

In the present study, we showed that maturation of oligodendrocytes was attenuated by sodium orthovanadate (a comprehensive inhibitor of tyrosine phosphatases) and PTPi IV (a specific inhibitor of SHP-2). It is also found that SHP-2 was persistently expressed during maturation process of OPCs. Down-regulation of endogenous SHP-2 led to impairment of oligodendrocytes maturation and this effect was triiodo-L-thyronine (T3) dependent. Furthermore, over-expression of SHP-2 was shown to promote maturation of oligodendrocytes. Finally, it has been identified that SHP-2 was involved in activation of Akt and extracellular-regulated kinases 1 and 2 (ERK1/2) induced by T3 in oligodendrocytes.

Conclusions

SHP-2 promotes oligodendrocytes maturation via Akt and ERK1/2 signaling in vitro.  相似文献   

12.
In the CNS, transferrin (Tf) is expressed by the oligodendroglial cells (OLGcs) and is essential for their development. We have previously shown that apotransferrin (aTf) accelerates maturation of OLGcs in vivo as well as in vitro. The mechanisms involved in this action appear to be complex and have not been completely elucidated. The aim of this study was to investigate if Tf participates in the regulation of the cell cycle of oligodendroglial progenitor cells (OPcs). Primary cultures of OPcs were treated with aTf and/or with different combinations of mitogenic factors. Cell cycle progression was studied by BrdU incorporation, flow cytometry and by the expression of cell cycle regulatory proteins. Apotransferrin decreased the number of BrdU+ cells, increasing the cell cycle time and decreasing the number of cells in S phase. The cell cycle inhibitors p27kip1, p21cip1 and p53 were increased, and in agreement with these results, the activity of the complexes involved in G1-S progression (cyclin D/CDK4, cyclin E/CDK2), was dramatically decreased. Apotransferrin also inhibited the mitogenic effects of PDGF and PDGF/IGF on OPcs, but did not affect their proliferation rate in the presence of bFGF, bFGF/PDGF or bFGF/IGF. Our results indicate that inhibition of the progression of the cell cycle of OPcs by aTf, even in the presence of PDGF, leads to an early beginning of the differentiation program, evaluated by different maturation markers (O4, GC and MBP) and by morphological criteria. The modulation by aTf of the response of OPcs to PDGF supports the idea that this glycoprotein might act as a key regulator of the OLGc lineage progression.  相似文献   

13.
Neural stem cells (NSCs) can be isolated and expanded in large-scale, using the neurosphere assay and differentiated into the three major cell types of the central nervous system (CNS); namely, astrocytes, oligodendrocytes and neurons. These characteristics make neural stem and progenitor cells an invaluable renewable source of cells for in vitro studies such as drug screening, neurotoxicology and electrophysiology and also for cell replacement therapy in many neurological diseases. In practice, however, heterogeneity of NSC progeny, low production of neurons and oligodendrocytes, and predominance of astrocytes following differentiation limit their clinical applications. Here, we describe a novel methodology for the generation and subsequent purification of immature neurons from murine NSC progeny using fluorescence activated cell sorting (FACS) technology. Using this methodology, a highly enriched neuronal progenitor cell population can be achieved without any noticeable astrocyte and bona fide NSC contamination. The procedure includes differentiation of NSC progeny isolated and expanded from E14 mouse ganglionic eminences using the neurosphere assay, followed by isolation and enrichment of immature neuronal cells based on their physical (size and internal complexity) and fluorescent properties using flow cytometry technology. Overall, it takes 5-7 days to generate neurospheres and 6-8 days to differentiate NSC progeny and isolate highly purified immature neuronal cells.  相似文献   

14.
Radial Glia (RG) cells constitute the major population of neural progenitors of the mouse developing brain. These cells are located in the ventricular zone (VZ) of the cerebral cortex and during neurogenesis they support the generation of cortical neurons. Later on, during brain maturation, RG cells give raise to glial cells and supply the adult mouse brain of Neural Stem Cells (NSC). Here we used a novel transgenic mouse line expressing the CreER(T2) under the control of AspM promoter to monitor the progeny of an early cohort of RG cells during neurogenesis and in the post natal brain. Long term fate mapping experiments demonstrated that AspM-expressing RG cells are multi-potent, as they can generate neurons, astrocytes and oligodendrocytes of the adult mouse brain. Furthermore, AspM descendants give also rise to proliferating progenitors in germinal niches of both developing and post natal brains. In the latter--i.e. the Sub Ventricular Zone--AspM descendants acquired several feature of neural stem cells, including the capability to generate neurospheres in vitro. We also performed the selective killing of these early progenitors by using a Nestin-GFP(flox)-TK allele. The forebrain specific loss of early AspM expressing cells caused the elimination of most of the proliferating cells of brain, a severe derangement of the ventricular zone architecture, and the impairment of the cortical lamination. We further demonstrated that AspM is expressed by proliferating cells of the adult mouse SVZ that can generate neuroblasts fated to become olfactory bulb neurons.  相似文献   

15.
Multipotent neural stem cells (NSCs) are competent for commitment to the oligodendrocyte (OL) lineage both in vitro and in vivo. We exploited this property to develop a rat neurospheres (NS)/oligospheres (OS)-based culture system to generate large numbers of highly enriched late OL progenitors (preOLs) and mature OLs (MatOLs). CNS neuroblastoma cell line B104-derived conditioned medium promoted the generation of nearly pure populations of preOLs from dissociated OS. The subsequent culture of preOLs with ciliary neurotrophic factor (CNTF) and 3,3',5'-triiodo-L-thyronine (T(3)) generated nearly pure populations of MatOLs. OL lineage specificity was confirmed by immunocytochemistry, quantitative RT-PCR and gene expression profiling, which demonstrated large differences between preOLs and MatOLs. The insulin-like growth factors (IGFs) are potent neuro-protective agents required for OL survival. We used this system to systematically define maturation-dependent changes in IGF signaling during the course of OL differentiation. The IGF-I and insulin receptors, insulin receptor substrate-1 (IRS-1) and IRS-2, protein kinase B (PKB)/Akt and Janus kinase (JNK) were expressed at higher levels in NS and preOLs compared with OS and MatOLs. Erk expression increased markedly from NS to OS, decreased only partially upon commitment to preOLs, and, in MatOLs, returned to a low level similar to NS. IGF activation of the generally proliferative Erk pathway was gradually acquired during NSC differentiation, whereas IGF activation of the generally pro-survival, anti-apoptotic PI3K/PKB pathway was consistently robust at each developmental stage.  相似文献   

16.
Cortical neuroepithelial cells generate neurons, astrocytes, and oligodendrocytes (OLs) in vitro. However, whether cortical OLs are derived from the cortical neuroepithelium or migrate from the ventral forebrain is under severe debate yet. This is due to the fact that OL progenitor cells (OPCs), as marked by the expression of PDGFRalpha or NG2, are generated at around embryonic day (E) 11 or 12 in the mouse ganglionic eminences, but the myelinating OLs appear during the second week postnatally in the cortex. There has been no labeling method for long-term glial cell-lineage tracing. Thus, we developed a new strategy: plasmid DNA encoding Cre recombinase was introduced into the Cre/loxP reporter forebrain in ventral- or dorsal-specific manner by in utero DNA electroporation. The reporter gfp gene is expressed permanently owing to the chromosomal DNA recombination. The GFP-labeled myelinating OLs were detected in the adult cortex when electroporation was targeted to the ventral neuroepithelium, demonstrating at least some of the myelinating OLs are derived from the ventral forebrain. However, when electroporation was targeted to the dorsal, we could not find GFP-labeled myelinating OLs. This suggests that the progenitors of cortical OPCs are absent or located at restricted regions in the dorsal forebrain (cortex) at E12.  相似文献   

17.
The ability to isolate oligodendroglial precursor cells (OPCs) provides a powerful means to characterize their differentiation, properties and potential for myelin repair. Although much knowledge is available for isolation of OPCs from the rat central nervous system, preparation and maintenance of mouse OPCs has been until recently a challenge owing to difficulties in obtaining a sufficient quantity of purified OPCs. Here, we describe protocols to prepare highly enriched rat OPCs and nearly homogenous mouse OPCs. The mouse method generates predominantly OPCs from cortical neural progenitor cells as clonal aggregates called "oligospheres" by taking advantage of molecular genetic tools. Isolated OPCs can be further differentiated into oligodendrocytes. Collectively, we describe simple and efficient methods for the preparation and in vitro maintenance of enriched OPCs from rats and mice. Isolation and culture of a large, homogenous population of rodent OPCs should significantly facilitate studies on OPC lineage progression and their utility in myelin repair after injury.  相似文献   

18.
Neural stem cells (NSCs) or neuronal progenitor cells are cells capable of differentiating into oligodendrocytes, myelin-forming cells that have the potential of remyelination. Brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) are two neurotrophic factors that have been studied to stimulate NSC differentiation thus playing a role in multiple sclerosis pathogenesis and several other demyelinating disorders. While several studies have demonstrated the proliferative and protective capabilities of these neurotrophic factors, their cellular and molecular functions are still not well understood. Thus, in the present study, we focus on understanding the role of these neurotrophins (BDNF and NGF) in oligodendrogenesis from NSCs. Both neurotrophic factors have been shown to promote NSC proliferation and NSC differentiation particularly into oligodendroglial lineage in a dose-dependent fashion. Further, to establish the role of these neurotrophins in NSC differentiation, we have employed pharmacological inhibitors for TrkA and TrkB receptors in NSCs. The use of these inhibitors suppressed NSC differentiation into oligodendrocytes along with the downregulation of phosphorylated ERK suggesting active involvement of ERK in the functioning of these neurotrophins. The morphometric analysis also revealed the important role of both neurotrophins in oligodendrocytes development. These findings highlight the importance of neurotrophic factors in stimulating NSC differentiation and may pave a role for future studies to develop neurotrophic factor replacement therapies to achieve remyelination.  相似文献   

19.
Recently, several in vitro studies have shown that the golli–myelin basic proteins regulate Ca2+ homoeostasis in OPCs (oligodendrocyte precursor cells) and immature OLs (oligodendrocytes), and that a number of the functions of these cells are affected by cellular levels of the golli proteins. To determine the influence of golli in vivo on OL development and myelination, a transgenic mouse was generated in which the golli isoform J37 was overexpressed specifically within OLs and OPCs. The mouse, called JOE (J37-overexpressing), is severely hypomyelinated between birth and postnatal day 50. During this time, it exhibits severe intention tremors that gradually abate at later ages. After postnatal day 50, ultrastructural studies and Northern and Western blot analyses indicate that myelin accumulates in the brain, but never reaches normal levels. Several factors appear to underlie the extensive hypomyelination. In vitro and in vivo experiments indicate that golli overexpression causes a significant delay in OL maturation, with accumulation of significantly greater numbers of pre-myelinating OLs that fail to myelinate axons during the normal myelinating period. Immunohistochemical studies with cell death and myelin markers indicate that JOE OLs undergo a heightened and extended period of cell death and are unable to effectively myelinate until 2 months after birth. The results indicate that increased levels of golli in OPC/OLs delays myelination, causing significant cell death of OLs particularly in white matter tracts. The results provide in vivo evidence for a significant role of the golli proteins in the regulation of maturation of OLs and normal myelination.  相似文献   

20.
GABA(B) receptors (GABA(B)Rs) are involved in early events during neuronal development. The presence of GABA(B)Rs in developing oligodendrocytes has not been established. Using immunofluorescent co-localization, we have identified GABA(B)R proteins in O4 marker-positive oligodendrocyte precursor cells (OPCs) in 4-day-old mouse brain periventricular white matter. In culture, OPCs, differentiated oligodendrocytes (DOs) and type 2 astrocytes (ASTs) express both the GABA(B1abcdf) and GABA(B2) subunits of the GABA(B)R. Using semiquantitative PCR analysis with GABA(B)R isoform-selective primers we found that the expression level of GABA(B1abd) was substantially higher in OPCs or ASTs than in DOs. In contrast, the GABA(B2) isoform showed a similar level of expression in OPCs and DOs, and a significantly higher level in ASTs. This indicates that the expression of GABA(B1) and GABA(B2) subunits are under independent control during oligodendroglial development. Activation of GABA(B)Rs using the selective agonist baclofen demonstrated that these receptors are functionally active and negatively coupled to adenylyl cyclase. Manipulation of GABA(B)R activity had no effect on OPC migration in a conventional agarose drop assay, whereas baclofen significantly increased OPC migration in a more sensitive transwell microchamber-based assay. Exposure of cultured OPCs to baclofen increased their proliferation, providing evidence for a functional role of GABA(B)Rs in oligodendrocyte development. The presence of GABA(B)Rs in developing oligodendrocytes provides a new mechanism for neuronal-glial interactions during development and may offer a novel target for promoting remyelination following white matter injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号