首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Human cytomegalovirus (HCMV) can be reactivated under immunosuppressive conditions causing several fatal pneumonitis, hepatitis, retinitis, and gastrointestinal diseases. HCMV also causes deafness and mental retardation in neonates when primary infection has occurred during pregnancy. In the genome of HCMV at least 194 known open reading frames (ORFs) have been predicted, and approximately one-quarter, or 41 ORFs, are required for viral replication in cell culture. In contrast, the majority of the predicted ORFs are nonessential for viral replication in cell culture. However, it is also possible that these ORFs are required for the efficient viral replication in the host. The UL77 gene of HCMV is essential for viral replication and has a role in viral DNA packaging. The function of the upstream UL76 gene in the HCMV-infected cells is not understood. UL76 and UL77 are cistons on the same viral mRNA and a conventional 5′ mRNA for UL77 has not been detected. The vast majority of eukaryotic mRNAs are monocistronic, i.e., they encode only a single protein.

Methodology/Principal Findings

To determine whether the UL76 ORF affects UL77 gene expression, we mutated UL76 by ORF frame-shifts, stop codons or deletion of the viral gene. The effect on UL77 protein expression was determined by either transfection of expression plasmids or infection with recombinant viruses. Mutation of UL76 ORF significantly increased the level of UL77 protein expression. However, deletion of UL76 upstream of the UL77 ORF had only marginal effects on viral growth.

Conclusions/Significance

While UL76 is not essential for viral replication, the UL76 ORF is involved in regulation of the level of UL77 protein expression in a manner dependent on the translation re-initiation. UL76 may fine-tune the UL77 expression for the efficient viral replication in the HCMV- infected cells.  相似文献   

2.
3.
4.
5.
The human tumor suppressor SMARCB1/INI1/SNF5/BAF47 (SNF5) is a core subunit of the multi-subunit ATP-dependent chromatin remodeling complex SWI/SNF, also known as Brahma/Brahma-related gene 1 (BRM/BRG1)-associated factor (BAF). Experimental studies of SWI/SNF are currently considerably limited by the low cellular abundance of this complex; thus, recombinant protein production represents a key to obtain the SWI/SNF proteins for molecular and structural studies. While the expression of mammalian proteins in bacteria is often difficult, the baculovirus/insect cell expression system can overcome limitations of prokaryotic expression systems and facilitate the co-expression of multiple proteins. Here, we demonstrate that human full-length SNF5 tagged with a C-terminal 3?×?FLAG can be expressed and purified from insect cell extracts in monomeric and dimeric forms. To this end, we constructed a set of donor and acceptor vectors for the expression of individual proteins and protein complexes in the baculovirus/insect cell expression system under the control of a polyhedrin (polh), p10, or a minimal Drosophila melanogaster Hsp70 promoter. We show that the SNF5 expression level could be modulated by the selection of the promoter used to control expression. The vector set also comprises vectors that encode a 3?×?FLAG tag, Twin-Strep tag, or CBP-3?×?FLAG-TEV-ProteinA triple tag to facilitate affinity selection and detection. By gel filtration and split-ubiquitin assays, we show that human full-length SNF5 has the ability to self-interact. Overall, the toolbox developed herein offers the possibility to flexibly select the promoter strength as well as the affinity tag and is suggested to advance the recombinant expression of chromatin remodeling factors and other challenging proteins.  相似文献   

6.
Here, we report the molecular characterization of the human cytomegalovirus uracil DNA glycosylase (UNG) UL114. Purified UL114 was shown to be a DNA glycosylase, which removes uracil from double-stranded and single-stranded DNA. However, kinetic analysis has shown that viral UNG removed uracil more slowly compared with the core form of human UNG (Δ84hUNG), which has a catalytic efficiency (kcat/KM) 350- to 650-fold higher than that of UL114. Furthermore, UL114 showed a maximum level of DNA glycosylase activity at equimolar concentrations of the viral polymerase processivity factor UL44. Next, UL114 was coprecipitated with DNA immobilized to magnetic beads only in the presence of UL44, suggesting that UL44 facilitated the loading of UL114 on DNA. Moreover, mutant analysis demonstrated that the C-terminal part of UL44 (residues 291-433) is important for the interplay with UL114. Immunofluorescence microscopy revealed that UL44 and UL114 colocalized in numerous small punctuate foci at the immediate-early (5 and 8 hpi) phases of infection and that these foci grew in size throughout the infection. Furthermore, coimmunoprecipitation assays with cellular extracts of infected cells confirmed that UL44 associated with UL114. Finally, the nuclear concentration of UL114 was estimated to be 5- to 10-fold higher than that of UL44 in infected cells, which indicated a UL44-independent role of UL114. In summary, our data have demonstrated a catalytically inefficient viral UNG that was highly enriched in viral replication foci, thus supporting an important role of UL114 in replication rather than repair of the viral genome.  相似文献   

7.
8.
ATP-dependent SWI/SNF chromatin remodeling complexes alter the structure of chromatin at specific loci and facilitate tissue-specific gene regulation during development. Several SWI/SNF subunits are required for cardiogenesis. However, the function and mechanisms of SWI/SNF in mediating cardiac progenitor cell (CPC) differentiation during cardiogenesis are not well understood. Our studies of the SWI/SNF chromatin remodeling complex identified that BAF250a, a regulatory subunit of the SWI/SNF, plays a key role in CPC differentiation. BAF250a ablation in mouse second heart field (SHF) led to trabeculation defects in the right ventricle, ventricular septal defect, persistent truncus arteriosus, reduced myocardial proliferation, and embryonic lethality around E13. Using an embryonic stem cell culture system that models the formation and differentiation of SHF CPCs in vivo, we have shown that BAF250a ablation in CPCs specifically inhibits cardiomyocyte formation. Moreover, BAF250a selectively regulates the expression of key cardiac factors Mef2c, Nkx2.5, and Bmp10 in SHF CPCs. Chromatin immunoprecipitation and DNase I digestion assays indicate that BAF250a regulates gene expression by binding selectively to its target gene promoters and recruiting Brg1, the catalytic subunit of SWI/SNF, to modulate chromatin accessibility. Our results thus identify BAF250a-mediated chromatin remodeling as an essential epigenetic mechanism mediating CPC differentiation.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
Protein complexes of the SWI/SNF family remodel nucleosome structure in an ATP-dependent manner. Each complex contains between 8 and 15 subunits, several of which are highly conserved between yeast, Drosophila, and humans. We have reconstituted an ATP-dependent chromatin remodeling complex using a subset of conserved subunits. Unexpectedly, both BRG1 and hBRM, the ATPase subunits of human SWI/SNF complexes, are capable of remodeling mono-nucleosomes and nucleosomal arrays as purified proteins. The addition of INI1, BAF155, and BAF170 to BRG1 increases remodeling activity to a level comparable to that of the whole hSWI/SNF complex. These data define the functional core of the hSWI/SNF complex.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号