首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Glaucoma is a leading cause of blindness worldwide, characterized by retinal ganglion cell degeneration and damage to the optic nerve. We investigated the non-image forming visual system in an experimental model of glaucoma in rats induced by weekly injections of chondroitin sulphate (CS) in the eye anterior chamber. Animals were unilaterally or bilaterally injected with CS or vehicle for 6 or 10 weeks. In the retinas from eyes injected with CS, a similar decrease in melanopsin and Thy-1 levels was observed. CS injections induced a similar decrease in the number of melanopsin-containing cells and superior collicular retinal ganglion cells. Experimental glaucoma induced a significant decrease in the afferent pupil light reflex. White light significantly decreased nocturnal pineal melatonin content in control and glaucomatous animals, whereas blue light decreased this parameter in vehicle- but not in CS-injected animals. A significant decrease in light-induced c-Fos expression in the suprachiasmatic nuclei was observed in glaucomatous animals. General rhythmicity and gross entrainment appear to be conserved, but glaucomatous animals exhibited a delayed phase angle with respect to lights off and a significant increase in the percentage of diurnal activity. These results indicate the glaucoma induced significant alterations in the non-image forming visual system.  相似文献   

2.
Glaucoma is one of the leading eye diseases resulting in blindness due to the death of retinal ganglion cells. This study aimed to develop novel protocol to promote the differentiation of retinal Müller cells into ganglion cells in vivo in a rat model of glaucoma. The stem cells dedifferentiated from rat retinal Müller cells were randomized to receive transfection with empty lentivirus PGC-FU-GFP or lentivirus PGC-FU-Atoh7-GFP, or no transfection. The stem cells were induced further to differentiate. Ocular hypertension was induced using laser photocoagulation. The eyes were injected with Atoh7 expression vector lentivirus PGC-FU-Atoh7-GFP. Eyeball frozen sections, immunohistochemistry, RT-PCR, Western bolt, and apoptosis assay were performed. We found that the proportion of ganglion cells differentiated from Atoh7-tranfected stem cells was significantly higher than that of the other two groups. The mean intraocular pressure of glaucomatous eyes was elevated significantly compared with those of contralateral eyes. Some retinal Müller cells in the inner nuclear layer entered the mitotic cell cycle in rat chronic ocular hypertension glaucoma model. Atoh7 contributes to the differentiation of retinal Müller cells into retinal ganglion cells in rat model of glaucoma. In conclusion, Atoh7 promotes the differentiation of Müller cells-derived retinal stem cells into retinal ganglion cells in a rat model of glaucoma, thus opening up a new avenue for gene therapy and optic nerve regeneration in glaucoma.  相似文献   

3.
Glaucoma is a leading cause of acquired blindness which may involve an ischemic-like insult to retinal ganglion cells and optic nerve head. We investigated the effect of a weekly application of brief ischemia pulses (ischemic conditioning) on the rat retinal damage induced by experimental glaucoma. Glaucoma was induced by weekly injections of chondroitin sulfate (CS) in the rat eye anterior chamber. Retinal ischemia was induced by increasing intraocular pressure to 120 mmHg for 5 min; this maneuver started after 6 weekly injections of vehicle or CS and was weekly repeated in one eye, while the contralateral eye was submitted to a sham procedure. Glaucoma was evaluated in terms of: i) intraocular pressure (IOP), ii) retinal function (electroretinogram (ERG)), iii) visual pathway function (visual evoked potentials, (VEPs)) iv) histology of the retina and optic nerve head. Retinal thiobarbituric acid substances levels were assessed as an index of lipid peroxidation. Ischemic conditioning significantly preserved ERG, VEPs, as well as retinal and optic nerve head structure from glaucomatous damage, without changes in IOP. Moreover, ischemia pulses abrogated the increase in lipid peroxidation induced by experimental glaucoma. These results indicate that induction of ischemic tolerance could constitute a fertile avenue for the development of new therapeutic strategies in glaucoma treatment.  相似文献   

4.
Glaucoma, the second most common cause of blindness worldwide, is an ocular disease characterized by progressive loss of retinal ganglion cell (RGC) axons. Biomechanical factors are thought to play a central role in RGC loss, but the specific mechanism underlying this disease remains unknown. Our goal was to characterize the biomechanical environment in the optic nerve head (ONH)—the region where RGC damage occurs—in human eyes. Post mortem human eyes were imaged, fixed at either 5 or 50 mmHg pressure and processed histologically to acquire serial sections through the ONH. Three-dimensional models of the ONH region were reconstructed from these sections and embedded in a generic scleral shell to create a model of an entire eye. We used finite element simulations to quantify the effects of an acute change in intraocular pressure from 5 to 50 mmHg on the ONH biomechanical environment. Computed strains varied substantially within the ONH, with the pre-laminar neural tissue and the lamina cribrosa showing the greatest strains. The mode of strain having the largest magnitude was third principal strain (compression), reaching 12–15% in both the lamina cribrosa and the pre-laminar neural tissue. Shear strains were also substantial. The distribution of strains in all ONH tissues was remarkably similar between eyes. Inter-individual variations in ONH geometry (anatomy) have only modest effects on ONH biomechanics, and may not explain inter-individual susceptibility to elevated intraocular pressure. Consistent with previous results using generic ONH models, the displacements of the vitreo-retinal interface and the anterior surface of the lamina cribrosa can differ substantially, suggesting that currently available optical imaging methods do not provide information of the acute deformations within ONH tissues. Predicted strains within ONH tissues are potentially biologically significant and support the hypothesis that biomechanical factors contribute to the initial insult that leads to RGC loss in glaucoma. Ian A. Sigal now a post-doctoral research fellow at Ocular Biomechanics Laboratory, Devers Eye Institute, Legacy Health Research. Portland, OR, USA. (isigal@deverseye.org).  相似文献   

5.
Because as many as half of glaucoma patients on intraocular pressure (IOP)-lowering therapy continue to experience optic nerve toxicity, it is imperative to find other effective therapies. Iron and calcium ions play key roles in oxidative stress, a hallmark of glaucoma. Therefore, we tested metal chelation by means of ethylenediaminetetraacetic acid (EDTA) combined with the permeability enhancer methylsulfonylmethane (MSM) applied topically on the eye to determine if this noninvasive treatment is neuroprotective in rat optic nerve and retinal ganglion cells exposed to oxidative stress induced by elevated IOP. Hyaluronic acid (HA) was injected into the anterior chamber of the rat eye to elevate the IOP. EDTA–MSM was applied topically to the eye for 3 months. Eyeballs and optic nerves were processed for histological assessment of cytoarchitecture. Protein–lipid aldehyde adducts and cyclooxygenase-2 (COX-2) were detected immunohistochemically. HA administration increased IOP and associated oxidative stress and inflammation. Elevated IOP was not affected by EDTA–MSM treatment. However, oxidative damage and inflammation were ameliorated as reflected by a decrease in formation of protein–lipid aldehyde adducts and COX-2 expression, respectively. Furthermore, EDTA–MSM treatment increased retinal ganglion cell survival and decreased demyelination of optic nerve compared with untreated eyes. Chelation treatment with EDTA–MSM ameliorates sequelae of IOP-induced toxicity without affecting IOP. Because most current therapies aim at reducing IOP and damage occurs even in the absence of elevated IOP, EDTA–MSM has the potential to work in conjunction with pressure-reducing therapies to alleviate damage to the optic nerve and retinal ganglion cells.  相似文献   

6.
Glaucoma is defined as a chronic and progressive optic nerve neuropathy, characterized by apoptosis of retinal ganglion cells (RGC) that leads to irreversible blindness. Ocular hypertension is a major risk factor, but in glaucoma RGC death can persist after ocular hypertension is normalized. To understand the mechanism underlying chronic RGC death we identified and characterized a gene product, alpha2-macroglobulin (alpha2M), whose expression is up-regulated early in ocular hypertension and remains up-regulated long after ocular hypertension is normalized. In ocular hypertension retinal glia up-regulate alpha2M, which binds to low-density lipoprotein receptor-related protein-1 receptors in RGCs, and is neurotoxic in a paracrine fashion. Neutralization of alpha2M delayed RGC loss during ocular hypertension; whereas delivery of alpha2M to normal eyes caused progressive apoptosis of RGC mimicking glaucoma without ocular hypertension. This work adds to our understanding of the pathology and molecular mechanisms of glaucoma, and illustrates emerging paradigms for studying chronic neurodegeneration in glaucoma and perhaps other disorders.  相似文献   

7.
Pax genes play a pivotal role in development of the vertebrate visual system. Pax6 is the master control gene for eye development: ectopic expression of Pax6 in Xenopus laevis and Drosphila melanogaster leads to the formation of differentiated eyes on the legs or wings. Pax6 is involved in formation of ganglion cells of the retina, as well as cells of the lens, iris and cornea. In addition Pax6 may play a role in axon guidance in the visual system. Pax2 regulates differentiation of the optic disk through which retinal ganglion cell axons exit the eye. Furthermore, Pax2 plays a critical role in development of the optic chiasm and in the guidance of axons along the contralateral or ipsilateral tracts of the optic nerve to visual targets in the brain. During development Pax7 is expressed in neuronal cells of one of the major visual targets in the brain, the optic tectum/superior colliculus. Neurons expressing Pax7 migrate towards the pia and concentrate in the stratum griseum superficiale (SGFS), the target site for retinal axons. Together, expression of Pax2, 6 and 7 may guide axons during formation of functional retinotectal/collicular projections. Highly regulated Pax gene expression is also observed in mature animals. Moreover, evidence suggests that Pax genes are important for regeneration of the visual system. We are currently investigating Pax gene expression in species that display a range of outcomes of optic nerve regeneration. We predict that such information will provide valuable insights for the induction of successful regeneration of the optic nerve and of other regions of the central nervous system in mammals including man.  相似文献   

8.
Biomechanics and Modeling in Mechanobiology - Glaucoma is a blinding disease characterized by the degeneration of the retinal ganglion cell (RGC) axons at the optic nerve head (ONH). A major risk...  相似文献   

9.
Glutamate and gamma-aminobutyric acid (GABA) are major excitatory and inhibitory retinal neurotransmitters. The balance between these signals is a key principle of organization at retinal level. Although glutamate-induced excitotoxicity could mediate retinal ganglion cell death in glaucoma, the GABAergic system was not previously examined in this disease. The aim of this work was to study the retinal GABAergic activity in eyes with ocular hypertension induced by hyaluronic acid (HA). For this purpose, weekly injections of HA were performed unilaterally in the rat anterior chamber, whereas the contralateral eye was injected with saline solution. At 3 weeks of treatment with HA, GABA turnover rate, glutamic acid decarboxylase activity, and both glutamate- and high K(+)-induced GABA release significantly decreased, whereas GABA uptake increased in HA-treated eyes. The binding of t-butylbicyclophosphorothionate (TBPS) to GABA(A)/benzodiazepine Cl(-) channels significantly increased in eyes injected with HA as compared with vehicle-injected eyes. Changes in GABA uptake and TBPS binding persisted at 6 weeks of treatment with HA. These results indicate a dysfunction of the retinal GABAergic activity in hypertensive eyes, which could suggest the involvement of GABA in glaucomatous neuropathy.  相似文献   

10.
The heads of small adult snails, Helix aspersa, were injected with horseradish peroxidase (HRP) for one to five hours before extirpating the eyes and preparing them cytochemically for electron microscopy. There was internalization of tracer by pinocytic vesicles (pinosomes) at the bases of types-I and -II sensory cells, ganglion cells and, in lesser amounts, by pigmented supportive cells. Vesicles and vacuoles filled with HRP were transported in two directions: lensward as far distad as the ends of the cells (retrograde) and brainward down the optic nerve (anterograde). We believe that the numerous reacted vacuoles in the cell somata are formed by fusion of vesicles, tubules and C-shaped organelles filled with tracer; we present evidence that they become secondary lysosomes. Sensory cell type II possesses more HRP-reacted vacuoles distally than the other retinal cells. Other vesicles are also described. There was no uptake of tracer by the distal ends of the retinal cells following injection HRP into the hemolymph. The swelling of the optic nerve, immediately behind the eye, contains more HRP-filled pinosomes and vacuoles than does the nerve below the dilatation. The significance of endocytosis and transport of pinosomes within the eye and down the optic nerve is discussed.  相似文献   

11.
Glaucoma is an optic neuropathy, commonly associated with elevated intraocular pressure (IOP) characterized by optic nerve degeneration, cupping of the optic disc, and loss of retinal ganglion cells which could lead to loss of vision. Endothelin-1 (ET-1) is a 21-amino acid vasoactive peptide that plays a key role in the pathogenesis of glaucoma; however, the receptors mediating these effects have not been defined. In the current study, endothelin B (ET(B)) receptor expression was assessed in vivo, in the Morrison's ocular hypertension model of glaucoma in rats. Elevation of IOP in Brown Norway rats produced increased expression of ET(B) receptors in the retina, mainly in retinal ganglion cells (RGCs), nerve fiber layer (NFL), and also in the inner plexiform layer (IPL) and inner nuclear layer (INL). To determine the role of ET(B) receptors in neurodegeneration, Wistar-Kyoto wild type (WT) and ET(B) receptor-deficient (KO) rats were subjected to retrograde labeling with Fluoro-Gold (FG), following which IOP was elevated in one eye while the contralateral eye served as control. IOP elevation for 4 weeks in WT rats caused an appreciable loss of RGCs, which was significantly attenuated in KO rats. In addition, degenerative changes in the optic nerve were greatly reduced in KO rats compared to those in WT rats. Taken together, elevated intraocular pressure mediated increase in ET(B) receptor expression and its activation may contribute to a decrease in RGC survival as seen in glaucoma. These findings raise the possibility of using endothelin receptor antagonists as neuroprotective agents for the treatment of glaucoma.  相似文献   

12.
The retinal ischemia-reperfusion model is used in the study of transient ischemia-related diseases, such as central retinal artery occlusion, angle-closure glaucoma, and others. There are two methods for experimentally producing an ischemia-reperfusion model in the rat retina: (i) the intraocular pressure is greatly raised by increasing the height of the infusion bottle connected with the needle in the anterior chamber; or (ii) the blood vessel that accompanies the optic nerve in retina is ligated. However, each method has some drawbacks. For example, in the first method, the needle must be fixed in the anterior chamber for 1 hr, thus, the technique is not stable and mechanical damage to ocular structures sometimes occurs. In the second method, because of the unavoidable involvement of the optic nerve, damage to the nerve induces retinal changes unrelated to ischemia. In this study, we injected endothelin (ET)-1 under the conjunctiva of the eyeball (subconjunctival injection), and evaluated whether a retinal ischemia-reperfusion model could be generated by this method, simply and noninvasively. We injected 4 x 10(-5) M ET-1 solution into the right eye of the rat and injected a control vehicle (artificial tears) into the left eye. From 5-60 mins after the injection, 50 mg/ml fluorescein isothiocyanate (FITC)-dextran was injected to the left ventricle of heart. Then, the retina was removed and flat mounted. We compared the perfusion conditions of the FITC-dextran to each retina in the right and left eye. There was a complete perfusion of FITC-dextran in the retinal main artery, vein, and the capillary vessels in all of the control eyes. However, perfusion could not be completely observed in the ET-1 injected eye from 5-35 mins after injection; afterwards, the flow was returned. This method of subconjunctival injection of ET-1 is, thus, a feasible technical option for producing a retinal ischemia-reperfusion model in rat.  相似文献   

13.
Vision loss in glaucoma is caused by progressive dysfunction of retinal ganglion cells (RGCs) and optic nerve atrophy. Here, we investigated the effectiveness of BDNF treatment to preserve vision in a glaucoma experimental model. As an established experimental model, we used the DBA/2J mouse, which develops chronic intraocular pressure (IOP) elevation that mimics primary open-angle glaucoma (POAG). IOP was measured at different ages in DBA/2J mice. Visual function was monitored using the steady-state Pattern Electroretinogram (P-ERG) and visual cortical evoked potentials (VEP). RGC alterations were assessed using Brn3 immunolabeling, and confocal microscope analysis. Human recombinant BDNF was dissolved in physiological solution (0.9% NaCl); the effects of repeated intravitreal injections and topical eye BDNF applications were independently evaluated in DBA/2J mice with ocular hypertension. BDNF level was measured in retinal homogenate by ELISA and western blot. We found a progressive decline of P-ERG and VEP responses in DBA/2J mice between 4 and 7 months of age, in relationship with the development of ocular hypertension and the reduction of Brn3 immunopositive RGCs. Conversely, repeated intravitreal injections (BDNF concentration = 2 µg/µl, volume = 1 µl, for each injection; 1 injection every four days, three injections over two weeks) and topical eye application of BDNF eye-drops (12 µg/µl, 5 µl eye-drop every 48 h for two weeks) were able to rescue visual responses in 7 month DBA/2J mice. In particular, BDNF topical eye treatment recovered P-ERG and VEP impairment increasing the number of Brn3 immunopositive RGCs. We showed that BDNF effects were independent of IOP reduction. Thus, topical eye treatment with BDNF represents a promisingly safe and feasible strategy to preserve visual function and diminish RGC vulnerability to ocular hypertension.  相似文献   

14.
The pathological damage caused by glaucoma is associated to a high intraocular pressure. The ocular hypertone is most likely due to a defective efflux of aqueous humor from the anterior chamber of the eye. Ocular hypertension causes apoptotic death of retinal ganglion cells and overexpression of molecular markers typical of cell stress response and apoptosis. In this work, we report on the neuroprotective, antiapoptotic and antioxidant action of a natural substance, -carnitine. This compound is known for its ability to improve the mitochondrial performance. We analyze a number of cellular and molecular markers, typical of ocular hypertension and, in general, of the cell stress response. In particular, -carnitine reduces the expression of glial fibrillary acidic protein, inducible nitric oxide synthase, ubiquitin and caspase 3 typical markers of cell stress. In addition, the morphological analysis of the optic nerve evidenced a reduction of the pathological excavation of the optic disk. This experimental hypertone protocol induces a severe lipoperoxidation, which is significantly reduced by -carnitine. The overall interpretation is that mortality of the retinal cells is due to membrane damage.  相似文献   

15.
The relative importance of vision in a foveate group of alepocephalid teleosts is examined in the context of a deep-sea habitat beyond the penetration limits of sunlight. The large eyes of Conocara spp. possess deep convexiclivate foveae lined with Müller cells comprising radial shafts of intermediate filaments and horizontal processes. Photoreceptor cell (171.8 x 10(3) rods mm(-2)) and retinal ganglion cell (11.9 x 10(3) cells mm(-2)) densities peak within the foveal clivus and the perifloveal slopes, respectively, with a centro-peripheral gradient between 3:1 (photoreceptors) and over 20:1 (ganglion cells). The marked increase in retinal sampling localized in temporal retina, coupled with a high summation ratio (13:1), suggest that foveal vision optimizes both spatial resolving power and sensitivity in the binocular frontal visual field. The elongated optic nerve head is comprised of over 500 optic papillae, which join at the embryonic fissure to form a thin nervous sheet behind the eye. The optic nerve is divided into two axonal bundles; one receiving input from the fovea (only unmyelinated axons) and the other from non-specialized retinal regions (25% of axons are myelinated), both of which appear to be separated as they reach the visual centres of the central nervous system. Comparison of the number of primary (first-order) axonal pathways for the visual (a total of 63.4 x 10(6) rod photoreceptors) and olfactory (a total of 15.24 x 10(3) olfactory nerve axons) inputs shows a marked visual bias (ratio of 41:1). Coupled with the relative size of the optic tecta (44.0 mm3) and olfactory bulbs (0.9 mm3), vision appears to play a major role in the survival of these deep-sea teleosts and emphasizes that ecological and behavioural strategies account for significant variation in sensory brain structure.  相似文献   

16.
The retinas of adult teleost fish can regenerate neurons following injury. The current study provides the first documentation of functional whole retina regeneration in the zebrafish, Danio rerio, following intraocular injection of the cytotoxin, ouabain. Loss and replacement of laminated retinal tissue was monitored by analysis of cell death and cell proliferation, and by analysis of retina-specific gene expression patterns. The spatiotemporal process of retinal ganglion cell (RGC) regeneration was followed through the use of selective markers, and was found to largely recapitulate the spatiotemporal process of embryonic ganglion cell neurogenesis, over a more protracted time frame. However, the re-expression of some ganglion cell markers was not observed. The growth and pathfinding of ganglion cell axons was evaluated by measurement of the optic nerve head (ONH), and the restoration of normal ONH size was found to correspond to the time of recovery of two visually-mediated behaviors. However, some abnormalities were noted, including overproduction of RGCs, and progressive and excessive growth of the ONH at longer recovery times. This model system for whole-retina regeneration has provided an informative view of the regenerative process.  相似文献   

17.
Teleost fish regenerate their retinas after damage, in contrast to mammals. In zebrafish subjected to an extensive ouabain‐induced lesion that destroys all neurons and spares Müller glia, functional recovery and restoration of normal optic nerve head (ONH) diameter take place at 100 days postinjury. Subsequently, regenerated retinas overproduce cells in the retinal ganglion cell (RGC) layer, and the ONH becomes enlarged. Here, we test the hypothesis that a selective injury, which spares photoreceptors and Müller glia, results in faster functional recovery and fewer long‐term histological abnormalities. Following this selective retinal damage, recovery of visual function required 60 days, consistent with this hypothesis. In contrast to extensively damaged retinas, selectively damaged retinas showed fewer histological errors and did not overproduce neurons. Extensively damaged retinas had RGC axons that were delayed in pathfinding to the ONH, and showed misrouted axons within the ONH, suggesting that delayed functional recovery following an extensive lesion is related to defects in RGC axons exiting the eye and/or reaching their central targets. The atoh7, fgf8a, Sonic hedgehog (shha), and netrin‐1 genes were differentially expressed, and the distribution of hedgehog protein was disrupted after extensive damage as compared with selective damage. Confirming a role for Shh signaling in supporting rapid regeneration, shhat4+/‐ zebrafish showed delayed functional recovery after selective damage. We suggest that surviving retinal neurons provide structural/molecular information to regenerating neurons, and that this patterning mechanism regulates factors such as Shh. These factors in turn control neuronal number, retinal lamination, and RGC axon pathfinding during retinal regeneration. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 74: 851–876, 2014  相似文献   

18.
Bone marrow-derived cells have been used in different animal models of neurological diseases. We investigated the therapeutic potential of mesenchymal stem cells (MSC) injected into the vitreous body in a model of optic nerve injury. Adult (3–5 months old) Lister Hooded rats underwent unilateral optic nerve crush followed by injection of MSC or the vehicle into the vitreous body. Before they were injected, MSC were labeled with a fluorescent dye or with superparamagnetic iron oxide nanoparticles, which allowed us to track the cells in vivo by magnetic resonance imaging. Sixteen and 28 days after injury, the survival of retinal ganglion cells was evaluated by assessing the number of Tuj1- or Brn3a-positive cells in flat-mounted retinas, and optic nerve regeneration was investigated after anterograde labeling of the optic axons with cholera toxin B conjugated to Alexa 488. Transplanted MSC remained in the vitreous body and were found in the eye for several weeks. Cell therapy significantly increased the number of Tuj1- and Brn3a-positive cells in the retina and the number of axons distal to the crush site at 16 and 28 days after optic nerve crush, although the RGC number decreased over time. MSC therapy was associated with an increase in the FGF-2 expression in the retinal ganglion cells layer, suggesting a beneficial outcome mediated by trophic factors. Interleukin-1β expression was also increased by MSC transplantation. In summary, MSC protected RGC and stimulated axon regeneration after optic nerve crush. The long period when the transplanted cells remained in the eye may account for the effect observed. However, further studies are needed to overcome eventually undesirable consequences of MSC transplantation and to potentiate the beneficial ones in order to sustain the neuroprotective effect overtime.  相似文献   

19.
The distribution of central axons of receptor cells of the eyes and the locations of neurons sending axons into the optic nerves were studied in the cerebral ganglia of the pulmonate mollusksLymnaea stagnalis andHelix sp. by the method of axonal transport of cobalt chloride injected via the optic nerves. Afferent fibers of these nerves form terminal ramifications (chiefly dorsally) in the middle part of the cerebral ganglion. Some of them pass through the commissure to the symmetrical region of the opposite cerebral ganglion. Neurons innervating the eyes are located in several regions of both cerebral ganglia. InLymnaea they are distributed near the point of entry of the optic nerve, in the region of the commissure, the mesocerebrum, and the posterior part of the ganglion. InHelix these neurons are found in the same regions except in the posterior part of the ganglion. In electrophysiological experiments responses of neurons in these parts of the cerebral ganglion to adequate stimulation of the eye were recorded. Differences in the character of responses and also the presence of neurons indifferent to stimulation of the eye are evidence of the functional heterogeneity of these areas. This suggests that morphologically separate visual centers do not exist in the cerebral ganglion of the Pulmonata. Neurons giving specific responses to stimulation of the eye and evidently belonging to different levels of the visual system (afferent or efferent divisions) are closely connected both with each other and with cells of other functional systems.A. A. Ukhtomskii Physiological Research Institute, A. A. Zhdanov Leningrad State University. Translated from Neirofiziologiya, Vol. 14, No. 2, pp. 179–184, March–April, 1982.  相似文献   

20.
Complicated colobomatous microphthalmia in the microphthalmic (mi/mi) mouse   总被引:1,自引:0,他引:1  
A study of the development of the eye in the cinnamon mouse, homozygous for the gene for microphthalmia (mi), has shown that the microphthalmia is due to failure of secondary vitreous formation associated with a coloboma. The retina is dystrophic but there is a residual population of large ganglion cells and the optic nerve also contains ganglion cells. All these ganglion cells have cytoplasm similar to the retinal ganglion cells in the normal controls. It is postulated that they communicate with axons in the optic nerve. In addition, the outer epithelial layer of the eye cup, which normally becomes pigmented, forms retinal tissue in the homozygous mouse and this is also true of the dorsal part of the eyestalk near the eye.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号