首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The functional diversification of the vertebrate globin gene superfamily provides an especially vivid illustration of the role of gene duplication and whole-genome duplication in promoting evolutionary innovation. For example, key globin proteins that evolved specialized functions in various aspects of oxidative metabolism and oxygen signaling pathways (hemoglobin [Hb], myoglobin [Mb], and cytoglobin [Cygb]) trace their origins to two whole-genome duplication events in the stem lineage of vertebrates. The retention of the proto-Hb and Mb genes in the ancestor of jawed vertebrates permitted a physiological division of labor between the oxygen-carrier function of Hb and the oxygen-storage function of Mb. In the Hb gene lineage, a subsequent tandem gene duplication gave rise to the proto α- and β-globin genes, which permitted the formation of multimeric Hbs composed of unlike subunits (α2β2). The evolution of this heteromeric quaternary structure was central to the emergence of Hb as a specialized oxygen-transport protein because it provided a mechanism for cooperative oxygen-binding and allosteric regulatory control. Subsequent rounds of duplication and divergence have produced diverse repertoires of α- and β-like globin genes that are ontogenetically regulated such that functionally distinct Hb isoforms are expressed during different stages of prenatal development and postnatal life. In the ancestor of jawless fishes, the proto Mb and Hb genes appear to have been secondarily lost, and the Cygb homolog evolved a specialized respiratory function in blood-oxygen transport. Phylogenetic and comparative genomic analyses of the vertebrate globin gene superfamily have revealed numerous instances in which paralogous globins have convergently evolved similar expression patterns and/or similar functional specializations in different organismal lineages.  相似文献   

2.
脑红蛋白和细胞红蛋白:携氧蛋白质家族2个新成员   总被引:1,自引:0,他引:1  
脑红蛋白(neuroglobin, Ngb)和细胞红蛋白(cytoglobin, Cygb)是新发现的2个携氧蛋白家族的成员.脑红蛋白主要存在于脑中,而细胞红蛋白在全身各个组织都含有,它们和另外2个携氧蛋白——血红蛋白和肌红蛋白的同源性<25%,但它们在种属之间的同源性很高(>95%).脊椎动物脑红蛋白基因定位于14q24,细胞红蛋白基因定位于17q25,都含有4个外显子和3个内含子.2种蛋白在生理条件下含有6个配位键,不同于血红蛋白和肌红蛋白的5个配位键结构.这2种新蛋白和氧都具有很高的亲和力,在缺氧条件下其基因及蛋白表达都有明显的提升,对细胞的存活有一定保护作用.对于脑红蛋白和细胞红蛋白的功能研究,有助于更好地了解机体氧代谢和氧利用过程,并为临床在缺氧损伤时的治疗提供新的观点和途径.  相似文献   

3.
The (hemo-)globins are among the best-investigated proteins in biomedical sciences. These small heme-proteins play an important role in oxygen supply, but may also have other functions. In addition to well known hemoglobin and myoglobin, six other vertebrate globin types have been identified in recent years: neuroglobin, cytoglobin, globin E, globin X, globin Y, and androglobin. Analyses of the genome of the “living fossil” Latimeria chalumnae show that the coelacanth is the only known vertebrate that includes all eight globin types. Thus, Latimeria can also be considered as a “globin fossil”. Analyses of gene synteny and phylogenetic reconstructions allow us to trace the evolution and the functional changes of the vertebrate globin family. Neuroglobin and globin X diverged from the other globin types before the separation of Protostomia and Deuterostomia. The cytoglobins, which are unlikely to be involved in O2 supply, form the earliest globin branch within the jawed vertebrates (Gnathostomata), but do not group with the agnathan hemoglobins, as it has been proposed before. There is strong evidence from phylogenetic reconstructions and gene synteny that the eye-specific globin E and muscle-specific myoglobin constitute a common clade, suggesting a similar role in intracellular O2 supply. Latimeria possesses two α- and two β-hemoglobin chains, of which one α-chain emerged prior to the divergence of Actinopterygii and Sarcopterygii, but has been retained only in the coelacanth. Notably, the embryonic hemoglobin α-chains of Gnathostomata derive from a common ancestor, while the embryonic β-chains – with the exception of a more complex pattern in the coelacanth and amphibians – display a clade-specific evolution. Globin Y is associated with the hemoglobin gene cluster, but its phylogenetic position is not resolved. Our data show an early divergence of distinct globin types in the vertebrate evolution before the emergence of tetrapods. The subsequent loss of globins in certain taxa may be associated with changes in the oxygen-dependent metabolism. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.  相似文献   

4.
5.
Cytoglobin (CYGB) is a member of the vertebrate globin family together with hemoglobin, myoglobin and neuroglobin. Although the physiological function of CYGB is still unclear, spectroscopic studies show that CYGB contains a hexacoordinated heme pocket similar to other pentacoordinated globin proteins. CYGB shares a common phylogenetic ancestry with vertebrate myoglobin from which it diverged by duplication before the appearance of jawed vertebrates. The objective of this study is to identify the regulatory and promoter region of the human cytoglobin gene. 5' unidirectional deletion constructs demonstrated that the proximal promoter elements of human CYGB gene are located between -1113 to -10 relative to the translation start site. Site-directed mutagenesis showed that mutation of a c-Ets-1 motif at -1008 and Sp1 motifs at -400, -230 and -210 remarkably decreased the promoter activity. Gel shift assays confirmed the binding of DNA-nuclear proteins to these motifs. All these results indicate that CYGB gene expression can be up-regulated by c-Ets-1 and Sp1 motifs.  相似文献   

6.
Neuroglobin and cytoglobin are two recent additions to the family of heme-containing respiratory proteins of man and other vertebrates. Here, we review the present state of knowledge of the structures, ligand binding kinetics, evolution and expression patterns of these two proteins. These data provide a first glimpse into the possible physiological roles of these globins in the animal's metabolism. Both, neuroglobin and cytoglobin are structurally similar to myoglobin, although they contain distinct cavities that may be instrumental in ligand binding. Kinetic and structural studies show that neuroglobin and cytoglobin belong to the class of hexa-coordinated globins with a biphasic ligand-binding kinetics. Nevertheless, their oxygen affinities resemble that of myoglobin. While neuroglobin is evolutionarily related to the invertebrate nerve-globins, cytoglobin shares a more recent common ancestry with myoglobin. Neuroglobin expression is confined mainly to brain and a few other tissues, with the highest expression observed in the retina. Present evidence points to an important role of neuroglobin in neuronal oxygen homeostasis and hypoxia protection, though other functions are still conceivable. Cytoglobin is predominantly expressed in fibroblasts and related cell types, but also in distinct nerve cell populations. Much less is known about its function, although in fibroblasts it might be involved in collagen synthesis.  相似文献   

7.
Neuroglobin and cytoglobin: genes, proteins and evolution   总被引:1,自引:0,他引:1  
Hemoglobin and myoglobin are oxygen transport and storage proteins of most vertebrates. Neuroglobin (Ngb) and cytoglobin (Cygb)--two recent additions to the vertebrate globin superfamily--have still disputed functions. Combining the data from all available resources, we investigate the evolution of these novel globins. Both Ngb and Cygb show little sequence variation in vertebrate evolution, suggesting conserved structures and functions, and an important role in the animal's metabolism. Exon-intron patterns remained unchanged in Ngb and Cygb, with the exception of the addition of a 3' exon to Cygb early in mammalian evolution. In phylogenetic analyses, Ngb forms a common branch with globin X, another recently identified globin with undefined function in lower vertebrates, and with some invertebrate nerve globins. This shows an early divergence of this branch in animal evolution. Cygb is related to myoglobin, and associated with an eye-specific globin from birds. The pattern of globin evolution shows that proteins with clear respiratory roles evolved independently from intracellular globins with uncertain functions. This result suggests either multiple independent functional changes or a yet undefined respiratory role of tissue globins like Ngb and Cygb.  相似文献   

8.
Neuroglobin and cytoglobin are two recently discovered members of the vertebrate globin family. Both are intracellular proteins endowed with hexacoordinated heme-Fe atoms, in their ferrous and ferric forms, and display O2 affinities comparable with that of myoglobin. Neuroglobin, which is predominantly expressed in nerve cells, is thought to protect neurons from hypoxic–ischemic injury. It is of ancient evolutionary origin, and is homologous to nerve globins of invertebrates. Cytoglobin is expressed in many different tissues, although at varying levels. It shares common ancestry with myoglobin, and can be traced to early vertebrate evolution. The physiological roles of neuroglobin and cytoglobin are not completely understood. Although supplying cells with O2 is the likely function, it is also possible that both globins act as O2-consuming enzymes or as O2 sensors. Here, we review what is currently known about neuroglobin and cytoglobin in terms of their function, tissue distribution and relatedness to the well-known hemoglobin and myoglobin. Strikingly, the data reveal that O2 metabolism in cells is more complicated than was thought before, requiring unexpected O2-binding proteins with potentially novel functional features.  相似文献   

9.
Whole-genome duplication (WGD) is believed to be one of the major evolutionary events that shaped the genome organization of vertebrates. Here, we review recent research on vertebrate genome evolution, specifically on WGD and its consequences for gene and genome evolution in teleost fishes. Recent genome analyses confirmed that all vertebrates experienced two rounds of WGD early in their evolution, and that teleosts experienced a subsequent additional third-round (3R)-WGD. The 3R-WGD was estimated to have occurred 320–400 million years ago in a teleost ancestor, but after its divergence from a common ancestor with living non-teleost actinopterygians (Bichir, Sturgeon, Bowfin, and Gar) based on the analyses of teleost-specific duplicate genes. This 3R-WGD was confirmed by synteny analysis and ancestral karyotype inference using the genome sequences of Tetraodon and medaka. Most of the tetrapods, on the other hand, have not experienced an additional WGD; however, they have experienced repeated chromosomal rearrangements throughout the whole genome. Therefore, different types of chromosomal events have characterized the genomes of teleosts and tetrapods, respectively. The 3R-WGD is useful to investigate the consequences of WGD because it is an evolutionarily recent WGD and thus teleost genomes retain many more WGD-derived duplicates and “traces” of their evolution. In addition, the remarkable morphological, physiological, and ecological diversity of teleosts may facilitate understanding of macrophenotypic evolution on the basis of genetic/genomic information. We highlight the teleosts with 3R-WGD as unique models for future studies on ecology and evolution taking advantage of emerging genomics technologies and systems biology environments.  相似文献   

10.
Globins and hypoxia adaptation in the goldfish, Carassius auratus   总被引:2,自引:0,他引:2  
Goldfish (Carassius auratus) may survive in aquatic environments with low oxygen partial pressures. We investigated the contribution of respiratory proteins to hypoxia tolerance in C. auratus. We determined the complete coding sequence of hemoglobin alpha and beta and myoglobin, as well as partial cDNAs from neuroglobin and cytoglobin. Like the common carp (Cyprinus carpio), C. auratus possesses two paralogous myoglobin genes that duplicated within the cyprinid lineage. Myoglobin is also expressed in nonmuscle tissues. By means of quantitative real-time RT-PCR, we determined the changes in mRNA levels of hemoglobin, myoglobin, neuroglobin and cytoglobin in goldfish exposed to prolonged hypoxia (48 h at Po(2) ~ 6.7 kPa, 8 h at Po(2) ~ 1.7 kPa, 16 h at Po(2) ~ 6.7 kPa) at 20 degrees C. We observed small variations in the mRNA levels of hemoglobin, neuroglobin and cytoglobin, as well as putative hypoxia-responsive genes like lactate dehydrogenase or superoxide dismutase. Hypoxia significantly enhanced only the expression of myoglobin. However, we observed about fivefold higher neuroglobin protein levels in goldfish brain compared with zebrafish, although there was no significant difference in intrinsic myoglobin levels. These observations suggest that both myoglobin and neuroglobin may contribute to the tolerance of goldfish to low oxygen levels, but may reflect divergent adaptive strategies of hypoxia preadaptation (neuroglobin) and hypoxia response (myoglobin).  相似文献   

11.
Cytoglobin: a novel globin type ubiquitously expressed in vertebrate tissues   总被引:25,自引:0,他引:25  
Vertebrates possess multiple respiratory globins that differ in terms of structure, function, and tissue distribution. Three types of globins have been described so far: hemoglobin facilitates the transport of oxygen in the blood, myoglobin serves oxygen transport and storage in the muscle, and neuroglobin has a yet unidentified function in nerve cells. Here we report the identification of a fourth and novel type of globin in mouse, man, and zebrafish. It is expressed in apparently all types of human tissue and therefore has been called cytoglobin (CYGB). Mouse and human CYGBs comprise 190 amino acids; the zebrafish CYGB, 174 amino acids. The human CYGB gene is located on chromosome 17q25. The mammalian genes display a unique exon-intron pattern with an additional exon resulting in a C-terminal extension of the protein, which is absent in the fish CYGB. Phylogenetic analyses suggest that the CYGBs had a common ancestor with vertebrate myoglobins. This indicates that the vertebrate myoglobins are in fact a specialized intracellular globin that evolved in adaptation to the special needs of muscle cells.  相似文献   

12.
Fago A  Hundahl C  Malte H  Weber RE 《IUBMB life》2004,56(11-12):689-696
Neuroglobin and cytoglobin are two recently discovered vertebrate globins, which are expressed at low levels in neuronal tissues and in all tissues investigated so far, respectively. Based on their amino acid sequences, these globins appear to be phylogenetically ancient and to have mutated less during evolution in comparison to the other vertebrate globins, myoglobin and hemoglobin. As with some plant and bacterial globins, neuroglobin and cytoglobin hemes are hexacoordinate in the absence of external ligands, in that the heme iron atom coordinates both a proximal and a distal His residue. While the physiological role of hexacoordinate globins is still largely unclear, neuroglobin appears to participate in the cellular defence against hypoxia. We present the current knowledge on the functional properties of neuroglobin and cytoglobin, and describe a mathematical model to evaluate the role of mammalian retinal neuroglobin in supplying O2 supply to the mitochondria. As shown, the model argues against a significant such role for neuroglobin, that more likely plays a role to scavenge reactive oxygen and nitrogen species that are generated following brain hypoxia. The O2 binding properties of cytoglobin, which is upregulated upon hypoxia, are consistent with a role for this protein in O2-requiring reactions, such as those catalysed by hydroxylases.  相似文献   

13.
14.
To evaluate the relative importance of positive selection and neutral drift from the nucleotide base changes observed in the homologous alignment of genes, a theoretical equation of base changes is formulated by including both the influence of selection and the base substitutions due to mutations. Under the assumption that the average rate of base substitutions estimated from synonymous changes is the ``true' mutation rate applicable at all positions, this method is applied to the vertebrate globin gene family, and evaluates the departures of base change rates from the ``true' mutation rate at the first and second codon positions as a consequence of preferential selection for the conservation of important function. In addition to the strong effect of selection on the amino acid residues in the internal region mostly common to myoglobin and hemoglobin chains, the distinctive directions of selective parameter values are seen at sites on the globin surface, distinguishing the subunit contact residues of hemoglobins from the polar residues on the surface of myoglobins. Moreover, this effect of selection distinguishing between the myoglobin and hemoglobin chain genes becomes weaker in cold-blooded vertebrates, especially in fish, strongly suggesting the possibility that the clear distinction between these globins is a result of selection out of the changes regarded as neutral ones in an ancestor of vertebrates. Thus, the present method may also serve to investigate the homology of many other proteins from the aspect of molecular evolution, mainly focusing on the evolution of their biological functions. Received: 2 January 1996 / Accepted: 20 February 1997  相似文献   

15.
16.
The draft genome sequence of the Western clawed frog Xenopus (Silurana) tropicalis facilitates the identification, expression analysis and phylogenetic classification of the amphibian globin gene repertoire. Frog and mammalian neuroglobin display about 67% protein sequence identity, with the expected predominant expression in frog brain and eye. Frog and mammalian cytoglobins share about 69% of their amino acids, but the frog protein lacks the mammalian-type extension at the C-terminus. Like in mammals, X. tropicalis cytoglobin is expressed in many organs including neural tissue. Neuroglobin and cytoglobin genomic regions are syntenically conserved in all vertebrate classes. Frog and fish globin X show only 57% amino acid identity, but gene synteny analysis confirms orthology. The expression pattern of X. laevis globin X differs from that in fish, with a prominent expression in the eye and weak expression in most other examined tissues. Globin X is possibly present as two paralogous copies in X. tropicalis, with one copy showing transition stages of non-functionalization. The amphibian genome contains a previously unknown globin type (tentatively named 'globin Y') which is expressed in a broad range of tissues and is distantly related to the cytoglobin lineage. The globin Y gene is linked to a cluster of larval and adult hemoglobin alpha and beta genes which contains substantially more paralogous hemoglobin gene copies than previously published. Database and gene synteny analyses confirm the absence of a myoglobin gene in X. tropicalis.  相似文献   

17.
Whole genome duplications (WGD) have now been firmly established in all major eukaryotic kingdoms. In particular, all vertebrates descend from two rounds of WGDs, that occurred in their jawless ancestor some 500 MY ago. Paralogs retained from WGD, also coined ‘ohnologs’ after Susumu Ohno, have been shown to be typically associated with development, signaling and gene regulation. Ohnologs, which amount to about 20 to 35% of genes in the human genome, have also been shown to be prone to dominant deleterious mutations and frequently implicated in cancer and genetic diseases. Hence, identifying ohnologs is central to better understand the evolution of vertebrates and their susceptibility to genetic diseases. Early computational analyses to identify vertebrate ohnologs relied on content-based synteny comparisons between the human genome and a single invertebrate outgroup genome or within the human genome itself. These approaches are thus limited by lineage specific rearrangements in individual genomes. We report, in this study, the identification of vertebrate ohnologs based on the quantitative assessment and integration of synteny conservation between six amniote vertebrates and six invertebrate outgroups. Such a synteny comparison across multiple genomes is shown to enhance the statistical power of ohnolog identification in vertebrates compared to earlier approaches, by overcoming lineage specific genome rearrangements. Ohnolog gene families can be browsed and downloaded for three statistical confidence levels or recompiled for specific, user-defined, significance criteria at http://ohnologs.curie.fr/. In the light of the importance of WGD on the genetic makeup of vertebrates, our analysis provides a useful resource for researchers interested in gaining further insights on vertebrate evolution and genetic diseases.  相似文献   

18.
Agnathans have a globin repertoire that markedly differs from that of jawed (gnathostome) vertebrates. The sea lamprey (Petromyzon marinus) harbors at least 18 hemoglobin, two myoglobin, two globin X, and one cytoglobin genes. However, agnathan hemoglobins and myoglobins are not orthologous to their cognates in jawed vertebrates. Thus, blood-based O2 transport and muscle-based O2 storage proteins emerged twice in vertebrates from a tissue-globin ancestor. Notably, the sea lamprey displays three switches in hemoglobin expression in its life cycle, analogous to hemoglobin switching in vertebrates. To study the functional changes associated with the evolution and ontogenesis of distinct globin types, we determined O2 binding equilibria, type of quaternary assembly, and nitrite reductase enzymatic activities of one adult (aHb5a) and one embryonic/larval hemoglobin (aHb6), myoglobin (aMb1) and cytoglobin (Cygb) of the sea lamprey. We found clear functional differentiation among globin types expressed at different developmental stages and in different tissues. Cygb and aMb1 have high O2 affinity and nitrite reductase activity, while the two hemoglobins display low O2 affinity and nitrite reductase activity. Cygb and aHb6 but not aHb5a show cooperative O2 binding, correlating with increased stability of dimers, as shown by gel filtration and molecular modeling. The high O2-affinity and the lack of cooperativity confirm the identity of the sea lamprey aMb1 as O2 storage protein of the muscle. The dimeric structure and O2-binding properties of sea lamprey and mammalian Cygb were very similar, suggesting a conservation of function since their divergence around 500 million years ago.  相似文献   

19.
Recent evidence suggests that the reaction of nitrite with deoxygenated hemoglobin and myoglobin contributes to the generation of nitric oxide and S-nitrosothiols in vivo under conditions of low oxygen availability. We have investigated whether ferrous neuroglobin and cytoglobin, the two hexacoordinate globins from vertebrates expressed in brain and in a variety of tissues, respectively, also react with nitrite under anaerobic conditions. Using absorption spectroscopy, we find that ferrous neuroglobin and nitrite react with a second-order rate constant similar to that of myoglobin, whereas the ferrous heme of cytoglobin does not react with nitrite. Deconvolution of absorbance spectra shows that, in the course of the reaction of neuroglobin with nitrite, ferric Fe(III) heme is generated in excess of nitrosyl Fe(II)-NO heme as due to the low affinity of ferrous neuroglobin for nitric oxide. By using ferrous myoglobin as scavenger for nitric oxide, we find that nitric oxide dissociates from ferrous neuroglobin much faster than previously appreciated, consistently with the decay of the Fe(II)-NO product during the reaction. Both neuroglobin and cytoglobin are S-nitrosated when reacting with nitrite, with neuroglobin showing higher levels of S-nitrosation. The possible biological significance of the reaction between nitrite and neuroglobin in vivo under brain hypoxia is discussed.  相似文献   

20.
The study of the evolutionary origin of vertebrates has been linked to the study of genome duplications since Susumo Ohno suggested that the successful diversification of vertebrate innovations was facilitated by two rounds of whole-genome duplication (2R-WGD) in the stem vertebrate. Since then, studies on the functional evolution of many genes duplicated in the vertebrate lineage have provided the grounds to support experimentally this link. This article reviews cases of gene duplications derived either from the 2R-WGD or from local gene duplication events in vertebrates, analyzing their impact on the evolution of developmental innovations. We analyze how gene regulatory networks can be rewired by the activity of transposable elements after genome duplications, discuss how different mechanisms of duplication might affect the fate of duplicated genes, and how the loss of gene duplicates might influence the fate of surviving paralogs. We also discuss the evolutionary relationships between gene duplication and alternative splicing, in particular in the vertebrate lineage. Finally, we discuss the role that the 2R-WGD might have played in the evolution of vertebrate developmental gene networks, paying special attention to those related to vertebrate key features such as neural crest cells, placodes, and the complex tripartite brain. In this context, we argue that current evidences points that the 2R-WGD may not be linked to the origin of vertebrate innovations, but to their subsequent diversification in a broad variety of complex structures and functions that facilitated the successful transition from peaceful filter-feeding non-vertebrate ancestors to voracious vertebrate predators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号