首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 818 毫秒
1.
The Wood-Ljungdahl pathway of anaerobic CO(2) fixation with hydrogen as reductant is considered a candidate for the first life-sustaining pathway on earth because it combines carbon dioxide fixation with the synthesis of ATP via a chemiosmotic mechanism. The acetogenic bacterium Acetobacterium woodii uses an ancient version of the pathway that has only one site to generate the electrochemical ion potential used to drive ATP synthesis, the ferredoxin-fueled, sodium-motive Rnf complex. However, hydrogen-based ferredoxin reduction is endergonic, and how the steep energy barrier is overcome has been an enigma for a long time. We have purified a multimeric [FeFe]-hydrogenase from A. woodii containing four subunits (HydABCD) which is predicted to have one [H]-cluster, three [2Fe2S]-, and six [4Fe4S]-clusters consistent with the experimental determination of 32 mol of Fe and 30 mol of acid-labile sulfur. The enzyme indeed catalyzed hydrogen-based ferredoxin reduction, but required NAD(+) for this reaction. NAD(+) was also reduced but only in the presence of ferredoxin. NAD(+) and ferredoxin reduction both required flavin. Spectroscopic analyses revealed that NAD(+) and ferredoxin reduction are strictly coupled and that they are reduced in a 1:1 stoichiometry. Apparently, the multimeric hydrogenase of A. woodii is a soluble energy-converting hydrogenase that uses electron bifurcation to drive the endergonic ferredoxin reduction by coupling it to the exergonic NAD(+) reduction.  相似文献   

2.
The anaerobic acetogenic bacterium Acetobacterium woodii employs a novel type of Na(+)-motive anaerobic respiration, caffeate respiration. However, this respiration is at the thermodynamic limit of energy conservation, and even worse, in the first step, caffeate is activated by caffeyl-CoA synthetase, which hydrolyzes ATP to AMP and pyrophosphate. Here, we have addressed whether or not the energy stored in the anhydride bond of pyrophosphate is conserved by A. woodii. Inverted membrane vesicles of A. woodii have a membrane-bound pyrophosphatase that catalyzes pyrophosphate hydrolysis at a rate of 70-120 milliunits/mg of protein. Pyrophosphatase activity was dependent on the divalent cation Mg(2+). In addition, activity was strictly dependent on Na(+) with a K(m) of 1.1 mM. Hydrolysis of pyrophosphate was accompanied by (22)Na(+) transport into the lumen of the inverted membrane vesicles. Inhibitor studies revealed that (22)Na(+) transport was primary and electrogenic. Next to the Na(+)-motive ferredoxin:NAD(+) oxidoreductase (Fno or Rnf), the Na(+)-pyrophosphatase is the second primary Na(+)-translocating enzyme in A. woodii.  相似文献   

3.
4.
Eubacterium limosum KIST612 is one of the few acetogens that can produce butyrate from carbon monoxide. We have used a genome-guided analysis to delineate the path of butyrate formation, the enzymes involved, and the potential coupling to ATP synthesis. Oxidation of CO is catalyzed by the acetyl-coenzyme A (CoA) synthase/CO dehydrogenase and coupled to the reduction of ferredoxin. Oxidation of reduced ferredoxin is catalyzed by the Rnf complex and Na+ dependent. Consistent with the finding of a Na+-dependent Rnf complex is the presence of a conserved Na+-binding motif in the c subunit of the ATP synthase. Butyrate formation is from acetyl-CoA via acetoacetyl-CoA, hydroxybutyryl-CoA, crotonyl-CoA, and butyryl-CoA and is consistent with the finding of a gene cluster that encodes the enzymes for this pathway. The activity of the butyryl-CoA dehydrogenase was demonstrated. Reduction of crotonyl-CoA to butyryl-CoA with NADH as the reductant was coupled to reduction of ferredoxin. We postulate that the butyryl-CoA dehydrogenase uses flavin-based electron bifurcation to reduce ferredoxin, which is consistent with the finding of etfA and etfB genes next to it. The overall ATP yield was calculated and is significantly higher than the one obtained with H2 + CO2. The energetic benefit may be one reason that butyrate is formed only from CO but not from H2 + CO2.  相似文献   

5.
6.
Anaerobic bacteria ferment glutamate via two different pathways to ammonia, carbon dioxide, acetate, butyrate and molecular hydrogen. The coenzyme B12-dependent pathway in Clostridium tetanomorphum via 3-methylaspartate involves pyruvate:ferredoxin oxidoreductase and a novel enzyme, a membrane-bound NADH:ferredoxin oxidoreductase. The flavin- and iron-sulfur-containing enzyme probably uses the energy difference between reduced ferredoxin and NADH to generate an electrochemical Na+ gradient, which drives transport processes. The other pathway via 2-hydroxyglutarate in Acidaminococcus fermentans and Fusobacterium nucleatum involves glutaconyl-CoA decarboxylase, which uses the free energy of decarboxylation to generate also an electrochemical Na+ gradient. In the latter two organisms, similar membrane-bound NADH:ferredoxin oxidoreductases have been characterized. We propose that in the hydroxyglutarate pathway these oxidoreductases work in the reverse direction, whereby the reduction of ferredoxin by NADH is driven by the Na+ gradient. The reduced ferredoxin is required for hydrogen production and the activation of radical enzymes. Further examples show that reduced ferredoxin is an agent, whose reducing energy is about 1 ATP 'richer' than that of NADH.  相似文献   

7.
Silke Schmidt 《BBA》2009,1787(6):691-952
The acetogenic bacterium Acetobacterium woodii uses a transmembrane electrochemical sodium ion potential for bioenergetic reactions. A primary sodium ion potential is established during carbonate (acetogenesis) as well as caffeate respiration. The electrogenic Na+ pump connected to the Wood-Ljungdahl pathway (acetogenesis) still remains to be identified. The pathway of caffeate reduction with hydrogen as electron donor was investigated and the only membrane-bound activity was found to be a ferredoxin-dependent NAD+ reduction. This exergonic electron transfer reaction may be catalyzed by the membrane-bound Rnf complex that was discovered recently and is suggested to couple exergonic electron transfer from ferredoxin to NAD+ to the vectorial transport of Na+ across the cytoplasmic membrane. Rnf may also be involved in acetogenesis. The electrochemical sodium ion potential thus generated is used to drive endergonic reactions such as flagellar rotation and ATP synthesis. The ATP synthase is a member of the F1FO class of enzymes but has an unusual and exceptional feature. Its membrane-embedded rotor is a hybrid made of FO and VO-like subunits in a stoichiometry of 9:1. This stoichiometry is apparently not variable with the growth conditions. The structure and function of the Rnf complex and the Na+ F1FO ATP synthase as key elements of the Na+ cycle in A. woodii are discussed.  相似文献   

8.
The Rnf complex is a membrane-bound ferredoxin(Fd):NAD(P)+ oxidoreductase (Fno) that couples Fd oxidation to vectorial H+/Na+ transport across the cytoplasmic membrane. Here, we produced two putative Rnf-complexes from Clostridioides difficile (Cd-Rnf) and Clostridium ljungdahlii (Cl-Rnf) for the first time in Escherichia coli. A redox-responsive low-expression system enabled Rnf assembly in the membranes of E. coli as confirmed by in vitro activity measurements. To study the physiological effects of Rnf on the metabolism of E. coli, we assembled additional Fd-dependent enzymes by plasmid-based multigene expression: (a) an Fd-linked butyrate pathway (But) from C. difficile, (b) an [FeFe]-hydrogenase (Hyd) to modulate the redox state of Fd, and (c) heterologous ferredoxins as electron carriers. The hydrogenase efficiently modulated butyrate formation by H2-mediated Fd reoxidation under nitrogen. In its functionally assembled state, Rnf severely impaired cell growth. Including Hyd in the But/Rnf background, in turn, restored normal growth. Our findings suggest that Rnf mediates reverse electron flow from NADH to Fd, which requires E. coli’s F-type ATPase to function in its reverse, ATP hydrolyzing direction. The reduced Fd is then reoxidized by endogenous Fd:NAD(P)H oxidoreductase (Fpr), which regenerates NADH and, thereby, initiates a futile cycle fueled by ATP hydrolysis. The introduction of hydrogenase interrupts this futile cycle under N2 by providing an efficient NAD(P)+-independent Fd reoxidation route, whereas under H2, Hyd outcompetes Rnf for Fd reduction. This is the first report of an Rnf complex being functionally produced and physiologically investigated in E. coli.  相似文献   

9.
Abstract In cell suspensions of Acetobacterium woodii the acetyl-CoA pathway is coupled to net ATP formation. Acetate formation as well as ATP synthesis and the generation of a transmembrane sodium ion gradient are not inhibited by protonophores but by sodium ionophores. Acetogenesis from CO or formaldehyde + CO as catalyzed by inverted vesicles is coupled to sodium ion uptake. Both processes are not inhibited by protonophores but by sodium ionophores. These experiments are in accordance with the presence of a primary sodium ion pump connected to the acetyl-CoA pathway which enables the cells to synthesize net ATP by means of a Δμ Na+ in concert with a Na+-translocating ATPase.  相似文献   

10.
Cell suspensions of Acetobacterium woodii prepared from cultures grown on fructose plus caffeate catalyzed caffeate reduction with electrons derived from molecular hydrogen. Hydrogen-dependent caffeate reduction was strictly Na(+) dependent with a K(m) for Na(+) of 0.38 mM; Li(+) could substitute for Na(+). The sodium ionophore ETH2120, but not protonophores, stimulated hydrogen-dependent caffeate reduction by 280%, indicating that caffeate reduction is coupled to the buildup of a membrane potential generated by primary Na(+) extrusion. Caffeate reduction was coupled to the synthesis of ATP, and again, ATP synthesis coupled to hydrogen-dependent caffeate reduction was strictly Na(+) dependent and abolished by ETH2120, but not by protonophores, indicating the involvement of a transmembrane Na(+) gradient in ATP synthesis. The ATPase inhibitor N,N'-dicyclohexylcarbodiimide (DCCD) abolished ATP synthesis, and at the same time, hydrogen-dependent caffeate reduction was inhibited. This inhibition could be relieved by ETH2120. These experiments are fully compatible with a chemiosmotic mechanism of ATP synthesis with Na(+) as the coupling ion during hydrogen-dependent caffeate reduction by A. woodii.  相似文献   

11.
Methane-forming archaea are strictly anaerobic microbes and are essential for global carbon fluxes since they perform the terminal step in breakdown of organic matter in the absence of oxygen. Major part of methane produced in nature derives from the methyl group of acetate. Only members of the genera Methanosarcina and Methanosaeta are able to use this substrate for methane formation and growth. Since the free energy change coupled to methanogenesis from acetate is only − 36 kJ/mol CH4, aceticlastic methanogens developed efficient energy-conserving systems to handle this thermodynamic limitation. The membrane bound electron transport system of aceticlastic methanogens is a complex branched respiratory chain that can accept electrons from hydrogen, reduced coenzyme F420 or reduced ferredoxin. The terminal electron acceptor of this anaerobic respiration is a mixed disulfide composed of coenzyme M and coenzyme B. Reduced ferredoxin has an important function under aceticlastic growth conditions and novel and well-established membrane complexes oxidizing ferredoxin will be discussed in depth. Membrane bound electron transport is connected to energy conservation by proton or sodium ion translocating enzymes (F420H2 dehydrogenase, Rnf complex, Ech hydrogenase, methanophenazine-reducing hydrogenase and heterodisulfide reductase). The resulting electrochemical ion gradient constitutes the driving force for adenosine triphosphate synthesis. Methanogenesis, electron transport, and the structure of key enzymes are discussed in this review leading to a concept of how aceticlastic methanogens make a living. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.  相似文献   

12.
Rnf complexes are redox-driven ion pumps identified in diverse species from the domains Bacteria and Archaea, biochemical characterizations of which are reported for two species from the domain Bacteria. Here, we present characterizations of the redox-active subunits RnfG and RnfB from the Rnf complex of Methanosarcina acetivorans, an acetate-utilizing methane-producing species from the domain Archaea. The purified RnfG subunit produced in Escherichia coli fluoresced in SDS-PAGE gels under UV illumination and showed a UV-visible spectrum typical of flavoproteins. The Thr166Gly variant of RnfG was colorless and failed to fluoresce under UV illumination confirming a role for Thr166 in binding FMN. Redox titration of holo-RnfG revealed a midpoint potential of −129 mV for FMN with n = 2. The overproduced RnfG was primarily localized to the membrane of E. coli and the sequence contained a transmembrane helix. A topological analysis combining reporter protein fusion and computer predictions indicated that the C-terminal domain containing FMN is located on the outer aspect of the cytoplasmic membrane. The purified RnfB subunit produced in E. coli showed a UV-visible spectrum typical of iron-sulfur proteins. The EPR spectra of reduced RnfB featured a broad spectral shape with g values (2.06, 1.94, 1.90, 1.88) characteristic of magnetically coupled 3Fe-4S and 4Fe-4S clusters in close agreement with the iron and acid-labile sulfur content. The ferredoxin specific to the aceticlastic pathway served as an electron donor to RnfB suggesting this subunit is the entry point of electrons to the Rnf complex. The results advance an understanding of the organization and biochemical properties of the Rnf complex and lay a foundation for further understanding the overall mechanism in the pathway of methane formation from acetate.  相似文献   

13.
The conversion of trimethylamine to methane, carbon dioxide and ammonia as catalyzed by cell suspensions of Methanosarcina barkeri was coupled to the generation of a protonmotive force and to the synthesis of ATP. Methanogenesis as well as ATP formation and protonmotive force generation was abolished by the uncoupler tetrachloro-salicylanilide (TCS). Inhibition of methane formation was reversed by addition of formaldehyde, which was predominantly oxidized to carbon dioxide, whereas trimethylamine was predominantly reduced to methane and ammonia under these conditions. Cell extracts of M. barkeri were unable to convert trimethylamine to methane, carbon dioxide and ammonia independent from the presence or absence of ATP.  相似文献   

14.
Experiments with resting cells of Acetobacterium woodii were performed to elucidate the coupling ion used by the ATP synthase. A. woodii synthesized ATP in response to an artificial delta pH, indicating the presence of a proton-translocating ATPase. On the other hand, a delta pNa, as well as a proton diffusion potential, could serve as a driving force for ATP synthesis with the latter strictly dependent on Na+. These results are indicative for the presence of a Na(+)-translocating ATP synthase in A. woodii.  相似文献   

15.
Carbon monoxide dehydrogenase (CODH) plays a key role in acetate synthesis by the acetogenic bacterium, Clostridium thermoaceticum. Acetobacterium woodii, like C. thermoaceticum contains high levels of CODH. In this work we show that crude extracts of A. woodii synthesize acetate from methyl tetrahydrofolate or methyl iodide, carbon monoxide and coenzyme A (CoA). The purified CODH from A. woodii catalyzes an exchange reaction between CO and the carbonyl group of acetyl-CoA even faster than the C. thermoaceticum enzyme, indicating the CODH of A. woodii, like that of C. thermoaceticum is an acetyl-CoA synthetase. Fluorescence and EPR studies further support this postulate by demonstrating that CODH binds CoA near the CO binding site involving a tryptophan residue. The UV absorption spectra and the amino acid compositions of A. woodii and C. thermoaceticum CODHs are very similar. Evidence is presented using purified enzymes from A. woodii that the synthesis of acetyl-CoA occurs by a pathway similar to that utilized by C. thermoaceticum.  相似文献   

16.
Cell extracts from acetate-grown Methanosarcina thermophila contained CO-oxidizing:H2-evolving activity 16-fold greater than extracts from methanol-grown cells. Following fractionation of cell extracts into soluble and membrane components, CO-dependent H2 evolution and CO-dependent methyl-coenzyme M methylreductase activities were only present in the soluble fraction, but addition of the membrane fraction enhanced both activities. A b-type cytochrome(s), present in the membrane fraction, was linked to a membrane-bound hydrogenase. CO-oxidizing:H2-evolving activity was reconstituted with: (i) CO dehydrogenase complex, (ii) a ferredoxin, and (iii) purified membranes with associated hydrogenase. The ferredoxin was a direct electron acceptor for the CO dehydrogenase complex. The ferredoxin also coupled CO oxidation by CO dehydrogenase complex to metronidazole reduction.  相似文献   

17.
Hydrogenobacter thermophilus TK-6 is a thermophilic, chemolithoautotrophic, hydrogen-oxidizing bacterium that fixes carbon dioxide via the reductive tricarboxylic acid (rTCA) cycle. 2-Oxoglutarate:ferredoxin oxidoreductase (OGOR) is the key enzyme in this cycle that fixes carbon dioxide. The genome of strain TK-6 encodes at least two distinct OGOR enzymes, termed For and Kor. We report here a method for measuring the carboxylation of succinyl-CoA catalyzed by OGORs. The method involves the in vitro coupling of OGOR with ferredoxin and pyruvate:ferredoxin oxidoreductase from strain TK-6, and glutamate dehydrogenase from Sulfolobus tokodaii. Using this method, we determined both the apparent maximum velocities and the K m values of For and Kor for the carboxylation of succinyl-CoA. This is the first reported kinetic analysis of carbon fixation catalyzed by OGOR enzymes from the rTCA cycle.  相似文献   

18.
The photosynthetic green sulfur bacterium Chlorobaculum tepidum assimilates CO(2) and organic carbon sources (acetate or pyruvate) during mixotrophic growth conditions through a unique carbon and energy metabolism. Using a (13)C-labeling approach, this study examined biosynthetic pathways and flux distributions in the central metabolism of C. tepidum. The isotopomer patterns of proteinogenic amino acids revealed an alternate pathway for isoleucine synthesis (via citramalate synthase, CimA, CT0612). A (13)C-assisted flux analysis indicated that carbons in biomass were mostly derived from CO(2) fixation via three key routes: the reductive tricarboxylic acid (RTCA) cycle, the pyruvate synthesis pathway via pyruvate:ferredoxin oxidoreductase, and the CO(2)-anaplerotic pathway via phosphoenolpyruvate carboxylase. During mixotrophic growth with acetate or pyruvate as carbon sources, acetyl-CoA was mainly produced from acetate (via acetyl-CoA synthetase) or citrate (via ATP citrate lyase). Pyruvate:ferredoxin oxidoreductase converted acetyl-CoA and CO(2) to pyruvate, and this growth-rate control reaction is driven by reduced ferredoxin generated during phototrophic growth. Most reactions in the RTCA cycle were reversible. The relative fluxes through the RTCA cycle were 80~100 units for mixotrophic cultures grown on acetate and 200~230 units for cultures grown on pyruvate. Under the same light conditions, the flux results suggested a trade-off between energy-demanding CO(2) fixation and biomass growth rate; C. tepidum fixed more CO(2) and had a higher biomass yield (Y(X/S), mole carbon in biomass/mole substrate) in pyruvate culture (Y(X/S) = 9.2) than in acetate culture (Y(X/S) = 6.4), but the biomass growth rate was slower in pyruvate culture than in acetate culture.  相似文献   

19.
The anaerobic acetogenic bacterium Acetobacterium woodii couples caffeate reduction with electrons derived from hydrogen to the synthesis of ATP by a chemiosmotic mechanism with sodium ions as coupling ions, a process referred to as caffeate respiration. We addressed the nature of the hitherto unknown enzymatic activities involved in this process and their cellular localization. Cell extract of A. woodii catalyzes H2-dependent caffeate reduction. This reaction is strictly ATP dependent but can be activated also by acetyl coenzyme A (CoA), indicating that there is formation of caffeyl-CoA prior to reduction. Two-dimensional gel electrophoresis revealed proteins present only in caffeate-grown cells. Two proteins were identified by electrospray ionization-mass spectrometry/mass spectrometry, and the encoding genes were cloned. These proteins are very similar to subunits α (EtfA) and β (EtfB) of electron transfer flavoproteins present in various anaerobic bacteria. Western blot analysis demonstrated that they are induced by caffeate and localized in the cytoplasm. Etf proteins are known electron carriers that shuttle electrons from NADH to different acceptors. Indeed, NADH was used as an electron donor for cytosolic caffeate reduction. Since the hydrogenase was soluble and used ferredoxin as an electron acceptor, the missing link was a ferredoxin:NAD+ oxidoreductase. This activity could be determined and, interestingly, was membrane bound. A search for genes that could encode this activity revealed DNA fragments encoding subunits C and D of a membrane-bound Rnf-type NADH dehydrogenase that is a potential Na+ pump. These data suggest the following electron transport chain: H2 → ferredoxin → NAD+ → Etf → caffeyl-CoA reductase. They also imply that the sodium motive step in the chain is the ferredoxin-dependent NAD+ reduction catalyzed by Rnf.  相似文献   

20.
Arthropods cope with reduced oxygen and elevated carbon dioxide atmospheres with a reduction in metabolic rate, also called metabolic arrest. The reduction in metabolism lessens the pressure on the organism to initiate anaerobic metabolism, but also leads to a reduction in ATP production. The natural permeability of cellular membranes appears to be important for the survival of the arthropod under low oxygen or high carbon dioxide atmospheres. Despite the similarities in response, arthropod mortality is generally greater in response to high carbon dioxide as apposed to low oxygen atmospheres. There appears to be a greater decrease in ATP and energy charge in arthropods exposed to high carbon dioxide as compared with low oxygen atmospheres, and this may be due to greater membrane permeability under carbon dioxide leading to an inefficient production of ATP. Reduced oxygen and elevated carbon dioxide atmospheres can have an additive effect in some cases, depending on the concentrations used. The effect of these atmospheres on arthropods depends also on temperature, species and life stage. Additional work is needed to fully understand the mode of action of controlled atmospheres on arthropod pests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号