首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The neuropeptide substance P (SP) is a well-known mediator of neurogenic inflammation following a variety of CNS disorders. Indeed, inhibition of SP through antagonism of its receptor, the tachykinin NK1 receptor, has been shown to be beneficial following both traumatic brain injury and stroke. Such studies demonstrated that administration of an NK1 receptor antagonist reduced blood-brain-barrier permeability, edema development and improved functional outcome. Furthermore, our recent studies have demonstrated a potential role for SP in mediating neurogenic inflammation following traumatic spinal cord injury (SCI). Accordingly, the present study investigates whether inhibition of SP may similarly play a neuroprotective role following traumatic SCI. A closed balloon compression injury was induced at T10 in New Zealand White rabbits. At 30 minutes post-injury an NK1 receptor antagonist was administered intravenously. Animals were thereafter assessed for blood spinal cord barrier (BSCB) permeability, spinal water content (edema), intrathecal pressure (ITP), and histological and functional outcome from 5 hours to 2 weeks post-SCI. Administration of an NK1 receptor antagonist was not effective in reducing BSCB permeability, edema, ITP, or functional deficits following SCI. We conclude that SP mediated neurogenic inflammation does not seem to play a major role in BSCB disruption, edema development and consequential tissue damage seen in acute traumatic SCI. Rather it is likely that the severe primary insult and subsequent hemorrhage may be the key contributing factors to ongoing SCI injury.  相似文献   

2.
The neuropeptide substance P (SP) has been implicated in the disruption of the blood-brain barrier (BBB) and development of cerebral edema in acute brain injury. Cerebral edema accumulates rapidly around brain tumors and has been linked to several tumor-associated deficits. Currently, the standard treatment for peritumoral edema is the corticosteroid dexamethasone, prolonged use of which is associated with a number of deleterious side effects. As SP is reported to increase in many cancer types, this study examined whether SP plays a role in the genesis of brain peritumoral edema. A-375 human melanoma cells were injected into the right striatum of male Balb/c nude mice to induce brain tumor growth, with culture medium injected in animals serving as controls. At 2, 3 or 4 weeks following tumor cell inoculation, non-treated animals were perfusion fixed for immunohistochemical detection of Albumin, SP and NK1 receptor. A further subgroup of animals was treated with a daily injection of the NK1 antagonist Emend (3 mg/kg), dexamethasone (8 mg/kg) or saline vehicle at 3 weeks post-inoculation. Animals were sacrificed a week later to determine BBB permeability using Evan''s Blue and brain water content. Non-treated animals demonstrated a significant increase in albumin, SP and NK1 receptor immunoreactivity in the peritumoral area as well as increased perivascular staining in the surrounding brain tissue. Brain water content and BBB permeability was significantly increased in tumor-inoculated animals when compared to controls (p<0.05). Treatment with Emend and dexamethasone reduced BBB permeability and brain water content when compared to vehicle-treated tumor-inoculated mice. The increase in peritumoral staining for both SP and the NK1 receptor, coupled with the reduction in brain water content and BBB permeability seen following treatment with the NK1 antagonist Emend, suggests that SP plays a role in the genesis of peritumoral edema, and thus warrants further investigation as a potential anti-edematous treatment.  相似文献   

3.
C-X-C chemokine receptor type 4 (CXCR4) is highly expressed in Parkinson's disease (PD) mice's brains and is related to astrocyte signaling and microglial activation. This makes CXCR4 related to neuroinflammation and also makes CXCR4 considered to be the PD development mechanism and possible therapeutic targets. Therefore, it is worth studying the effect of CXCR4 on neuropathological changes and its potential therapeutic value for PD. This study aimed to investigate the effect of CXCR4 knockout on neuropathological changes in the mouse model of PD and its mechanism. In this study, CXCR4-WT and CXCR4+/? C57BL mice were used to make Parkinson's model. Behavioral experiments, dopaminergic neuron markers, neuroinflammation, and blood-brain barrier damage were detected to verify the effect of CXCR4 knockout on neuropathological changes. CXCR4 knockout improved the behavioral results and tyrosine hydroxylase (TH) expression of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned mice. In the substantia nigra (SN) area of the brain of PD mouse model, the number of Iba1-positive (p = 0.0004) and GFAP-positive cells (p = 0.0349) was significantly lower in CXCR4 knockout group than CXCR4-WT group. CXCR4 knockout reduced MPTP-induced infiltration of peripheral immune cells and the expression of pro-inflammatory cytokines. CXCR4 knockout also protected blood-brain barrier (BBB) from MPTP-induced damage. In conclusion, CXCR4 knockout inhibits the degeneration of dopamine neurons, microglial and astrocyte activation, neuroinflammation, and BBB damages in the MPTP-lesioned PD mice.  相似文献   

4.
Methamphetamine (METH) is an addictive substance that also causes extensive neural degeneration in the central nervous system. Because METH augments striatal substance P (SP) levels, we hypothesized that this neuropeptide plays a role in methamphetamine-induced toxicity and neural damage in the striatum. In this study we present evidence demonstrating that signaling through the neurokinin-1 (NK-1) receptor by SP plays an important role in methamphetamine-induced toxicity in the striatum. We tested the effects of the selective NK-1 receptor antagonists WIN-51,708 and L-733,060 on several markers of dopaminergic terminal toxicity in the mouse striatum. Administration of NK-1 receptor antagonist prevented the loss of dopamine transporters assessed by autoradiography and western blotting, the loss of tissue dopamine assessed by high-pressure liquid chromatography, and the loss of tyrosine hydroxylase, as well as the induction of glial fibrillary acidic protein determined by western blotting. Pre-treatment with NK-1 receptor antagonist had no effect on METH-induced hyperthermia. Pre-exposure of mice to either of the NK-1 receptor antagonists alone was without effect on all of these neurochemical markers. These results provide the first evidence that tachykinins, particularly SP, acting through NK-1 receptors, play a crucial role in the pathogenesis of nigrostriatal dopaminergic terminal degeneration induced by METH. This finding could lead to novel therapeutic strategies to offset drug addictions as well as in the treatment of a number of disorders including Parkinson's and Huntington's diseases.  相似文献   

5.
6.
Evidence suggests that increased glutamatergic input to the substantia nigra pars compacta as a result of hyperactivity of subthalalmic nucleus output pathways may contribute to the progressive degeneration of nigral dopaminergic neurones in Parkinson's disease (PD), a debilitating neurodegenerative disorder which affects approximately 1% of people aged over 65. Substantial electrophysiological evidence suggests that the excitation of nigral dopaminergic neurones is regulated by the activation of Group I metabotropic glutamate receptors (mGluR), comprising mGluR1 and mGluR5 subtypes. As activation of these receptors by endogenous glutamate may promote multiple cascades leading to excitotoxic neuronal death, it may be hypothesised that functional antagonism of Group I mGluR should be neuroprotective and could form the basis of a novel neuroprotective treatment for PD. To investigate this hypothesis, the neuroprotective potential of the selective competitive mGlu1 antagonist (+)-2-methyl-4-carboxyphenylglycine ((S)-(+)-alpha-amino-4-carboxy-2-methlybenzeneacetic acid; LY367385) and the selective allosteric mGlu5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) was tested in a rodent 6-hydroxydopamine (6-OHDA) model of PD in vivo. Both acute and subchronic intranigral administration of either LY367385 or MPEP resulted in significant neuroprotection of nigral tyrosine hydroxylase immunoreactive cell bodies, which correlated closely with prevention of striatal monoamine depletion following 6-OHDA lesioning. This neuroprotective action of LY367385 and MPEP displayed a clear concentration-dependent effect, suggesting a receptor-mediated mechanism of action. LY367385 produced robust neuroprotection at all concentrations tested (40, 200 and 1000 nmol in 4 microL), whilst MPEP displayed a bell-shaped neuroprotective profile with significant neuroprotection at low concentrations (2 and 10 nmol in 4 microL) but not at higher concentrations (50 nmol). Importantly, subchronic intranigral administration of MPEP and LY367385 appeared to slow the degeneration of remaining nigral dopaminergic neurones and prevented further striatal dopamine depletion in animals with established 6-OHDA induced nigrostriatal lesions, suggesting that these compounds may significantly influence disease progression in this model.  相似文献   

7.
Parkinson's disease (PD) is characterized by the degeneration of dopaminergic neurons in the substantia nigra compacta (SNc). Although mitochondrial dysfunction is the critical factor in the pathogenesis of PD, the underlying molecular mechanisms are not well understood, and as a result, effective medical interventions are lacking. Mitochondrial fission and fusion play important roles in the maintenance of mitochondrial function and cell viability. Here, we investigated the effects of MitoQ, a mitochondria-targeted antioxidant, in 6-hydroxydopamine (6-OHDA)-induced in vitro and in vivo PD models. We observed that 6-OHDA enhanced mitochondrial fission by decreasing the expression of Mfn1, Mfn2 and OPA1 as well as by increasing the expression of Drp1 in the dopaminergic (DA) cell line SN4741. Notably, MitoQ treatment particularly upregulated the Mfn2 protein and mRNA levels and promoted mitochondrial fusion in the presence of 6-OHDA in a Mfn2-dependent manner. In addition, MitoQ also stabilized mitochondrial morphology and function in the presence of 6-OHDA, which further suppressed the formation of reactive oxygen species (ROS), as well as ameliorated mitochondrial fragmentation and cellular apoptosis. Moreover, the activation of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) was attributed to the upregulation of Mfn2 induced by MitoQ. Consistent with these findings, administration of MitoQ in 6-OHDA-treated mice significantly rescued the decrease of Mfn2 expression and the loss of DA neurons in the SNc. Taken together, our findings suggest that MitoQ protects DA neurons in a 6-OHDA induced PD model by activating PGC-1α to enhance Mfn2-dependent mitochondrial fusion.  相似文献   

8.
Yong Y  Ding H  Fan Z  Luo J  Ke ZJ 《Neurochemical research》2011,36(3):367-374
Lithium has been used for the treatment of bipolar mood disorder and is shown to have neuroprotective properties. Since lithium inhibits the activity of glycogen synthase kinase 3 (GSK3) which is implicated in various human diseases, particularly neurodegenerative diseases, the therapeutic potential of lithium receives great attention. Parkinson’s disease (PD) is the second most common neurodegenerative disease, characterized by the pathological loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Intranigral injection of the catecholaminergic neurotoxin 6-hydroxydopamine (6-OHDA) causes selective and progressive degeneration of dopaminergic neurons in SNpc, and is a commonly used animal model of PD. The current study was designated to determine whether lithium is effective in alleviating 6-OHDA-induced neurodegeneration in the SNpc of rats. We demonstrated that chronic subcutaneous administration of lithium inhibited GSK3 activity in the SNpc, which was evident by an increase in phosphorylation of GSK3β at serine 9, cyclin D1 expression, and a decrease in tau phosphorylation. 6-OHDA did not affect GSK3 activity in the SNpc. Moreover, lithium was unable to alleviate 6-OHDA-induced degeneration of SNpc dopaminergic neurons. The results suggest that GSK3 is minimally involved in the neurodegeneration in the rat 6-OHDA model of PD.  相似文献   

9.
Acute pancreatitis (AP) has been associated with an up-regulation of substance P (SP) and neurokinin-1 receptor (NK1R) in the pancreas. Increased SP-NK1R interaction was suggested to be pro-inflammatory during AP. Previously, we showed that caerulein treatment increased SP/NK1R expression in mouse pancreatic acinar cells, but the effect of SP treatment was not evaluated. Pancreatic acinar cells were obtained from pancreas of male swiss mice (25–30 g). We measured mRNA expression of preprotachykinin-A (PPTA) and NK1R following treatment of SP (10−6M). SP treatment increased PPTA and NK1R expression in isolated pancreatic acinar cells, which was abolished by pretreatment of a selective NK1R antagonist, CP96,345. SP also time dependently increased protein expression of NK1R. Treatment of cells with a specific NK1R agonist, GR73,632, up-regulated SP protein levels in the cells. Using previously established concentrations, pre-treatment of pancreatic acinar cells with Gö6976 (10 nM), rottlerin (5 μM), PD98059 (30 μM), SP600125 (30 μM) or Bay11-7082 (30 μM) significantly inhibited up-regulation of SP and NK1R. These observations suggested that the PKC-ERK/JNK-NF-κB pathway is necessary for the modulation of expression levels. In comparison, pre-treatment of CP96,345 reversed gene expression in SP-induced cells, but not in caerulein-treated cells. Overall, the findings in this study suggested a possible auto-regulatory mechanism of SP/NK1R expression in mouse pancreatic acinar cells, via activation of NK1R. Elevated SP levels during AP might increase the occurrence of a positive feedback loop that contributes to abnormally high expression of SP and NK1R.  相似文献   

10.
Parkinson disease (PD) is characterized by the progressive degeneration of substantia nigra dopaminergic neurons projecting to the striatum. Since the deficit in striatal dopamine is the main cause of PD symptoms, it appears critical to preserve axon terminals. Significant axon protection from peripheral nerve Wallerian degeneration is observed in Wlds mice, a phenotype conferred by a spontaneous dominant mutation. To assess any Wlds-mediated rescue of dopamine fibers in a PD model, the nigrostriatal pathway of Wlds mice was lesioned with 6-hydroxydopamine (6-OHDA), a catecholaminergic neurotoxin. Following 6-OHDA injection in the medial forebrain bundle, Wlds mice showed remarkable dopamine fiber protection in the striatum. Drug-induced rotational behavior confirmed the nigrostriatal fiber ability to release dopamine, although revealing an abnormal neurotransmitter control presumably due to disrupted axonal transport. Following 6-OHDA injection in the midstriatum, only a protection trend was observed. Strikingly, no protection of Wlds nigral dopaminergic cell bodies was obtained following either nigrostriatal lesion. Besides showing subtle differences in the degeneration process between subcellular compartments, the reported Wlds-mediated protection of the dopamine axon terminals in an animal model of PD may lead to the understanding of mechanisms underlying axon loss and to the development of new therapeutic approaches.  相似文献   

11.
Parkinson's disease (PD) is caused by a progressive degeneration of dopaminergic neurons in the substantia nigra. Oxidative stress and neural degeneration are suggested to be involved in the pathogenesis of Parkinson's disease. In the present study, Astragaloside IV (AS-IV) extracted from the dried root of Astragalus membranaceus, a well-known Chinese medicine used for the treatment of neurodegenerative diseases, was investigated for its capacity to protect dopaminergic neurons in experimental Parkinson's disease. By examining the effect of AS-IV on 6-hydroxydopamine (6-OHDA)-induced loss of dopaminergic neurons in primary nigral culture, we found that AS-IV pretreatment significantly and dose-dependently attenuated 6-OHDA-induced loss of dopaminergic neurons. Neuronal fiber length studies showed that massive neuronal cell death with degenerated neurons was observed in those cultures incubated with 6-OHDA, whereas in AS-IV co-treatments most dopaminergic neurons were seen to be intact and sprouting. In flow cytometric analysis, AS-IV resulted in a marked and dose-dependent rescue in tyrosine hydrolase (TH)-immunopositive cells from 6-OHDA-induced degeneration of dopaminergic neurons. Double immunofluorescence revealed that AS-IV treatment alone at concentrations of 100 and 200 μM increased the level of TH and NOS (nitrite oxide synthase) immunoreactivities; however, the protective effect of AS-IV on TH and NOS immunopositive cells in 6-OHDA treated nigral cell cultures was only seen at a concentration of 100 μM. These findings show that AS-IV can protect dopaminergic neurons against 6-OHDA-induced degeneration. Besides the neuroprotective effect, AS-IV alone promoted neurite outgrowth and increased TH and NOS immunoreactive of dopaminergic neurons. The neuroprotective and neurosprouting effects of AS-IV are specific for dopaminergic neurons and it has therapeutic potential in the treatment of PD.  相似文献   

12.
Several mechanisms are thought to be involved in the progressive decline in neurons of the substantia nigra pars compacta (SNpc) that leads to Parkinson's disease (PD). Neurotoxin 6-hydroxydopamine (6-OHDA), which induces parkinsonian symptoms in experimental animals, is thought to be formed endogenously in patients with PD through dopamine (DA) oxidation and may cause dopaminergic cell death via a free radical mechanism. We therefore investigated protection against 6-OHDA by inhibiting oxidative stress using a gene transfer strategy. We overexpressed the antioxidative Cu/Zn-superoxide dismutase (SOD1) enzyme in primary culture dopaminergic cells by infection with an adenovirus carrying the human SOD1 gene (Ad-hSOD1). Survival of the dopaminergic cells exposed to 6-OHDA was 50% higher among the SOD1-producing cells than the cells infected with control adenoviruses. In contrast, no significant increased survival of (6-OHDA)-treated dopaminergic cells was observed when they were infected with an adenovirus expressing the H(2) O(2) -scavenging glutathione peroxidase (GPx) enzyme. These results underline the major contribution of superoxide in the dopaminergic cell death process induced by 6-OHDA in primary cultures. Overall, this study demonstrates that the survival of the dopaminergic neurons can be highly increased by the adenoviral gene transfer of SOD1. An antioxidant gene transfer strategy using viral vectors expressing SOD1 is therefore potentially beneficial for protecting dopaminergic neurons in PD.  相似文献   

13.
The neuropeptide Substance P (SP), that has a high affinity for the neurokinin 1 (NK1) receptor, is involved in modulation of pain transmission. Although SP is thought to have excitatory actions and promote nociception in the spinal cord, the peptide induces analgesia at the supraspinal level. The aim of this study was to evaluate the role of supraspinal SP and the NK1 receptor in inflammatory pain induced by injection of carrageenan in the hind paw of the rat. There are two nociceptive behavioral responses associated with this pain state: mechanical allodynia and heat hyperalgesia. Because the NK1 receptor colocalizes with the MOP receptor in supraspinal sites involved in pain modulation, we also decided to study the possible involvement of the opioid system on SP-induced analgesia. We found that treatment with SP, at doses of 3.5, 5 and 7 μg/5 μl/rat i.c.v., clearly showed inhibition of allodynia and hyperalgesia. Pretreatment with the selective NK1 antagonist L-733,060 (10mg/kg i.p.) blocked the SP-induced analgesia, suggesting the involvement of the NK1 receptor. This SP-induced analgesia was significantly reduced by administration of the opioid antagonist naloxone (3mg/kg s.c.). This reduction occurred when SP was administered either before or after the carrageenan injection. These results suggest a significant antinociceptive role for SP and the NK1 receptor in inflammatory pain at the supraspinal level, possibly through the release of endogenous opioids.  相似文献   

14.
This study aimed to 1) assess whether substance P (SP) acts via neurokinin (NK)-1 and NK-2 receptors to stimulate neurogenic inflammation (indicated by formation of ICAM-1 expression and oxidative stress) following oil smoke exposure (OSE) in rats; and 2) determine if pretreatment with antioxidants ameliorates the deleterious effects of OSE. Rats were pretreated with NK-1 receptor antagonist CP-96345, NK-2 receptor antagonist SR-48968, vitamin C, or catechins. OSE was for 30-120 min. Rats were killed 0-8 h later. Total lung resistance (RL), airway smooth muscle activity (ASMA), lung ICAM-1 expression, neurogenic plasma extravasation (via India ink and Evans blue dye), bronchoalveolar lavage fluid SP concentrations, and reactive oxygen species formation [via lucigenin- and luminal-amplified chemiluminescence (CL)] were assessed. Lung histology was performed. SP concentrations increased significantly in nonpretreated rats following OSE in a dose-dependent manner. RL and total ASMA increased over time after OSE. Vitamin C and catechin pretreatments were associated with significantly reduced lucigenin CL 2 and 4 h after OSE. Pretreatment with catechins significantly reduced luminal CL counts 4 and 8 h after OSE. Evans blue levels were significantly reduced following 60 and 120 min of OSE in catechin- and CP-96345-pretreated rats. ICAM-1 protein expression was significantly decreased in all pretreatment groups after OSE. Thickening of the alveolar capillary membrane, focal hemorrhaging, interstitial pneumonitis, and peribronchiolar inflammation were apparent in OSE lungs. These findings suggest that SP acts via the NK-1 receptor to provoke neurogenic inflammation, oxidative stress, and ICAM-1 expression after OSE in rats.  相似文献   

15.
BackgroundParkinson’s disease (PD) is the common neurodegenerative disorder in the elderly characterized by motor symptoms such as tremors, which is caused by selective loss of nigral dopaminergic neurons. Oxidative stress induced by the auto-oxidation of dopamine has been implicated as a key cause of the selective loss of dopaminergic neurons.MethodsTo understand the selective loss of nigral dopaminergic neurons, the PD pathogenesis is reviewed focused on paraquat (PQ) and 6-hydroxydopamine (6-OHDA)-induced PD in rats.ResultsReactive oxygen species (ROS), which are produced by PQ and 6-OHDA, are retrogradely transported to presynaptic glutamatergic neuron terminals. ROS activate presynaptic transient receptor potential melastatin 2 (TRPM2) cation channels and induce extracellular glutamate accumulation in the substantia nigra pars compacta (SNpc), followed by age-related intracellular Zn2+ dysregulation. Loss of nigral dopaminergic neurons is accelerated by age-related intracellular Zn2+ dysregulation in the SNpc of rat PD models. The intracellular Zn2+ dysregulation in nigral dopaminergic neurons is linked with the rapid influx of extracellular Zn2+ via postsynaptic AMPA receptor activation, suggesting that PQ- and 6-OHDA-induced pathogenesis is linked with age-related intracellular Zn2+ dysregulation in the SNpc. Postsynaptic TRPM2 channels may be also involved in intracellular Zn2+ dysregulation in the SNpc.ConclusionA novel mechanism of nigral dopaminergic degeneration, in which ROS induce rapid intracellular Zn2+ dysregulation, figures out the PD pathogenesis induced by PQ and 6-OHDA in rats. This review deals with new insight into PD pathogenesis from ROS-mediated extracellular Zn2+ influx and its proposed defense strategy.  相似文献   

16.
Oxidative stress is a major pathophysiological mediator of degenerative processes in many neurodegenerative diseases including Parkinson’s disease (PD). Aberrant cell signaling governed by protein phosphorylation has been linked to oxidative damage of dopaminergic neurons in PD. Although several studies have associated activation of certain protein kinases with apoptotic cell death in PD, very little is known about protein kinase regulation of cell survival and protection against oxidative damage and degeneration in dopaminergic neurons. Here, we characterized the PKD1-mediated protective pathway against oxidative damage in cell culture models of PD. Dopaminergic neurotoxicant 6-hydroxy dopamine (6-OHDA) was used to induce oxidative stress in the N27 dopaminergic cell model and in primary mesencephalic neurons. Our results indicated that 6-OHDA induced the PKD1 activation loop (PKD1S744/S748) phosphorylation during early stages of oxidative stress and that PKD1 activation preceded cell death. We also found that 6-OHDA rapidly increased phosphorylation of the C-terminal S916 in PKD1, which is required for PKD1 activation loop (PKD1S744/748) phosphorylation. Interestingly, negative modulation of PKD1 activation by RNAi knockdown or by the pharmacological inhibition of PKD1 by kbNB-14270 augmented 6-OHDA-induced apoptosis, while positive modulation of PKD1 by the overexpression of full length PKD1 (PKD1WT) or constitutively active PKD1 (PKD1S744E/S748E) attenuated 6-OHDA-induced apoptosis, suggesting an anti-apoptotic role for PKD1 during oxidative neuronal injury. Collectively, our results demonstrate that PKD1 signaling plays a cell survival role during early stages of oxidative stress in dopaminergic neurons and therefore, positive modulation of the PKD1-mediated signal transduction pathway can provide a novel neuroprotective strategy against PD.  相似文献   

17.
18.
目的观察6-羟多巴胺(6-OHDA)单侧注射制备的帕金森病(PD)大鼠多巴胺(DA)能神经元的超微结构改变。方法单侧微量注射6-OHDA制备PD大鼠模型,用免疫荧光组织化学方法观察正常侧与6-OHDA注射侧黑质酪氨酸羟化酶(TH)阳性神经细胞及神经纤维的变化;并利用免疫电镜技术观察大鼠正常侧与注射侧黑质致密部DA能神经元的超微结构。结果免疫荧光法显示注射侧黑质致密部TH阳性细胞数和网状部TH阳性纤维面积与正常侧的百分比平均值分别为21.83%,23.19%。免疫电镜显示:TH免疫反应阳性产物表达于PD大鼠正常侧DA能神经元的高尔基复合体质膜面及胞质内,电子密度较高,注射侧很少见或几乎未见,且注射侧线粒体嵴有不同程度的溶解,呈空泡样变或髓样变,粗面内质网脱颗粒。结论6-OHDA可引起DA能神经元发生凋亡的超微结构改变。  相似文献   

19.
Wang DS  Xu TL  Li JS 《生理学报》1999,51(4):361-370
采用制霉菌素穿孔膜片箍技术,研究了P物质对急性分离的大鼠骶髓后的核神经元士的宁敏感性甘氨酸反应的调控作用。在箍制电压为-40mV时,SP时1mmol/L-1μmol/L之间呈浓度依赖性地增强30μmol/L甘氨酸激活的氯电流。SP既不改变IGly的翻转电位,也不是影响Gly与其受体的亲和力。Spantide和选择性N中受体拮抗剂,L-668,169,可阻断SP的增强作用,而选择性NK2受体拮抗剂,  相似文献   

20.
The death of midbrain dopaminergic neurons in sporadic Parkinson disease is of unknown etiology but may involve altered growth factor signaling. The present study showed that leptin, a centrally acting hormone secreted by adipocytes, rescued dopaminergic neurons, reversed behavioral asymmetry, and restored striatal catecholamine levels in the unilateral 6-hydroxydopamine (6-OHDA) mouse model of dopaminergic cell death. In vitro studies using the murine dopaminergic cell line MN9D showed that leptin attenuated 6-OHDA-induced apoptotic markers, including caspase-9 and caspase-3 activation, internucleosomal DNA fragmentation, and cytochrome c release. ERK1/2 phosphorylation (pERK1/2) was found to be critical for mediating leptin-induced neuroprotection, because inhibition of the MEK pathway blocked both the pERK1/2 response and the pro-survival effect of leptin in cultures. Knockdown of the downstream messengers JAK2 or GRB2 precluded leptin-induced pERK1/2 activation and neuroprotection. Leptin/pERK1/2 signaling involved phosphorylation and nuclear localization of CREB (pCREB), a well known survival factor for dopaminergic neurons. Leptin induced a marked MEK-dependent increase in pCREB that was essential for neuroprotection following 6-OHDA toxicity. Transfection of a dominant negative MEK protein abolished leptin-enhanced pCREB formation, whereas a dominant negative CREB or decoy oligonucleotide diminished both pCREB binding to its target DNA sequence and MN9D survival against 6-OHDA toxicity. Moreover, in the substantia nigra of mice, leptin treatment increased the levels of pERK1/2, pCREB, and the downstream gene product BDNF, which were reversed by the MEK inhibitor PD98059. Collectively, these data provide evidence that leptin prevents the degeneration of dopaminergic neurons by 6-OHDA and may prove useful in the treatment of Parkinson disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号