首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human Ape2 protein has 3′ phosphodiesterase activity for processing 3′-damaged DNA termini, 3′–5′ exonuclease activity that supports removal of mismatched nucleotides from the 3′-end of DNA, and a somewhat weak AP-endonuclease activity. However, very little is known about the role of Ape2 in DNA repair processes. Here, we examine the effect of interaction of Ape2 with proliferating cell nuclear antigen (PCNA) on its enzymatic activities and on targeting Ape2 to oxidative DNA lesions. We show that PCNA strongly stimulates the 3′–5′ exonuclease and 3′ phosphodiesterase activities of Ape2, but has no effect on its AP-endonuclease activity. Moreover, we find that upon hydrogen-peroxide treatment Ape2 redistributes to nuclear foci where it colocalizes with PCNA. In concert with these results, we provide biochemical evidence that Ape2 can reduce the mutagenic consequences of attack by reactive oxygen species not only by repairing 3′-damaged termini but also by removing 3′-end adenine opposite from 8-oxoG. Based on these findings we suggest the involvement of Ape2 in repair of oxidative DNA damage and PCNA-dependent repair synthesis.  相似文献   

2.
Biphenanthrene compound, 4, 8, 4′, 8′-tetramethoxy (1, 1′-biphenanthrene)—2, 7, 2′, 7′-tetrol (LF05), recently isolated from fibrous roots of Bletilla striata, exhibits antibacterial activity against several Gram-positive bacteria. In this study, we investigated the antibacterial properties, potential mode of action and cytotoxicity. Minimum inhibitory concentrations (MICs) tests showed LF05 was active against all tested Gram-positive strains, including methicillin-resistant Staphylococcus aureus (MRSA) and staphylococcal clinical isolates. Minimum bactericidal concentration (MBC) tests demonstrated LF05 was bactericidal against S. aureus ATCC 29213 and Bacillus subtilis 168 whereas bacteriostatic against S. aureus ATCC 43300, WX 0002, and other strains of S. aureus. Time-kill assays further confirmed these observations. The flow cytometric assay indicated that LF05 damaged the cell membrane of S. aureus ATCC 29213 and B. subtilis 168. Consistent with this finding, 4 × MIC of LF05 caused release of ATP in B. subtilis 168 within 10 min. Checkerboard test demonstrated LF05 exhibited additive effect when combined with vancomycin, erythromycin and berberine. The addition of rat plasma or bovine serum albumin to bacterial cultures caused significantly loss in antibacterial activity of LF05. Interestingly, LF05 was highly toxic to several tumor cells. Results of these studies indicate that LF05 is bactericidal against some Gram-positive bacteria and acts as a membrane structure disruptor. The application of biphenanthrene in the treatment of S. aureus infection, especially local infection, deserves further study.  相似文献   

3.
In the presence of Mn2+, an activity in a preparation of purified Bacillus subtilis RecN degrades single-stranded (ss) DNA with a 3′ → 5′ polarity. This activity is not associated with RecN itself, because RecN purified from cells lacking polynucleotide phosphorylase (PNPase) does not show the exonuclease activity. We show here that, in the presence of Mn2+ and low-level inorganic phosphate (Pi), PNPase degrades ssDNA. The limited end-processing of DNA is regulated by ATP and is inactive in the presence of Mg2+ or high-level Pi. In contrast, the RNase activity of PNPase requires Mg2+ and Pi, suggesting that PNPase degradation of RNA and ssDNA occur by mutually exclusive mechanisms. A null pnpA mutation (ΔpnpA) is not epistatic with ΔrecA, but is epistatic with ΔrecN and Δku, which by themselves are non-epistatic. The addA5, ΔrecO, ΔrecQrecJ), ΔrecU and ΔrecG mutations (representative of different epistatic groups), in the context of ΔpnpA, demonstrate gain- or loss-of-function by inactivation of repair-by-recombination, depending on acute or chronic exposure to the damaging agent and the nature of the DNA lesion. Our data suggest that PNPase is involved in various nucleic acid metabolic pathways, and its limited ssDNA exonuclease activity plays an important role in RecA-dependent and RecA-independent repair pathways.  相似文献   

4.
Whole-cell suspensions of Cylindrocarpon didymum were observed to transform 2,2′-bimorphine to the compounds 10-α-S-monohydroxy-2,2′-bimorphine and 10,10′-α,α′-S,S′-dihydroxy-2,2′-bimorphine. Mass spectrometry and 1H nuclear magnetic resonance spectroscopy confirmed the identities of these new morphine alkaloids.  相似文献   

5.
A new procedure has been developed for the synthesis of 3′-amino-3′-deoxyribonucleosides of adenine, cytosine and uracil by condensing the trimethylsilylated bases with peracylated 3-azido-3-deoxyribose derivative. The azido group could subsequently be reduced to amino. The 5′-phosphates of these nucleosides have been prepared and the analogues have been tested for their ability to stimulate the ribosome-catalyzed reaction of 3′(2′)-O-(N-formylmethionyl)adenosine 5′-phosphate with phenylalanyl-tRNA.  相似文献   

6.
A large number of natural and artificial ribozymes have been isolated since the demonstration of the catalytic potential of RNA, with the majority of these catalyzing phosphate hydrolysis or transesterification reactions. Here, we describe and characterize an extremely short ribozyme that catalyzes the positionally specific transesterification that produces a 2′–3′ phosphodiester bond between itself and a branch substrate provided in trans, cleaving itself internally in the process. Although this ribozyme was originally derived from constructs based on snRNAs, its minimal catalytic motif contains essentially no snRNA sequence and the reaction it catalyzes is not directly related to either step of pre-mRNA splicing. Our data have implications for the intrinsic reactivity of the large amount of RNA sequence space known to be transcribed in nature and for the validity and utility of the use of protein-free systems to study pre-mRNA splicing.  相似文献   

7.
Light-directed synthesis of high-density microarrays is currently performed in the 3′→5′ direction due to constraints in existing synthesis chemistry. This results in the probes being unavailable for many common types of enzymatic modification. Arrays that are synthesized in the 5′→3′ direction could be utilized to perform parallel genotyping and resequencing directly on the array surface, dramatically increasing the throughput and reducing the cost relative to existing techniques. In this report we demonstrate the use of photoprotected phosphoramidite monomers for light-directed array synthesis in the 5′→3′ direction, using maskless array synthesis technology. These arrays have a dynamic range of >2.5 orders of magnitude, sensitivity below 1 pM and a coefficient of variance of <10% across the array surface. Arrays containing >150 000 probe sequences were hybridized to labeled mouse cRNA producing highly concordant data (average R2 = 0.998). We have also shown that the 3′ ends of array probes are available for sequence-specific primer extension and ligation reactions.  相似文献   

8.
DNA mismatch repair removes mis-incorporated bases after DNA replication and reduces the error rate a 100–1000-fold. After recognition of a mismatch, a large section of up to a thousand nucleotides is removed from the daughter strand followed by re-synthesis. How these opposite activities are coordinated is poorly understood. Here we show that the Escherichia coli MutL protein binds to the 3′ end of the resected strand and blocks access of Pol I and Pol III. The cryo-EM structure of an 85-kDa MutL-DNA complex, determined to 3.7 Å resolution, reveals a unique DNA binding mode that positions MutL at the 3′ end of a primer-template, but not at a 5′ resected DNA end or a blunt DNA end. Hence, our work reveals a novel role for MutL in the final stages of mismatch repair by preventing premature DNA synthesis during removal of the mismatched strand.  相似文献   

9.
The rep gene of adeno-associated virus type 2 encodes four overlapping proteins from two separate promoters, termed P5 and P19. The P5-promoted Rep proteins, Rep78 and Rep68, are essential for viral DNA replication, and a wealth of data concerning the biochemical activities of these proteins has been reported. In contrast, data concerning the biochemical functions of the P19-promoted Rep proteins, Rep52 and Rep40, are lacking. Here, we describe enzymatic activities associated with a bacterially expressed maltose-binding protein (MBP)-Rep52 fusion protein. Purified MBP-Rep52 possesses 3′-to-5′ DNA helicase activity that is strictly dependent upon the presence of nucleoside triphosphate and divalent cation cofactors. In addition, MBP-Rep52 demonstrates a constitutive ATPase activity that is active in the absence of DNA effector molecules. An MBP-Rep52 chimera bearing a lysine-to-histidine substitution at position 116 (K116H) within a consensus helicase- and ATPase-associated motif (motif I or Walker A site) was deficient for both DNA helicase and ATPase activities. In contrast to a Rep78 A-site mutant protein bearing a corresponding amino acid substitution at position 340 (K340H), the MBP-Rep52 A-site mutant protein failed to exhibit a trans-dominant negative effect when it was mixed with wild-type MBP-Rep52 or MBP-Rep78 in vitro. This lack of trans dominance, coupled with the results of coimmunoprecipitation and gel filtration chromatography experiments reported here, suggests that the ability of Rep52 to engage in multimeric interactions may differ from that of Rep78 or -68.  相似文献   

10.
Recently, we synthesized pyrimidine derivatives of the 2′-O,4′-C-methylenoxymethylene-bridged nucleic-acid (2′,4′-BNACOC) monomer, the sugar conformation of which is restricted in N-type conformation by a seven-membered bridged structure. Oligonucleotides (BNACOC) containing this monomer show high affinity with complementary single-stranded RNA and significant resistance to nuclease degradation. Here, BNACOC consisting of 2′,4′-BNACOC monomers bearing all four bases, namely thymine, 5-methylcytosine, adenine and guanine was efficiently synthesized and properties of duplexes containing the 2′,4′-BNACOC monomers were investigated by UV melting experiments and circular dichroism (CD) spectroscopy. The UV melting curve analyses showed that the BNACOC/BNACOC duplex possessed excellent thermal stability and that the BNACOC increased thermal stability with a complementary RNA strand. On the other hand, BNACOC/DNA heteroduplexes showed almost the same thermal stability as RNA/DNA heteroduplexes. Furthermore, mismatched sequence studies showed that BNACOC generally improved the sequence selectivity with Watson–Crick base-pairing compared to the corresponding natural DNA and RNA. A CD spectroscopic analysis indicated that the BNACOC formed duplexes with complementary DNA and RNA in a manner similar to natural RNA.  相似文献   

11.
Oligodeoxynucleotides (ODNs) containing 5-formyl-2′-deoxycytidine (fC) were synthesized by the phosphoramidite method and subsequent oxidation with sodium periodate. The stabilities of duplexes containing A, G, C or T opposite fC were studied by thermal denaturation. It was found that fC:A, fC:C or fC:T base pairs significantly reduce the thermal stabilities of duplexes. Next, single nucleotide insertion reactions were performed using ODNs containing fC as templates and the Klenow fragment of Escherichia coli DNA polymerase I. It was found that: (i) insertion of dGMP opposite fC appears to be less efficient relative to insertion opposite 5-methyl-2′-deoxycytidine (mC); (ii) dAMP is misincorporated more frequently opposite fC than mC, although the frequency of misincorporation seems to be dependent on the sequence; (iii) TMP is misincorporated more frequently opposite fC than mC. These results suggest that fC may induce the transition mutation C·G→T·A and the transversion mutation C·G→A·T during DNA synthesis.  相似文献   

12.
13.
14.
Data are presented demonstrating that the presence in vivo of adenosine 3',5'-monophosphate (3',5'-AMP) causes a rapid depletion of glycogen storage material in the cellular slime mold. The effect of adenosine 5'-monophosphate (5'-AMP) is twofold, stimulating both glycogen degradation and synthesis. In pseudoplasmodia, cell-free extracts appear to contain at least two species of glycogen phosphorylase, one of which is severely inhibited by glucose-1-phosphate and another which is only partially inhibited by this hexose-phosphate. In some cases, 5'-AMP partially overcomes the inhibition by glucose-1-phosphate. Data presented here also indicate the existence of two forms of glycogen synthetase, the total activity of which does not change during 10 hr of differentiation from aggregation to culmination. During this period there is a quantitative conversion of glucose-6-phosphate-independent enzyme activity to glucose-6-phosphate-dependent activity. It is suggested that one effect of 3',5'-AMP is closely related to enzymatic processes involved in the rapid conversion of glycogen to cell wall material and other end products accumulating during sorocarp construction.  相似文献   

15.
1. ADP, ATP and GDP inhibited the phosphotransferase activity, the release of cyclic nucleotides from RNA, of ribonuclease. No significant inhibition was elicited by pyrimidine 5'-nucleoside diphosphates, CDP and UDP. 2. Inhibition by ADP, AMP, adenosine, adenine, NAD and NADP was insignificant at the concentrations tested. Small inhibition was observed with high concentrations of AMP and only when soluble RNA was the substrate. 3. Inhibition by ADP was found to be ;uncompetitive'. 4. Results seem to indicate that at least for optimum inhibition the polyphosphate of the purine nucleoside is essential. They further suggest that the inhibitor acts by combining with the enzyme only when the enzyme is bound to the substrate.  相似文献   

16.
The leucine analogue 5',5',5',-trifluoroleucine (fluoroleucine) replaced leucine for repression of the isoleucine-valine biosynthetic enzymes in Salmonella typhimurium. In contrast, the analogue had no effect on derepression of the leucine biosynthetic enzymes in leucine auxotrophs grown on limiting amounts of leucine. The effect of fluoroleucine on repression appeared to be specific for leucine since derepression of the isoleucine-valine enzymes due to an isoleucine or valine limitation was not affected by the analogue. The prevention of derepression by fluoroleucine was probably due to repression and not to the formation of false proteins, since the analogue had no effect on the derepression of a number of enzymes unrelated to the isoleucine-valine pathway. Fluoroleucine was able to attach to leucine transfer ribonucleic acid (tRNA) as evidenced by the ability of the analogue to protect about 70% of leucine tRNA from oxidation by periodate. We propose that the differential effects of fluoroleucine on repression are due to differences in the ability of the analogue to bind to the various species of leucine tRNA.  相似文献   

17.
The addition of 5',5',5'-trifluoroleucine (fluoroleucine) to leucine auxotrophs of Salmonella typhimurium permitted protein but not ribonucleic acid (RNA) synthesis to continue after leucine depletion. The uncoupling of the formation of these macromolecules by fluoroleucine was apparent if RNA and protein synthesis was measured either by the uptake of radioactive precursors or by direct chemical determinations. The analogue did not appear to be an inhibitor of RNA formation, since it was as effective as leucine in permitting RNA synthesis in a leucine auxotroph upon the addition of small amounts of chloramphenicol. In contrast to these data, fluoroleucine allowed continued protein and RNA formation in a leucine auxotroph of Escherichia coli strain W. In addition, contrary to the results obtained with S. typhimurium, the analogue replaced leucine for repression of the leucine bio-synthetic enzymes as well as the isoleucine-valine enzymes. We propose that these ambivalent effects of fluoroleucine on repression and RNA and protein synthesis in the two strains are due to differences in the ability of the analogue to attach to the various species of leucine transfer RNA.  相似文献   

18.
Alternative 3′ and 5′ splice site (ss) events constitute a significant part of all alternative splicing events. These events were also found to be related to several aberrant splicing diseases. However, only few of the characteristics that distinguish these events from alternative cassette exons are known currently. In this study, we compared the characteristics of constitutive exons, alternative cassette exons, and alternative 3′ss and 5′ss exons. The results revealed that alternative 3′ss and 5′ss exons are an intermediate state between constitutive and alternative cassette exons, where the constitutive side resembles constitutive exons, and the alternative side resembles alternative cassette exons. The results also show that alternative 3′ss and 5′ss exons exhibit low levels of symmetry (frame-preserving), similar to constitutive exons, whereas the sequence between the two alternative splice sites shows high symmetry levels, similar to alternative cassette exons. In addition, flanking intronic conservation analysis revealed that exons whose alternative splice sites are at least nine nucleotides apart show a high conservation level, indicating intronic participation in the regulation of their splicing, whereas exons whose alternative splice sites are fewer than nine nucleotides apart show a low conservation level. Further examination of these exons, spanning seven vertebrate species, suggests an evolutionary model in which the alternative state is a derivative of an ancestral constitutive exon, where a mutation inside the exon or along the flanking intron resulted in the creation of a new splice site that competes with the original one, leading to alternative splice site selection. This model was validated experimentally on four exons, showing that they indeed originated from constitutive exons that acquired a new competing splice site during evolution.  相似文献   

19.
20.
The concentration of cyclic adenosine 3',5'-monophosphate (c-AMP) in Escherichia coli growing on different sources of carbon was studied. Cultures utilizing a source of carbon that supported growth relatively poorly had consistently higher concentrations of c-AMP than did cultures utilizing sugars that supported rapid growth. This relationship was also observed in strains defective in c-AMP phosphodiesterase and simultaneously resistant to catabolite repression; in such strains the c-AMP concentration was slightly higher for several sources of carbon tested. Cultures continued to synthesize c-AMP and secreted it into the medium, under conditions that brought about an inhibition of the intracellular accumulation of the cyclic nucleotide. Transient repression of the synthesis of beta-galactosidase was not associated with an abrupt decrease in the cellular concentration of c-AMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号