首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activation of purified urinary inactive kallikrein by an extract from the rat kidney cortex was investigated. The extract produced a dose-dependent activation of the inactive kallikrein and the optimum pH for this activation was 5.0. Marked depression of the activation was observed when the extract was pre-incubated with E-64, p-CMB and iodoacetate, but not with DFP, PMSF or pepstatin A. The molecular weight of the inactive kallikrein (Mr 44,000) was reduced to 38,000 by treatment with the extract, this molecular weight value being identical with that of urinary active kallikrein. These results indicate that the rat kidney cortex contains a protease catalyzing conversion of urinary inactive kallikrein into its active form, and that the protease has properties compatible with those of a thiol protease, but not of trypsin which has been used as a tool for the activation of urinary inactive kallikrein. The thiol protease is probably one of regulators of the kallikrein-kinin system in the kidney.  相似文献   

2.
In control rats urinary kallikrein excretion was positively correlated with inulin space and its both components, plasma volume and interstitial space. When the animals were infused with dextrose solution or dextrose albumin solution the distribution of water in extracellular space was altered and the correlations with urinary kallikrein excretion disappear. We conclude that the possible regulation of the components of the extracellular space on urinary kallikrein excretion has not the same importance when water distribution is altered, at least in acute situations.  相似文献   

3.
Rapid release of a small peptide from human urinary prokallikrein by trypsin resulted in activation of the prokallikrein. The peptide was identified as the propeptide of the kallikrein from its amino acid sequence. Two large disulfide-linked peptides were also produced very slowly, which accompanied the increase in kallikrein activity. The molecular weights of the two peptides were roughly estimated to be 18,000 and 25,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). N-Terminal amino acid sequences were determined as Ile-Val-Gly-Gly-Trp-Glu-Cys-Glu-Gln-His for the Mr 18,000 peptide and Gln-Ala-Asp-Glu-Asp-Tyr-Ser-His-Asp-Leu for the Mr 25,000 peptide. The N-terminal sequence of the Mr 18,000 peptide was identical to that of the kallikrein. Both peptides contained carbohydrate side chains as judged by staining with periodic acid-Schiff's base. The results indicate strongly that trypsin hydrolyses two specific bonds of human urinary prokallikrein selectively, which are cleaved upon physiological activation to yield the two-chain kallikrein.  相似文献   

4.
The relationship of urinary kallikrein excretion to urine volume, and to urinary sodium and potassium excretions was studied in normal rats during furosemide diuresis and superimposed injection of amiloride, a K+-sparing diuretic. Continuous infusion of furosemide increased urinary kallikrein, sodium and potassium excretions and the urine volume. Amiloride injection during furosemide diuresis caused further increase in diuresis and natriuresis, but a prompt decrease in urinary kallikrein excretion to basal level, and potassium excretion to below the basal level. The significant correlation of urinary kallikrein excretion to urinary potassium excretion, but not to urine volume and urinary sodium excretion after amiloride injection suggests that the major determinant of urinary kallikrein excretion is renal potassium secretion through a mechanism that is affected by amiloride.  相似文献   

5.
Hypertension and its related increase in cardiovascular morbidity in postmenopausal women is a major public health problem. The hypotensive property of urinary kallikrein has been described since 1909. Despite the controversy surrounding the effects of hormone replacement therapy on blood pressure regulation, its mechanisms remain incompletely understood, and no evidence has yet been provided for its effects on renal kallikrein excretion in postmenopausal women. In a double-blind, randomized study we examined the effects of hormone replacement therapy in the form of 2 mg 17-beta estradiol (ERT) or 2 mg 17-beta estradiol combined with continuous 5 mg medroxyprogesterone acetate (HRT) on urinary kallikrein excretion in postmenopausal women. Thirty-nine postmenopausal women collected their urine for 24 hours on two separate occasions 3 months apart. During the 3 month period women were randomized to placebo, ERT, or HRT. Urine samples were assayed for kallikrein activity, normalized to urine creatinine and expressed as mU/gm creatinine. Urinary kallikrein excretion increased significantly after 3 months in the ERT (p < 0.001) and HRT (p < 0.01) groups, and decreased non-significantly in the placebo group (p > 0.06). There were no significant blood pressure changes after 3 months of therapy. The findings demonstrate that hormone replacement therapy in the form of estrogen or estrogen combined with continuous medroxyprogesterone is effective in increasing urinary kallikrein excretion. Given that a decrease in kallikrein excretion may mark risk for development of hypertension, the findings of this study are of value in demonstrating a novel mechanism underlying cardioprotective properties of postmenopausal hormone replacement therapy in women without pre-existing coronary disease.  相似文献   

6.
A human colon kininogenase (kallikrein) was isolated by gel filtration on Sephacryl S-200 and affinity chromatography on Trasylolbound Sepharose, yielding a material with a specific activity of 1.3 U/mg (substrate: AcPheArgOEt). The molecular weight of the enzyme as estimated by gel filtration is approximately 70 000. After reduction with mercaptoethanol two bands were obtained in dodecyl sulfate eletrophoresis with molecular weights of 27 000 and 70 000. The bimolecular velocity constant for the inhibition by diisopropyl fluorophosphate was determined as 4 l x mol-1 x min-1. The preparation was characterized by immunological and enzymatic methods. Using the radioimmumoassay for human urinary kallikrein cross-reactivity and parallel binding curves were obtained. Kinin liberation from human high Mr-kininogen was totally inhibited by antibodies directed against human urinary kallikrein. Trasylol and diisopropyl fluorophosphate, but not by antibodies directed against human trypsin and plasma kallikrein. The effect on dog blood pressure was comparable to that obtained with human urinary kallikrein. The amino acid composition of human large intestine kallikrein is very similar to that of human urinary kallikrein.  相似文献   

7.
A tissue kallikrein was purified from rat skeletal muscle. Characterization of the enzyme showed that it has alpha-N-tosyl-L-arginine methylesterase activity and releases kinin from purified bovine low-Mr kininogen substrate. The pH optimum (9.0) of its esterase activity and the profile of inhibition by serine-proteinase inhibitors are identical with those of purified RUK (rat urinary kallikrein). Skeletal-muscle kallikrein also behaved identically with urinary kallikrein in a radioimmunoassay using a polyclonal anti-RUK antiserum. On Western-blot analysis, rat muscle kallikrein was recognized by affinity-purified monoclonal anti-kallikrein antibody at a position similar to that of RUK (Mr 38,000). Immunoreactive-kallikrein levels were measured in skeletal muscles which have different fibre types. The soleus, a slow-contracting muscle with high mitochondrial oxidative-enzyme activity, had higher kallikrein content than did the extensor digitorum longus or gastrocnemius, both fast-contracting muscles with low oxidative-enzyme activity. Streptozotocin-induced diabetes reduced muscle weights, but did not alter the level of kallikrein (pg/mg of protein) in skeletal muscle, suggesting that insulin is not a regulator of kallikrein in this tissue. Although the role of kallikrein in skeletal muscle is unknown, its localization and activity in relation to muscle functions and disease can now be studied.  相似文献   

8.
Antibody was raised against a synthetic undecapeptide (PS 11) which corresponds to the prosegment of the rat tissue kallikrein precursor. The potential to recognize rat urinary active or inactive kallikrein was assessed by an enzyme immunoassay method for PS 11, using beta-D-galactosidase as the labeling enzyme. The active kallikrein failed to compete with the enzyme-labeled PS 11 in binding to the antibody. The inactive kallikrein displaced the enzyme-labeled PS 11 in this enzyme immunoassay, and the displacement curve was in parallel with that of PS 11. These results indicate that rat urinary inactive kallikrein contains a prosequence recognized by the antibody to PS 11. This inactive kallikrein is probably a proform of tissue kallikrein.  相似文献   

9.
Urinary kallikrein excretion was positively correlated with urine flow and negatively with urinary osmolality, it was also positively correlated with inulin space and its both components, plasma volume and interstitial space. We postulate that increased extracellular fluid increases kallikrein excretion and kallikrein avoids water reabsorption leading to a decrease in the extracellular fluid.  相似文献   

10.
Rat spleen kallikrein was identified and purified by DEAE-cellulose and monoclonal antibody-affinity chromatography. The purified enzyme has Tos-Arg-OMe esterase activity and kinin-releasing activity from a purified low-molecular-weight kininogen substrate. In the direct radioimmunoassay for tissue kallikrein, the splenic enzyme displays parallelism with standard curves of rat urinary kallikrein. The pH profiles of the Tos-Arg-OMe esterase activities of spleen and urinary kallikrein were identical with optima at 9.0 Rat spleen kallikrein was inhibited strongly by aprotinin and affinity-purified kallikrein antibody and weakly by soybean trypsin inhibitor. The IC50 values were similar to those observed against rat urinary kallikrein. Neither the urinary nor the splenic enzyme was inhibited by lima bean trypsin inhibitor or preimmune serum immunoglobulins. Spleen kallikrein was labeled with [14]diisopropylphosphorofluoridate and visualized by fluorography on a sodium dodecyl sulfate-polyacrylamide gel. The electrophoretic mobility of the splenic enzyme was indistinguishable from that of urinary kallikrein A with an estimated Mr of approx. 38 000. With Western blot analyses using a rabbit anti-kallikrein antibody followed by 125I-labeled protein A binding, the spleen and urinary kallikreins were again visualized at identical positions by autoradiography. The data show that there is a rat splenic tissue kallikrein which is indistinguishable from a renal kallikrein with respect to physicochemical properties, immunological character and susceptibility to inhibitors.  相似文献   

11.
The purpose of this study was to investigate the effect of norepinephrine and vasopressin on urinary kallikrein excretion in the rat. Two studies were undertaken: (a) acute experiments in which the rats were infused with 30% dextrose in water with the addition of norepinephrine or vasopressin, (b) chronic experiments in which the drugs were infused during seven days through an osmotic minipump. In acute experiments, urinary kallikrein excretion increased without modification in urinary flow and glomerular filtration rate. In chronic experiments, urinary kallikrein excretion was not modified in norepinephrine-treated rats and decreased in vasopressin-infused animals. This decrease followed the modifications of the urine flow. In chronic experiments the dextrose infusion increased urinary kallikrein excretion. In all the groups studied a positive correlation between urine flow and urinary kallikrein excretion was observed. It is concluded that norepinephrine and vasopressin are important stimulators of the urinary kallikrein excretion only in those circumstances where it is necessary to eliminate an excess of water.  相似文献   

12.
An antibody against rat kallikrein was produced in rabbits and its localization was studied in various organs of the rat to confirm its specificity. The distribution of immunoreactive kallikrein was studied in rat ureter by use of immunochemical techniques. Ureteral tissue was fixed in Zamboni's-glutaraldehyde fixative and immunostained with indirect immunofluorescence and the peroxidase-antiperoxidase (PAP) method for light and electron microscopy. Preabsorption of the primary polyclonal antiserum with purified rat urinary kallikrein and substitution with normal serum were used as controls. By light microscopy, kallikrein was localized in the lamina propria and in the adventitial connective tissue surrounding the entire ureter. Immunoelectron microscopy confirmed this immunolocalization. Immunoreactive kallikrein was concentrated in fibroblasts of connective tissue and was not present in collagen fibers. Immunoreactivity was associated with the Golgi complex, free polyribosomes, and rough endoplasmic reticulum. No immunostaining was observed in other subcellular components of fibroblasts.  相似文献   

13.
This is the first report to demonstrate that chloro(N alpha-p-tosyllysyl)methane (TosLys-CH2Cl) inhibits mammalian glandular kallikrein activities. The inhibitory effect of TosLysCH2Cl on purified rat urinary kallikrein was carried out with three assay methods: 1) Tos-Arg-OMe hydrolysis activity measured by a radiochemical method; 2) kininogenase activity using purified bovine low molecular weight kininogen as substrate and the released kinins subsequently measured by radioimmunoassay; 3) bioassay using isolated rat uterus preparation. Purified rat urinary kallikrein was inhibited by TolLysCH2Cl in a dose and time-dependent manner with all three methods used. The inhibition of purified human urinary kallikrein esterase and kinin-releasing activities were also demonstrated. The results indicate that TosLysCH2Cl inactivates kallikrein activity and support the notion that reactive histidine residue(s) participates in the active center of Kallikrein for catalysis.  相似文献   

14.
We studied the inhibition of tissue kallikrein by protein C inhibitor (PCI), a relatively unspecific heparin-dependent serine protease inhibitor present in plasma and urine. PCI inhibited the amidolytic activity (cleavage of H-D-valyl-L-leucyl-arginine-p-nitroaniline) of urinary kallikrein with an apparent second order rate constant of 2.3 x 10(4) M-1 s-1 and formed stable complexes (85 kDa) with urinary kallikrein as judged from silver-stained sodium dodecyl sulfate-polyacrylamide gels. Complex formation was time-dependent and was paralleled by a decrease in the intensity of the main PCI protein band (Mr = 57,000) and an increase in the intensity of the lower Mr (54,000) PCI form (cleaved inhibitor). Heparin interfered with the inhibition of tissue kallikrein by PCI and with the formation of tissue kallikrein-PCI complexes in a dose-dependent fashion and completely abolished PCI-tissue kallikrein interaction at 300 micrograms/ml. This is in contrast to findings on the interaction of PCI with all other target proteases studied so far (i.e. stimulation of inhibition by heparin) but is similar to the reaction pattern of 125I-labeled tissue kallikrein with so called kallikrein binding protein described in serum and other systems. To study a possible relationship between PCI and this kallikrein binding protein we incubated 125I-labeled urinary kallikrein in serum and in PCI-immunodepleted serum in the absence and presence of heparin and analyzed complex formation using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In normal serum, formed complexes co-migrated with complexes of purified PCI and 125I-kallikrein and were less intense in the presence of heparin. No complex formation at all was seen in PCI-depleted serum. Our data indicate that PCI may be a physiologically important endogenous inhibitor of tissue kallikrein and provide evidence that PCI may be identical to the previously described kallikrein binding protein.  相似文献   

15.
Fab fragments from two new monospecific anti-human tissue kallikrein sera were examined for their capacity to inhibit the functional activities of purified human urinary kallikrein and purified human pancreatic kallikrein. Fragments from a new anti-urinary kallikrein serum and from an anti-pancreatic kallikrein serum yielded mixed inhibition of kinin-generating activity and minimal inhibition of esterolytic activity. In contrast to the previously described "active site directed" anti-urinary kallikrein, these new antisera demonstrated little specificity for epitopes near the enzymatic site of urinary or pancreatic kallikrein. When used to localize kallikrein antigen in human pancreas obtained at surgery, IgG fractions of the new anti-kallikrein sera yielded moderate acinar and ductal staining in the absence of pretreatment of the tissue with trypsin or pronase. Short incubation with 0.125 mg/ml of either enzyme permitted the discrete localization of islet beta cell kallikrein antigen, while increased pronase concentrations decreased kallikrein antigen in both islets and exocrine tissue and led to islet destruction. Both antibody specificity and tissue preparation influence kallikrein localization in human pancreas.  相似文献   

16.
The first protein-binding assay is described for the direct determination of kallikrein in rat urine. Isolation of urinary kallikrein and preparation of its specific antibody have been previously described. Outlined here are the methods for 3H-labelling of kallikrein, for isolation of 3H-labelled immunoreactive enzyme, and for separation of free and antibody-bound kallikrein with the aid of double antibody. Assay and equilibrium conditions were characterized and a protocol is presented for the measurement of kallikrein concentration. The direct assay is sensitive, accurate and it correlates well (r = 0.81) with a functional assay. The assay may hold promise to determine catalytically active and inactive enzyme in urine, tissues and biological fluids.  相似文献   

17.
CDNA clones for human kallikrein have been identified in a cDNA library constructed from mRNA of human salivary gland. The entire coding sequence for preprokallikrein and for the 5'- and 3'-untranslated regions were isolated by using a mixture of oligonucleotides corresponding to amino acids 51-56 of human urinary kallikrein and one oligonucleotide corresponding to amino acids 233-238 of human pancreatic kallikrein. The DNA sequence proved that, with the exception of two amino acid exchanges, kallikrein of the human salivary gland is identical with pancreatic kallikrein. Salivary gland and renal kallikrein was expressed in Escherichia coli from plasmid pKK223-3 under the control of the tac promoter. The protein was identified by Western-blot analysis and by demonstration of its specific proteolytic activity.  相似文献   

18.
Nucleotide sequence of cloned cDNA for human pancreatic kallikrein   总被引:6,自引:0,他引:6  
Cloned cDNA sequences for human pancreatic kallikrein have been isolated and determined by molecular cloning and sequence analysis. The identity between human pancreatic and urinary kallikreins is indicated by the complete coincidence between the amino acid sequence deduced from the cloned cDNA sequence and that reported partially for urinary kallikrein. The active enzyme form of the human pancreatic kallikrein consists of 238 amino acids and is preceded by a signal peptide and a profragment of 24 amino acids. A sequence comparison of this with other mammalian kallikreins indicates that key amino acid residues required for both serine protease activity and kallikrein-like cleavage specificity are retained in the human sequence, and residues corresponding to some external loops of the kallikrein diverge from other kallikreins. Analyses by RNA blot hybridization, primer extension, and S1 nuclease mapping indicate that the pancreatic kallikrein mRNA is also expressed in the kidney and sublingual gland, suggesting the active synthesis of urinary kallikrein in these tissues. Furthermore, the tissue-specific regulation of the expression of the members of the human kallikrein gene family has been discussed.  相似文献   

19.
A panel of six mouse monoclonal antibodies (IgG1) has been prepared against purified rat urinary kallikrein (EC 3.4.21.35) and characterized. In radioimmunoassay, the antibody titres of ascitic fluid giving 50% binding to 125I-kallikrein range from 1:2 X 10(3) to 1:1 X 10(6). Antibodies from four of the clones show no cross-reactivity with human urinary kallikrein, rat urinary esterase A or tonin. However, antibodies from a fifth clone cross-react with tonin and, from a sixth, with both urinary esterase A and tonin. Three of the kallikrein affinity-purified monoclonal antibodies inhibited, whereas one of the antibodies stimulated, kallikrein activity. Tissue kallikrein from rat submandibular-gland and pancreatic extracts and urine were labelled with [14C]di-isopropyl phosphofluoridate, immunoprecipitated with each of the six monoclonal antibodies and identified to be 38 kDa proteins, similar in size to purified rat urinary kallikrein. Western-blot analysis shows that 125I-labelled kallikrein monoclonal antibodies (V4D11) bind directly to a 38 kDa protein in submandibular-gland and pancreatic extracts and urine. Cell-free translation products of submandibular-gland polyadenylylated[poly(A)+]mRNA were immunoprecipitated with affinity-purified sheep anti-kallikrein antibodies and three monoclonal antibodies (V4D11, V4G6 and V1C3). Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of these immunoprecipitates revealed that two kallikrein precursors with Mr values of 37 000 and 35 000 are encoded by submandibular-gland mRNA. The third monoclonal antibody, V1C3, which binds to active kallikrein, did not recognize either precursor form. Collectively, the data show that these monoclonal antibodies comprise a set of powerful and specific reagents for studies of tissue kallikreins.  相似文献   

20.
24-h urinary kallikrein excretion in male Sprague-Dawley rats was measured before and after 14 days with 100 mM potassium chloride as drinking fluid ad libitum. Urinary kallikrein excretion increased in K+-adaptation. The increase was greater when the rats were given distilled water rather than 100 mM sodium chloride to drink prior to the potassium chloride. The urinary potassium excretion increased in all rats studied. The urinary sodium excretion, urine volume and fluid intake increased significantly in rats that had distilled water to drink prior to the KCl. In marked contrast, when rats were offered NaCl prior to KCl, the urinary sodium excretion was unaffected while the urine volume and fluid intake decreased significantly. This study shows that prior NaCl intake abolishes the natriuretic and diuretic effects of KCl load and only suppresses the increase in urinary kallikrein excretion. This suggests that K+ secretory activity at the distal tubules is the major determinant of the release of renal kallikrein in the rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号