首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The S1 secondary alkylsulphohydrolase of the detergent-degrading micro-organism, Pseudomonas C12B, was separated from other alkylsulphohydrolases and purified to homogeneity. Under the experimental conditions used the enzyme completely hydrolysed d-octan-2-yl sulphate (d-1-methylheptyl sulphate), but showed no activity towards the corresponding l-isomer. Additional evidence has been obtained to indicate that it is probably optically stereospecific for d-secondary alkyl sulphate esters with the ester sulphate group at C-2 and with a chain length of at least seven carbon atoms. Enzyme activity towards racemic samples of heptan-2-yl sulphate (1-methylhexyl sulphate), octan-2-yl sulphate and decan-2-yl sulphate (1-methylnonyl sulphate) increased with increasing chain length. l-Octan-2-yl sulphate is a competitive inhibitor of the enzyme, as are certain primary alkyl sulphates and primary alkanesulphonates. Inhibition by each of the last two types of compounds is characteristic of the behaviour of an homologous series. Inhibition increases with increasing chain length and plots of log K(i) values against the number of carbon atoms in each alkyl chain show the expected linear relationship. A crude preparation of the S2 secondary alkylsulphohydrolase was used to show that this particular enzyme hydrolyses l-octan-2-yl sulphate, but is probably inactive towards the corresponding d-isomer. The similarity of the S1 and S2 enzymes to the CS2 and CS1 enzymes respectively of Comamonas terrigena was established, and some comments have been made on the possible roles of these and other alkylsulphohydrolases in the biodegradation of detergents.  相似文献   

2.
Previously, we demonstrated that sog9 cells, a murine L cell mutant, are deficient in the expression of C4ST (chondroitin 4-O-sulfotransferase)-1 and that they synthesize fewer and shorter CS (chondroitin sulfate) chains. These results suggested that C4ST-1 regulates not only 4-O-sulfation of CS, but also the length and amount of CS chains; however, the mechanism remains unclear. In the present study, we have demonstrated that C4ST-1 regulates the chain length and amount of CS in co-operation with ChGn-2 (chondroitin N-acetylgalactosaminyltransferase 2). Overexpression of ChGn-2 increased the length and amount of CS chains in L cells, but not in sog9 mutant cells. Knockdown of ChGn-2 resulted in a decrease in the amount of CS in L cells in a manner proportional to ChGn-2 expression levels, whereas the introduction of mutated C4ST-1 or ChGn-2 lacking enzyme activity failed to increase the amount of CS. Furthermore, the non-reducing terminal 4-O-sulfation of N-acetylgalactosamine residues facilitated the elongation of CS chains by chondroitin polymerase consisting of chondroitin synthase-1 and chondroitin-polymerizing factor. Overall, these results suggest that the chain length of CS is regulated by C4ST-1 and ChGn-2 and that the enzymatic activities of these proteins play a critical role in CS elongation.  相似文献   

3.
Human sulphamate sulphohydrolase was purified at least 20,000-fold to homogeneity from liver with a three-step four-column procedure, which consisted of a concanavalin A-Sepharose/Blue A agarose coupled step, and Bio-Gel HT step and then a CM-Sepharose step. The procedure was also used to purify enzyme from kidney and placenta. The subunit Mr of liver, kidney and placenta sulphamate sulphohydrolase was assessed to be 56,000 by using SDS/polacrylamide-gel electrophoresis. The native protein Mr of enzyme from all three tissue sources was assessed by gel-permeation chromatography to be approx. 120,000 on Sephacryl S-300 and 100,000 on Fractogel TSK. It is probable that the native enzyme results from dimerization of subunits. Kinetic parameters (km and kcat.) of human liver sulphamate sulphohydrolase were determined with a variety of substrates matching structural aspects of the physiological substrates in vivo, namely heparin and heparan sulphate. More structurally complex substrates, in which several aspects of the aglycone structure of the natural substrate were maintained, are turned over up to 372000 times faster than the monosaccharide substrate 2-sulphaminoglucosamine. Aglycone structures that influence substrate binding and/or enzyme activity were penultimate-residue C-6 carboxy and C-2 sulphate ester groups and a post-penultimate 2-sulphaminoglucosamine residue. The C-4 hydroxy group of the 2-sulphaminoglucosamine under enzymic attack is involved in binding of substrate to enzyme. The presence of C-6 sulphate ester on the non-reducing end 2-sulphaminoglucosamine stimulates sulphamate bond hydrolysis and substrate affinity if the adjacent monosaccharide residue is idose or 2-sulphoidose, but strongly inhibits hydrolysis if the adjacent monosaccharide residue is iduronic acid. Sulphamate sulphohydrolase is an exoenzyme, since activity toward internal sulphamate bonds was not detected. The effect of incubation pH on enzyme activity towards the variety of substrates evaluated was complex and dependent on substrate aglycone structure. The presence of aglycone C-2 sulphate ester and aglycone C-6 carboxy groups and C-6 sulphate ester groups on the 2-sulphaminoglucosamine residue under attack considerably affect the pH response. Structurally complex substrates had two pH optima. Incubation temperature and buffer ionic strength markedly influenced pH optima and enzyme activity. Cu2+ and SO4(2-)ions are potent inhibitors of enzyme activity.  相似文献   

4.
The P1 primary alkylsulphatase of Pseudomonas C12B was purified 1500-fold to homogeneity by a combination of streptomycin sulphate precipitation of nucleic acids, (NH4)2SO4 fractionation and chromatography on columns of DEAE-cellulose, Sephacryl S-300 and butyl-agarose. The protein was tetrameric with an Mr of 181000-193000, and exhibited maximum activity at pH 6.1. Primary alkyl sulphates of carbon-chain length C1-C5 or above C14 were not substrates, but the intermediate homologues were shown to be substrates, either by direct assay (C6-C9 and C12) or by gel zymography (C10, C11, C13 and C14). Increasing the chain length from C6 to C12 led to diminishing Km. Values of delta G0' for binding substrates to enzyme were dependent linearly on chain length, indicating high dependence on hydrophobic interactions. Vmax./Km values increased with increasing chain length. Inhibition by alk-2-yl sulphates and alkane-sulphonates was competitive and showed a similar dependence on hydrophobic binding. The P1 enzyme was active towards several aryl sulphates, including o-, m- and p-chlorophenyl sulphates, 2,4-dichlorophenyl sulphate, o-, m- and p-methoxyphenyl sulphates, m- and p-hydroxyphenyl sulphates and p-nitrophenyl sulphate, but excluding bis-(p-nitrophenyl) sulphate and the O-sulphate esters of tyrosine, nitrocatechol and phenol. The arylsulphatase activity was weak compared with alkylsulphatase activity, and it was distinguishable from the de-repressible arylsulphatase activity of Pseudomonas C12B reported previously. Comparison of the P1 enzyme with the inducible P2 alkylsulphatase of this organism, and with the Crag herbicide sulphatase of Pseudomonas putida, showed that, although there are certain similarities between any two of the three enzymes, very few properties are common to all three.  相似文献   

5.
The P2 primary alkylsulphohydrolase of the soil bacterium Pseudomonas C12B was purified to homogeneity (200-250-fold) by column chromatography on DEAE-cellulose, Sephadex G-100 and butyl-agarose. The intact protein is a dimer with a mol. wt. of 160 000. Activity towards primary alkyl sulphate esters was maximal at pH 8.3, varied little in the range pH 7.8-8.7, but decreased sharply at higher pH. For a homologous series of primary alkyl sulphate substrates (C6-C12), logKm decreased linearly with increasing chain length, corresponding to a contribution to the free energy of association between enzyme and substrate of -2.5kJ/mol for each additional CH2 group in the alkyl chain. logKi for the competitive inhibition by secondary alkyl 2-sulphate esters followed a similar pattern (-2.4kJ/mol for each additional CH2 group) except that only n-1 carbon atoms effectively participate in hydrophobic bonding, implying that the C-1 methyl group is not involved. logKi values for inhibition primary alkanesulphonates also depended linearly on chain length but with a diminished gradient, indicating a free-energy increment of -1.2kJ/mol per additional CH2 group. The collective results showed the presence of a hydrophobic site on the enzyme capable of accomodating an alkyl chain of considerable length. Cationic structures (in the form of arginine, lysine or histidine), whose presence might be expected for binding the anionic sulphate group, were not detectable at the active site.  相似文献   

6.
Dextran glucosidase from Streptococcus mutans (SmDG) catalyzes the hydrolysis of an α-1,6-glucosidic linkage at the nonreducing end of isomaltooligosaccharides and dextran. This enzyme has an Asp-194 catalytic nucleophile and two catalytically unrelated Cys residues, Cys-129 and Cys-532. Cys-free SmDG was constructed by replacement with Ser (C129S/C532S (2CS), the activity of which was the same as that of the wild type, SmDG). The nucleophile mutant of 2CS was generated by substitution of Asp-194 with Cys (D194C-2CS). The hydrolytic activity of D194C-2CS was 8.1 × 10−4 % of 2CS. KI-associated oxidation of D194C-2CS increased the activity up to 0.27% of 2CS, which was 330 times higher than D194C-2CS. Peptide-mapping mass analysis of the oxidized D194C-2CS (Ox-D194C-2CS) revealed that Cys-194 was converted into cysteine sulfinate. Ox-D194C-2CS and 2CS shared the same properties (optimum pH, pI, and substrate specificity), whereas Ox-D194C-2CS had much higher transglucosylation activity than 2CS. This is the first study indicating that a more acidic nucleophile (-SOO) enhances transglycosylation. The introduction of cysteine sulfinate as a catalytic nucleophile could be a novel approach to enhance transglycosylation.  相似文献   

7.
Cholesteryl oleate, selectively deuterated at various positions along the acyl chain, has been incorporated into fresh human serum low-density lipoprotein (LDL2). Temperature-dependent 2H-NMR spectra were recorded between 15 and 45 degrees C. For deuterons at C-2' and C-5' of the acyl chain, two 2H-NMR spectral components, a broad and a narrow signal, are observed. This is interpreted as reflecting the coexistence of two cholesteryl ester regions in the LDL2 core which possess different degrees of order. The C-2H bond order parameters, SCD, are approx. 0.12-0.20 for the more ordered region and approx. 0.04-0.06 for the less ordered region. Longitudinal relaxation times, T1, of deuterated cholesteryl oleate are found to increase between C-8' and the terminal -C2H3 group, which is consistent with an increased rate of chain motion toward the free ends of the ester acyl chains.  相似文献   

8.
The subcomponents C1r and C1s and their activated forms C-1r and C-1s were each found to have mol.wts. in dissociating solvents of about 83000. The amino acid compositions of each were similar, but there were significant differences in the monosaccharide analyses of subcomponents C1r and C1s, whether activated or not. Subcomponents C1r and C1s have only one polypeptide chain, but subcomponents C-1r and C-1s each contain two peptide chains of approx. mol.wts. 56000 ("a" chain) and 27000 ("b" chain). The amino acid analyses of the "a" chains from each activated subcomponent are similar, as are those of the "b" chains. The N-terminal amino acid sequence of 29 residues of the C-1s "a" chain was determined, but the C-1r "a" chain has blocked N-terminal amino acid. The 20 N-terminal residues of both "b" chains are similar, but not identical, and both show obvious homology with other serine proteinases. The difference in polysaccharide content of the subcomponents C-1r and C-1s is most marked in the 'b' chains. When tested on synthetic amino acid esters, subcomponent C-1r hydrolysed both lysine and tyrosine ester bonds, but subcomponent C-1r did not hydrolyse any amino acid esters tested nor any protein substrate except subcomponent C1s. The lysine esterase activity of subcomponent C1s provides a rapid and sensitive assay of the subcomponent.  相似文献   

9.
We have demonstrated a defect in expression of chondroitin 4-O-sulfotransferase-1 (C4ST-1) in murine sog9 cells, which are poorly sensitive to infection by herpes simplex virus type 1 (HSV-1). Sog9 cells were previously isolated as CS-deficient cells from gro2C cells, which were partially resistant to HSV-1 infection and defective in the expression of heparan sulfate (HS) because of a splice site mutation in the EXT1 gene encoding the HS-synthesizing enzyme. Here we detected a small amount of CS chains in sog9 cells with a drastic decrease in 4-O-sulfation compared with the parental gro2C cells. RT-PCR revealed that sog9 cells had a defect in the expression of C4ST-1 in addition to EXT1. Gel filtration analysis showed that the decrease in the amount of CS in sog9 cells was the result of a reduction in the length of CS chains. Transfer of C4ST-1 cDNA into sog9 cells (sog9-C4ST-1) restored 4-O-sulfation and amount of CS, verifying that sog9 cells had a specific defect in C4ST-1. Furthermore, the expression of C4ST-1 rendered sog9 cells significantly more susceptible to HSV-1 infection, suggesting that CS modified by C4ST-1 is sufficient for the binding and infectivity of HSV-1. Analysis of CS chains of gro2C and sog9-C4ST-1 cells revealed a considerable proportion of the E disaccharide unit, consistent with our recent finding that this unit is an essential component of the HSV receptor. These results suggest that C4ST-1 regulates the expression of the E disaccharide unit and the length of CS chains, the features that facilitate infection of cells by HSV-1.  相似文献   

10.
Hydrated multibilayers of 1-palmitoyl-2-monobromopalmitoyl-sn-glycero-3-phosphorylcholine (BrDPPC), where the 2-chain is brominated at either the C-9 or C-10 position, have been studied by low and wide angle X-ray diffraction methods. Oriented and unoriented samples were investigated. The long spacing was observed over the temperature interval -15 degrees C to 80 degrees C. A monotonic increase from approx. 50 A to approx. 62 A (28 wt. % H2O) occurred with decreasing temperature. The BrDPPC showed no evidence of a sharp gel-to-liquid crystal phase transition. Wide angle scattering showed a diffuse peak corresponding to (4.5 A)-1. Differential scanning calorimetry measurements for hydrated liposomes (50 wt. % H2O) also showed no evidence for a phase transition (-40 less than or equal to T less than or equal to 60 degrees C). These results suggest a low temperature amorphous (glass) state for the acyl side chains of BrDPPC. Monolayer film properties of monobrominated stearic acid also reflect a chain disordering effect occurring upon midchain substitution.  相似文献   

11.
1. An enzyme system that catalyses the sulphation of p-nitrophenol, cholesterol, alpha-ecdysone, beta-sitosterol, dehydroepiandrosterone, oestrone and four other steroids of plant and insect origin was obtained from the soluble fraction of southern-armyworm gut tissues. 2. The enzyme system required ATP and inorganic sulphate, and activity was slightly enhanced in the presence of GSH. 3. The properties of this enzyme system with respect to pH, temperature, substrate and protein concentrations and various cofactors and reagents were studied. At -23 degrees C the enzyme preparation could be stored for 2 weeks without drastic loss of activity. At the end of storage for 1 month the loss of activity was approx. 21%. 4. The possible involvement of this enzyme system in insect endocrine control is discussed.  相似文献   

12.
The poly(ADP-ribose) polymerase activity of wild-type mouse L cells and of Balb/C-3T3 mouse fibroblasts remained relatively unchanged (at approx. 400 nmol substrate utilized/mg DNA per h) in actively-growing cells incubated at 34 degrees C or at 38.5 degrees C for at least 72 h. A similar result was obtained with the following temperature-sensitive cells grown at the permissive temperature (34 degrees C): ts A1S9 mouse L cells, ts C1 mouse L cells and Balb/C-3T3 ts mouse fibroblasts. The poly(ADP-ribose) polymerase activity of the temperature-sensitive cells was little affected during incubation for 20-24 h at the non-permissive temperature of 38.5 degrees C under which conditions temperature-inactivation of DNA replication was complete. Thereafter, this enzyme activity was found to increase some 2-fold, at a time when normal semi-conservative DNA synthesis was totally suppressed and replaced by repair replication (Sheinin, R. and Guttman, S. (1977) Biochim. Biophys. Acta 479, 105-118; Sheinin, R., Dardick, I. and Doane, F.W. (1980) Exp. Cell. Res., in the press).  相似文献   

13.
The sulphation patterns of glycosaminoglycan (GAG) chains are decisive for the biological activity of their proteoglycan (PG) templates for sugar chain polymerization and sulphation. The amounts and positions of sulphate groups are often determined by HPLC analysis of disaccharides resulting from enzymatic degradation of the GAG chains. While heparan sulphate (HS) and heparin are specifically degraded by heparitinases, chondroitinases not only degrade chondroitin sulphate (CS) and dermatan sulphate (DS), but also the protein-free and unsulphated GAG hyaluronan (HA). Thus, disaccharide preparations derived by chondroitinase degradation may be contaminated by HA disaccharides. The latter will often comigrate in HPLC chromatograms with unsulphated disaccharides derived from CS. We have investigated how variation of pH, amount of enzyme, and incubation time affects disaccharide formation from CS and HA GAG chains. This allowed us to establish conditions where chondroitinase degrades CS completely for quantification of all the resulting disaccharides, with negligible degradation of HA, allowing subsequent HA analysis. In addition, we present simple methodology for disaccharide analysis of small amounts of CS attached to a hybrid PG carrying mostly HS after immune isolation. Both methods are applicable to small amounts of GAGs synthesized by polarized epithelial cells cultured on permeable supports.  相似文献   

14.
Bacterial isolates Comamonas terrigena N3H (from soil contaminated with crude oil) and C. testosteroni (isolated from the sludge of a wastewater treatment plant), exhibit much higher total catalase activity than the same species from laboratory collection cultures. Electrophoretic resolution of catalases revealed only one corresponding band in cell-free extracts of both C. testosteroni cultures. Isolates of C. terrigena N3H exhibited catalase-1 and catalase-2 activity, whereas in the collection culture C. terrigena ATCC 8461 only catalase-1 was detected. The environmental isolates exhibited much higher resistance to exogenous H2O2 (20, 40 mmol/L) than collection cultures, mainly in the middle and late exponential growth phases. The stepwise H2O2-adapted culture of C. terrigena N3H, which was more resistant to oxidative stress than the original isolate, exhibited an increase of catalase and peroxidase activity represented by catalase-1. Pretreatment of cells with 0.5 mmol/L H2O2 followed by an application of the oxidative agent in toxic concentrations (up to 40 mmol/L) increased the rate of cell survival in the original isolate, but not in the H2O2-adapted variant. The protection of bacteria caused by such pretreatment corresponded with stimulation of catalase activity in pretreated culture.  相似文献   

15.
16.
1. An enzyme (EC 2.8.2.1) that catalyses the transfer of sulphate from adenosine 3'-phosphate 5'-sulphatophosphate to phenols was purified approx. 2000-fold from male rat livers. 2. The purified preparation did not catalyse the sulphurylation of dehydroepiandrosterone, butan-1-ol, l-tyrosine methyl ester, 1-naphthylamine or serotonin. 3. At pH8.0 and 37 degrees C the K(m) values of the enzyme for p-nitrophenol and adenosine 3'-phosphate 5'-sulphatophosphate are 51 and 14mum respectively. The K(m) value for either substrate is independent of the concentration of the other. 4. The sulphurylation of phenol is inhibited by thiol compounds and glutathione at a concentration of 3mm caused an approx. 50% decrease in enzyme activity. 5. The K(m) of the enzyme for adenosine 3'-phosphate 5'-sulphatophosphate is unaffected by the presence of added glutathione but at a concentration of 5mm-glutathione the K(m) of the enzyme for its phenolic substrate is decreased.  相似文献   

17.
A phosphatidylinositol-specific phospholipase C from Staphylococcus aureus was purified by a three-step procedure. The specific activity of the purified enzyme was approx. 6000 times that of the culture supernatant, with an overall recovery of approx. 10%. Estimation of the molecular weight by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and by gel filtration gave values of 33000 and 20000 respectively. A thiol group appears to be necessary for the activity of the enzyme. The purified enzyme had no detectable delta-haemolytic activity and was unable to hydrolyse S. aureus phospholipids. Phosphatidyl-inositol in erythrocyte 'ghosts' was readily hydrolysed by the purified phospholipase C. However, in contrast with our previous preliminary observations, phosphatidylinositol in intact erythrocytes was not significantly hydrolysed. These results suggest that at least 75-80% of the phosphatidylinositol is located at the inner leaflet of the membrane.  相似文献   

18.
Primary alkanesulphonates were shown to serve as non-metabolizable (gratuitous) inducers of the P2 primary alkylsulphohydrolase enzyme in resting cell suspensions of Pseudomonas C12B. The effects of increasing concentrations of inducer on the production of enzyme were complex and suggestive of a multiphasic phenomenon. However, it was possible to determine Kinducer constants (analogous to Km or Ki) for alkanesulphonates of chain length from C7 to c12. these decreased with increasing chain length in a manner characteristic of an homologous series. Primary alkyl sulphates also served as good inducers of alkylsulphohydrolase, but valid kinetic values could not be obtained because these esters are good substrates for the enzyme and are therefore appreciably hydrolysed during the induction period. Small amounts of enzyme were also produced when cyprinol sulphate, dodecyltriethoxy sulphate C12H23-[O-CH2-CH2]3-O-SO3-Na+), Crag herbicide and some secondary alkyl sulphates were tested as inducers.  相似文献   

19.
A series of N-alkylmaleimides varying in chain length from N-ethyl up to and including N-heptyl, was shown to effectively inactivate Haemophilus influenzae D-lactate dehydrogenase at pH 7.0 and 25 degrees C in processes proposed to involve covalent modification of cysteine residues. The inactivation proceeded through an initial reversible binding of maleimides facilitated by nonpolar interactions with a hydrophobic region of the enzyme. Subsequent irreversible inactivation of the enzyme indicated the modification of a fast-reacting group leading to approx. 80% loss of enzyme activity followed by a second slower-reacting modification process. At saturating concentrations of maleimides, the second inactivation process exhibited a common pseudo-first-order rate constant of 0.6 min-1. The initial reversible binding of N-alkylmaleimides resulted in inhibition of the enzyme that was competitive with respect to NADH. Positive chain length effects were observed in the second-order rate constants for inactivation and in the 6-fold better binding of N-heptylmaleimide as compared to that for N-ethylmaleimide. It is suggested that the nonpolar interactions stabilizing the 1,4-dihydronicotinamide moiety of the reduced coenzyme also facilitate the initial binding of N-alkylmaleimides.  相似文献   

20.
A series of new taxoids modified at the C-3', C-3'N, C-10, C-2 and C-7 positions has been designed, synthesized and evaluated for their potency to induce NO and TNF production by peritoneal murine macrophages (Mphi) from LPS-responsive C3H/HeN and LPS-hyporesponsive C3H/HeJ strains and human blood cells, and for their ability to inhibit the growth of Mphi-like cell lines J774.1 and J7.DEF3. The SAR-study has shown that the nature of the substituents at these positions have critical effect on the induction of TNF and NO production by Mphi. Positions C-3' and C-10 are the most flexible and an intriguing effect of the length of the substituents at the C-10 position is observed for taxoids bearing a straight chain alkanoyl moiety. An aromatic group at the C-3'N and C-2 positions is required for the activity, while only hydroxyl or acetyl substituents seem to be tolerated at the C-7 position. The natural stereochemistry in the C-13 isoserine side chain of the taxoids is an absolute requirement for macrophage activation. It has also been clearly shown that there is no correlation between the ability of the taxoids to induce TNF/NO production in C3H/HeN Mphi and the cytotoxicity against Mphi-like cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号