首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neonatal female and male rats were exposed to airborne manganese sulfate (MnSO4) during gestation and postnatal d 1–18. Three weeks post-exposure, rats were killed and we assessed biochemical end points indicative of oxidative stress in five brain regions: cerebellum, hippocampus, hypothalamus, olfactory bulb, and striatum. Glutamine synthetase (GS) protein levels, metallothionein (MT) and GS mRNA levels, and total glutathione (GSH) levels were determined for all five regions. Overall, there was a statistically significant effect of manganese exposure on decreasing brain GS protein levels (p=0.0061), although only the highest dose of manganese (1 mg Mn/m3) caused a significant increase in GS messenger RNA (mRNA) in both the hypothalamus and olfactory bulb of male rats and a significant decrease in GS mRNA in the striatum of female rats. This highest dose of manganese had no effect on MT mRNA in either males or females; however, the lowest dose (0.05 mg Mn/m3) decreased MT mRNA in the hippocampus, hypothalamus, and striatum in males. The median dose (0.5 mg Mn/m3) led to decreased MT mRNA in the hippocampus and hypothalamus of the males and olfactory bulb of the females. Overall, manganese exposure did not affect total GSH levels, a finding that is contrary to those in our previous studies. Only the cerebellum of manganese-exposed young male rats showed a significant reduction (p<0.05) in total GSH levels compared to control levels. These data reveal that alterations in biomarkers of oxidative stress resulting from in utero and neonatal exposures of airborne managanese remain despite 3 wk of recovery; however, it is important to note that the doses of manganese utilized represent levels that are 100-fold to a 1000-fold higher than the inhalation reference concentration set by the US Environmental Protection Agency.  相似文献   

2.
Eight-week-old rats inhaled manganese (Mn) in the form of MnSO4 at 0, 0.03, 0.3, or 3.0 mg Mn/m3 for 6 h/d for 7 d/wk (14 consecutive exposures). Brain manganese concentrations in these animals were reported by Dorman et al. in 2001, noting the following rank order: olfactory bulb>striatum>cerebellum. We assessed biochemical end points indicative of oxidative stress in these three brain regions, as well as the hypothalamus and hippocampus. Glutamine synthetase (GS) protein levels and total glutathione (GSH) levels were determined for all five regions. GS mRNA and metallothionein (MT) mRNA levels were also evaluated for the cerebellum, hypothalamus, and hippocampus. Statistically significant increases (p<0.05) in GS protein were observed in the olfactory bulb upon exposure to the medium and high manganese doses. In the hypothalamus, statistically significant (p<0.05) but more modest increases were also noted in the medium and high manganese dose. Total GSH levels significantly (p<0.05) decreased only in the hypothalamus (high manganese dose), and MT mRNA significantly increased in the hypothalamus (medium manganese dose). No significant changes were noted in any of the measured parameters in the striatum, although manganese concentrations in this region were also increased. These results demonstrate that the olfactory bulb and hypothalamus represent potentially sensitive areas to oxidative stress induced by exceedingly high levels of inhaled manganese sulfate and that other regions, and especially the striatum, are resistant to manganese-induced oxidative stress despite significant accumulation of this metal.  相似文献   

3.
Juvenile female and male (young) and 16-mo-old male (old) rats inhaled manganese in the form of manganese sulfate (MnSO4) at 0, 0.01, 0.1, and 0.5 mg Mn/m3 or manganese phosphate at 0.1 mg Mn/m3 in exposures of 6h/d, 5d/wk for 13 wk. We assessed biochemical end points indicative of oxidative stress in five brain regions: cerebellum, hippocampus, hypothalamus, olfactory bulb, and striatum. Glutamine synthetase (GS) protein levels, metallothionein (MT) and GS mRNA levels, and total glutathione (GSH) levels were determined for all five regions. Although most brain regions in the three groups of animals were unaffected by manganese exposure in terms of GS protein levels, there was significantly increased protein (p<0.05) in the hippocampus and decreased protein in the hypothalamus of young male rats exposed to manganese phosphate as well as in the aged rats exposed to 0.1 mg/m3 MnSO4. Conversely, GS protein was elevated in the olfactory bulb of females exposed to the high dose of MnSO4. Statistically significant decreases (p<0.05) in MT and GS mRNA as a result, of manganese exposure were observed in the cerebellum, olfactory bulb, and hippocampus in the young male rats, in the hypothalamus in the young female rats, and in the hippocampus in the senescent males. Total GSH levels significantly (p<0.05) decreased in the olfactory bulb of manganese exposed young male rats and increased in the olfactory bulb of female rats exposed to manganese. Both the aged and young female rats had significantly decreased (p<0.05) GSH in the striatum resulting from manganese inhalation. The old male rats also had depleted GSH levels in the cerebellum and hypothalamus as a result, of the 0.1-mg/m3 manganese phosphate exposure. These results demonstrate that age and sex are variables that must be considered whenassessing the neurotoxicity of manganese.  相似文献   

4.
Although manganese (Mn) is an essential element, exposure to excessive levels of Mn and its accumulation in the brain can cause neurotoxicity and extrapyramidal syndrome. We have investigated the differences in the accumulated levels of Mn, the degree of lipid peroxidation, and its effects on the levels of trace elements (Fe, Cu, and Zn) in various regions in the brain of rats having undergone acute Mn exposure. The rats in the dose—effect group were injected intraperitoneally (ip) with MnCl2 (25, 50, or 100 mg MnCl2/kg) once a day for 24 h. The Mn significantly accumulated (p<0.05) in the frontal cortex, corpus callosum, hippocampus, striatum, hypothalamus medulla, cerebellum, and spinal cord in each case. The rats in the timecourse group were ip injected with MnCl2 (50 mg MnCl2/kg) and then monitored 12, 24, 48, and 72 h after exposure. The Mn accumulated in the frontal cortex, corpus callosum, hippocampus, striatum hypothalamus, medulla, cerebellum, and spinal cord after these periods of time, In both the dose—effect and time-course studies, we observed that the concentration of malondialdehyde, an end product of lipid peroxidation, increased significantly in the frontal cortex, hippocampus, striatum, hypothalamus, medulla, and cerebellum. However, no relationship between the concentrations of Mn in the brain and the extent of lipid peroxidation was observed. In addition, we found that there was a significant increase (p<0.05) in the level of Fe in the hippocampus, striatum, hypothalamus, medulla, and cerebellum, but the Cu and Zn levels had not changed significantly. These findings indicated that Mn induces an increase in the iron level, which provides direct evidence for Fe-mediated lipid peroxidation in the rats' brains; these phenomena might play important roles in the mechanisms of Mn-induced neurotoxicology.  相似文献   

5.
Oxidative stress has been related to various diseases, gender and ageing, and has been measured by various markers. The authors developed a procedure to compute a global oxidative stress index (OXY-SCORE), reflecting both oxidative and antioxidant markers in healthy subjects. Its performance was tested in relation to age and gender and in coronary artery disease (CAD) patients. Eighty-two healthy subjects and 20 CAD patients were enrolled. Plasma free and total malondialdehyde (F- and T-MDA), glutathione disulphide/reduced form ratio (GSSG/GSH) and urine isoprostanes (iPF-III) levels were combined as oxidative damage markers (damage score). GSH, α- and γ-tocopherol (TH) levels, and individual antioxidant capacity were combined as antioxidant defence indexes (protection score). The OXY-SCORE was computed by subtracting the protection score from the damage score. Among single parameters, T-MDA and iPF-III significantly correlated with age; only GSH and both tocopherols correlated with male gender in healthy subjects. The OXY-SCORE was positively associated with age (p=0.004) and male gender (p=0.03). As expected, the OXY-SCORE was higher in CAD with a very significant p-value (<0.0001), after adjusting for age, gender and smoking. Combining different markers can potentially provide a powerful index in the evaluation of oxidative stress related to age, gender and CAD status.  相似文献   

6.
We have evaluated the effect of N,N-bis (2-chloroethyl)-N-nitrosourea (BCNU), an inhibitor of glutathione reductase (GR), on the oxidative status along with the integrity of the nigrostriatal dopaminergic system of the rat. The oxidative status was studied by the quantification of carbonyl groups coupled to protein homogenates. Moreover, the specific oxidations in glial fibrillary acidic protein (GFAP) and neurofilament-200 (NF-200) were also measured. The results show that oxidative damage in proteins in the nigrostriatal system is confined to the striatum. Specific carbonyl groups coupled to native NF-200 and GFAP were also increased. These changes were accompanied by reactive astrocytosis in striatum but not in substantia nigra. In substantia nigra, decreased levels of dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) were observed following BCNU treatment. In contrast, DA levels were increased in the striatum along with an overall decrease in the ratios of DA metabolites to DA. We also studied the mRNA levels for tyrosine hydroxylase (TH) and the dopamine transporter (DAT) by in situ hybridization. TH mRNA but not DAT mRNA was significantly induced in substantia nigra following BCNU treatment, which was consistent with significant elevations in TH enzyme amount and activity and unchanged DA uptake in striatum. All these results support the DA free radical hypothesis and the key role of the striatal glutathione system in protecting the striatal system against oxidative stress.  相似文献   

7.
The aim of the present study is to evaluate the status of plasma essential trace element selenium (Se), manganese (Mn), copper (Cu), zinc (Zn), and iron (Fe) concentrations and the effect of these elements on oxidative status in patients with childhood asthma. Plasma Se, Mn, Cu, and Zn concentrations were determined by atomic absorption spectrophotometry (AAS) and Fe concentrations, malondialdehyde (MDA), and total antioxidant capacity (TAC) were determined by the colorimetric method. The plasma MDA/TAC ratio was calculated as an index of oxidative status. Plasma albumin levels were measured to determine nutritional status. Plasma Fe concentrations, MDA levels and the MDA/TAC ratio were significantly higher (p<0.001, p<0.001, and p<0.01, respectively) and Se and Mn concentrations and TAC were lower (p<0.01, p<0.05, and p<0.01, respectively) in patients when compared to the healthy subjects. Plasma Zn, Cu, and albumin levels were not found to be significantly different in patients and controls (p>0.05). There were positive relationships between plasma MDA and Fe (r=0.545, p<0.001) and TAC and Se (r=0.485, p<0.021), and a negative correlation between TAC and MDA values (r= −0.337, p<0.031) in patients with childhood asthma. However, there was no correlation between these trace elements and albumin content in patient groups. These observations suggest that increased Fe and decreased Se concentrations in patients with childhood asthma may be responsible for the oxidant/antioxidant imbalance.  相似文献   

8.
The regional brain distribution of metallothionein (MT), zinc, and copper in the brain was determined in nine anatomical regions (olfactory bulb, cortex, corpus striatum, hippocampus, thalamus plus hypothalamus, pons plus medulla oblongata, cerebellum, midbrain, and white matter) and was compared between two different strains of rat (Sprague-Dawley [SD] and Lewis). No significant difference was observed in the whole-brain MT level between the two strains (17.8 ± 3.4 μg/g in SD rats and 20.3 ± 2.3 μg/g in Lewis rats). In SD rats, however, MT was more highly expressed in the white matter than in the other regions studied. In contrast, MT concentration was highest in the cortex and lowest in the olfactory bulb in Lewis rats. The MT levels in the cortex, corpus striatum, hippocampus, and thalamus plus hypothalamus were significantly lower in SD rats than in Lewis rats. In both strains, the olfactory bulb contained markedly higher levels of both zinc and copper than the other regions (27.9 ±6.8 μg/g zinc in SD rats and 27.6 ± 6.9 μg/g zinc in Lewis rats, and 5.2 ± 1.5 μg/g copper in SD rats and 11.1 ± 4.8 μg/g copper in Lewis rats). The next high-est zinc levels were seen in the hippocampus, whereas the next highest copper levels were in the corpus striatum in both SD and Lewis rats. The high levels of zinc and copper in the olfactory bulb were not accompanied by concomitant high MT concentrations. These results indicate that the strain of rat as well as the anatomical brain region should be taken into account in MT and metal distribution studies. However, the highest concentrations of zinc and copper in olfactory bulb were common to both SD and Lewis rats. The discrepancy between MT and the metal levels in olfactory bulb suggests a role for other proteins in addition to MT in the homeostatic control of zinc and copper.  相似文献   

9.
MSCs (mesenchymal stem cells) derived from the bone marrow have shown to be a promising source of stem cells in a therapeutic strategy of neurodegenerative disorder. Also, MSCs can enhance the TH (tyrosine hydroxylase) expression and DA (dopamine) content in catecholaminergic cells by in vitro co‐culture system. In the present study, we investigated the effect of intrastriatal grafts of MSCs on TH protein and gene levels and DA content in adult intact rats. When MSCs were transplanted into the striatum of normal rats, the grafted striatum not only had significantly higher TH protein and mRNA levels, but also significantly higher DA content than the untransplanted striatum. Meanwhile, the grafted MSCs differentiated into neurons, astrocytes and oligodendrocytes; however, TH‐positive cells could not be detected in our study. These experimental results offer further evidence that MSCs are a promising candidate for treating neurodegenerative diseases such as Parkinson's disease.  相似文献   

10.
Glutamine Synthetase (GS) activity was investigated in cerebellum (ce), cerebral cortex (cc), olfactory bulb (ob), and medulla oblongata (mo) of murine dysmyelinating mutants for correlations with modifications of astroglia associated with genetic dysmyelination. One of these mutants, jimpy, develops a strong gliosis throughout the CNS. The other three mutants: shiverer, mld, and quaking, exhibit various astrocytic responses to dysmyelination, but reduced gliosis if any. Comparison between CNS areas in control animals showed a higher GS activity in the olfactory bulb than in the cerebral cortex, medulla, and cerebellum. The developmental patterns of GS activity were similar in mutants and in controls in all four areas investigated. Data on Jimpy suggest that GS activity is not associated with reactive astrocytes.  相似文献   

11.
Nitric oxide (NO) participates in the pathogenesis of inflammatory reactions in many autoimmune diseases such as rheumatoid arthritis (RA). There is a reciprocal pathway between arginase and nitric oxide synthese (NOS) for NO production, and Mn is required for arginase activity and stability. To investigate whether NO production related with the arginine-nitric oxide pathway in patients with RA, we measured synovial fluid and plasma nitrite (NOx) levels, arginase activities, and its cofactor manganese (Mn) concentrations in 21 RA patients and 13 healthy control subjects. Plasma albumin levels were measured as an index of nutritional status. NOx levels were determined after the reduction of nitrates to nitrites using the Griess reaction. Whereas, synovial fluid arginase activities and Mn levels were found to be significantly lower (p<0.001, p<0.001, respectively), plasma arginase activities and Mn levels were similar in patients with RA when compared to the control subjects. Plasma and synovial fluid NO levels were similar in patients with RA and in healthy subjects (p>0.05, p>0.05, respectively). There were significantly positive correlations between synovial fluid and plasma arginase activities vs Mn content (r=0.543, p=0.011; r=0.516, p=0.017, respectively) and significantly negative correlations between synovial fluid and plasma NO levels vs arginase activities (r=−0.497, p=0.022; r=−0.508, p=0.019 respectively) in the patients group. Our results indicate that the lower concentration of synovial fluid Mn could cause lower arginase activity and this could also upregulate NO production by increasing L-arginine content in patients with RA.  相似文献   

12.
In the present study the effects of chronic manganese (Mn) treatment on adenosine A2a receptor binding in mouse brain have been assessed. Male albino mice were divided in two groups: In the Mn-treated group, the animals were injected intraperitoneally (i.p.) with MnCl2 (5 mg/kg/day) five days per week during 9 weeks; in the control group, they were injected likewise with a saline solution. A significant decrease of the Kd without alteration of Bmax in the cerebellum and, an increase of the Kd and Bmax in hippocampus of mice treated with Mn were found. Also, an increase of Kd in frontal cortex was observed. The binding parameters in caudate nucleus, olfactory bulb and hypothalamus were not altered by Mn. A significant decrease in the adenosine concentration in caudate nucleus, olfactory bulb and hypothalamus, without significant changes in hippocampus, frontal cortex and cerebellum was also detected. These findings suggest that chronic administration of Mn could affect adenosine receptor function and turnover, depending on the brain region analyzed.  相似文献   

13.
Dystrophin is a protein found at the plasmatic membrane in muscle and postsynaptic membrane of some neurons, where it plays an important role on synaptic transmission and plasticity. Its absence is associated with Duchenne's muscular dystrophy (DMD), in which cognitive impairment is found. Oxidative stress appears to be involved in the physiopathology of DMD and its cognitive dysfunction. In this regard, the present study investigated oxidative parameters (lipid and protein peroxidation) and antioxidant enzymes activities (superoxide dismutase and catalase) in prefrontal cortex, cerebellum, hippocampus, striatum and cortex tissues from male dystrophic mdx and normal C57BL10 mice. We observed (1) reduced lipid peroxidation in striatum and protein peroxidation in cerebellum and prefrontal cortex; (2) increased superoxide dismutase activity in cerebellum, prefrontal cortex, hippocampus and striatum; and (3) reduced catalase activity in striatum. It seems by our results, that the superoxide dismutase antioxidant mechanism is playing a protective role against lipid and protein peroxidation in mdx mouse brain.  相似文献   

14.
Abstract: A comparative study was undertaken to correlate the immunohistochemical localization of polysialic acid (PSA) and the in situ localization of ST8Sia II mRNA. In situ hybridization of postnatal day 3 mouse brain showed high levels of ST8Sia II mRNA expression in the cerebral neocortex, striatum, hippocampus, subiculum, medial habenular nucleus, thalamus, pontine nuclei, and inferior colliculus; intermediate-level expression in the olfactory bulb, hypothalamus, superior colliculus, and cerebellum; and low-level expression in other regions. The distribution of ST8Sia II mRNA in the neocortex and cerebellum coincided with the immunohistochemical localization of PSA. During brain development, ST8Sia II mRNA started decreasing and had almost disappeared by postnatal day 14. Comparison between ST8Sia II and IV mRNA expression was also undertaken by northern blot analysis and competitive PCR analysis. During the late embryonic to early postnatal stages of the mouse CNS, the ST8Sia II mRNA showed abundant mRNA expression compared with the ST8Sia IV mRNA. Competitive PCR analysis of the adult mouse CNS showed weak expression of the two genes in the olfactory bulb, thalamus, hippocampus, and eyes. The regional and transient expression of ST8Sia II mRNA coincides with that of PSA, suggesting that ST8Sia II is closely involved in the biosynthesis and expression of PSA in the developing mouse CNS.  相似文献   

15.
Thioltransferase (TTase) is a member of the family of thiol-disulfide oxidoreductases that are involved in the maintenance of sulfhydryl homeostasis in cells by catalyzing thiol-disulfide interchange reactions. One of the major consequences of oxidative stress in brain is the formation of protein-glutathione mixed disulfides (through oxidation of protein thiols), which can be reversed by TTase during the recovery of brain from oxidative stress. We therefore examined the presence of TTase in brain regions from rat. In the rat, TTase activity in the whole brain was comparable with the corresponding activity in liver, but significantly higher in hippocampus. The enzyme activity was significantly lower in striatum and cerebellum compared with activity in whole brain. Rat brain TTase shared immunological similarity with the human red blood cell enzyme, but not with the pig liver enzyme. The constitutive expression of the mRNA to TTase was demonstrable by northern blotting. Localization of the TTase mRNA in rat brain by fluorescent in situ hybridization showed the presence of high amounts of mRNA in the olfactory bulb, cortex, and hippocampus and its predominant localization in the neurons. TTase mRNA was also present in Purkinje cells in the cerebellum, in giant reticular neurons in the midbrain, and in the striatal and thalamic neurons. This study demonstrates the constitutive presence of a functional TTase system in brain and delineates the regional and cellular localization of the enzyme in rat brain.  相似文献   

16.
UbcH7 is an ubiquitin‐conjugating enzyme that interacts with parkin, an E3 ligase. The UbcH7–parkin complex promotes the ubiquitination and degradation of several proteins via the 26S proteasome. Cellular accumulation of the UbcH7–parkin targets alpha‐synuclein and synphilin‐1 has been associated with Parkinson disease. In mouse liver, 2,3,7,8‐tetrachlorodibenzo‐p‐dioxin, an aryl hydrocarbon receptor ligand, induces UbcH7 expression. Therefore, the aim of the present study was to determine whether 2,3,7,8‐tetrachlorodibenzo‐p‐dioxin induces Ubch7 mRNA and UbcH7 protein expression in the mouse brain, to characterize the molecular mechanism, and the effect on synphilin‐1 half‐life. We found that 2,3,7,8‐tetrachlorodibenzo‐p‐dioxin promotes the aryl hydrocarbon receptor binding to Ubch7 gene promoter as well as its transactivation, resulting in an induction of UbcH7 levels in the olfactory bulb, ventral midbrain, hippocampus, striatum, cerebral cortex, brain stem, and medulla oblongata. In parallel, 2,3,7,8‐tetrachlorodibenzo‐p‐dioxin promoted synphilin‐1 degradation in an aryl hydrocarbon receptor‐dependent way.  相似文献   

17.
《Free radical research》2013,47(9):1076-1081
Abstract

Binge alcohol consumption in adolescents is increasing, and it has been proposed that immature brain deals poorly with oxidative stress. The aim of our work was to study the effect of an acute dose of ethanol on glutathione (GSH) metabolism in frontal cortex, hippocampus and striatum of juvenile and adult rats. We have observed no change in levels of glutathione produced by acute alcohol in the three brain areas studied of juvenile and adult rats. Only in the frontal cortex the ratio of GSH/GSSG was increased in the ethanol-treated adult rats. GSH levels in the hippocampus and striatum were significantly higher in adult animals compared to young ones. Higher glutathione peroxidase (GPx) activity in adult rats was observed in frontal cortex and in striatum. Our data show an increased GSH concentration and GPx activity in different cerebral regions of the adult rat, compared to the young ones, suggesting that age-related variations of total antioxidant defences in brain may predispose young brain structures to ethanol-induced, oxidative stress-mediated tissue damage.  相似文献   

18.
In the adrenal medulla, binding of the immediate early gene (IEG) proteins, EGR-1 (ZIF-268/KROX-24/NGFI-A) and AP-1, to the tyrosine hydroxylase (Th) proximal promoter mediate inducible Th expression. The current study investigated the potential role of EGR-1 in inducible Th expression in the olfactory bulb (OB) since IEGs bound to the AP-1 site in the Th proximal promoter are also necessary for activity-dependent OB TH expression. Immunohistochemical analysis of a naris-occluded mouse model of odor deprivation revealed weak EGR-1 expression levels in the OB glomerular layer that were activity-dependent. Immunofluorescence analysis indicated that a majority of glomerular cells expressing EGR-1 also co-expressed TH, but only small subset of TH-expressing cells contained EGR-1. By contrast, granule cells, which lack TH, exhibited EGR-1 expression levels that were unchanged by naris closure. Together, these finding suggest that EGR-1 mediates activity-dependent TH expression in a subset of OB dopaminergic neurons, and that there is differential regulation of EGR-1 in periglomerular and granule cells.  相似文献   

19.
We have evaluated the effect of N,N-bis (2-chloroethyl)-N-nitrosourea (BCNU), an inhibitor of glutathione reductase (GR), on the oxidative status along with the integrity of the nigrostriatal dopaminergic system of the rat. The oxidative status was studied by the quantification of carbonyl groups coupled to protein homogenates. Moreover, the specific oxidations in glial fibrillary acidic protein (GFAP) and neurofilament-200 (NF-200) were also measured. The results show that oxidative damage in proteins in the nigrostriatal system is confined to the striatum. Specific carbonyl groups coupled to native NF-200 and GFAP were also increased. These changes were accompanied by reactive astrocytosis in striatum but not in substantia nigra. In substantia nigra, decreased levels of dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) were observed following BCNU treatment. In contrast, DA levels were increased in the striatum along with an overall decrease in the ratios of DA metabolites to DA. We also studied the mRNA levels for tyrosine hydroxylase (TH) and the dopamine transporter (DAT) by in situ hybridization. TH mRNA but not DAT mRNA was significantly induced in substantia nigra following BCNU treatment, which was consistent with significant elevations in TH enzyme amount and activity and unchanged DA uptake in striatum. All these results support the DA free radical hypothesis and the key role of the striatal glutathione system in protecting the striatal system against oxidative stress.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号