首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An experimental study on water absorption by lettuce seeds previously treated in a stationary magnetic field of 0-10 mT is presented. A significant increase in the rate with which the seeds absorb water is observed in the interval 0-10 mT of magnetic treatment. An increment in the total mass of absorbed water in this interval is also observed. These results are consistent with the reports on the increase of germination rate of the seeds, and the theoretical calculation of the variations induced by magnetic fields in the ionic currents across the cellular membrane. The fields originate in changes in the ionic concentration and thus in the osmotic pressure which regulates the entrance of water to the seeds. The good correlation between the theoretical approach and experimental results provides strong evidence that the magnetic field alters the water relations in seeds, and this effect may be the explanation of the reported alterations in germination rate of seeds by the magnetic field.  相似文献   

2.
3.
4.
Seasonal changes of some water relations parameters of Norway spruce shoots ( Picea abies [L.] Karst.) were studied during two experiments using the pressure-volume analysis. For each experiment only shoots of a single tree were used.
During the first study, the course of the turgor loss point (as bulk osmotic pressure when turgor first reaches zero, πp) of shoots developed in late 1986 vegetation period, were measured in 1987. The turgor loss point decreased temporarily from –2.5 MPa at the beginning of the year to –3.3 MPa at the end of March, but then increased to the original level for the rest of the year.
During the second study, water relations parameters were measured in late summer 1987 and in late winter 1988. Winter shoots at full water saturation contained up to 20% less water than in late summer. Accordingly, the bulk osmotic pressure at full water saturation (πp) decreased from –1.7 MPa in late summer to –1.9 MPa in winter, πp decreased also from –2.2 MPa to –2.8 MPa. However, the amount of osmotically active substances (mOsmol, N) remained unchanged. The relative amount of apoplastic water in the total shoot water content appeared to drop insignificantly from 17% to 15%.
The results show that the decrease in πo and πp in late winter is not due to an accumulation of osmotically active substances in the vacuoles but is due to a decrease in tissue water content. The temporary reduction of the symplastic volume by deposition of osmotically inert substances seems to be the most probable cause of this phenomenon.  相似文献   

5.
It is believed that static magnetic fields (SMF) cannot affect the pattern formation of the Belousov-Zhabotinsky (BZ) reaction, which has been frequently studied as a simplified experimental model of a nonequilibrium open system, because SMF produces no induced current and the magnetic force of SMF far below 1 T is too low to expect the effects on electrons in the BZ reaction. In the present study, we examined whether the velocity of chemical waves in the unstirred BZ reaction can be affected by a moderate-intensity SMF exposure depending on the spatial magnetic gradient. The SMF was generated by a parallel pair of attracting rectangular NdFeB magnets positioned opposite each other. The respective maximum values of magnetic flux density (B(max)), magnetic flux gradient (G(max)), and the magnetic force product of the magnetic flux density its gradient (a magnetic force parameter) were 206 mT, 37 mT/mm, and 3,000 mT(2)/mm. The ferroin-catalyzed BZ medium was exposed to the SMF for up to 16 min at 25 degrees C. The experiments demonstrated that the wave velocity was significantly accelerated primarily by the magnetic gradient. The propagation of the fastest wave front indicated a sigmoid increase along the peak magnetic gradient line, but not along the peak magnetic force product line. The underlying mechanisms of the SMF effects on the anomalous wave propagation could be attributed primarily to the increased concentration gradient of the paramagnetic iron ion complexes at the chemical wave fronts induced by the magnetic gradient.  相似文献   

6.
Abstract Water storage and nocturnal increases in osmotic pressure affect the water relations of the desert succulent Ferocactus acanthodes, which was studied using an electrical circuit analog based on the anatomy and morphology of a representative individual. Transpiration rates and osmotic pressures over a 24-h period were used as input variables. The model predicted water potential, turgor pressure and water flow for various tissues. Plant capacitances, storage resistances and nocturnal increases in osmotic pressure were varied to determine their role in the water relations of this dicotyledonous succulent. Water coming from storage tissues contributed about one-third of the water transpired at night: the majority of this water came from the nonphotosynthetic, water storage parenchyma of the stem. Time lags of 4 h were predicted between maximum transpiration and maximum water uptake from the soil. Varying the capacitance of the plant caused proportional changes in osmotically driven water movement but changes in storage resistance had only minor effects. Turgor pressure in the chlorenchyma depended on osmotic pressure, but was fairly insensitive to doubling or halving of the capacitance or storage resistance of the plant. Water uptake from the soil was only slightly affected by osmotic pressure changes in the chlorenchyma. For this stem succulent, the movement of water from the chlorenchyma to the xylem and the internal redistribution of water among stem tissues were dominated by nocturnal changes in chlorenchyma osmotic pressure, not by transpiration.  相似文献   

7.
8.
We studied the swimming orientation of the ciliated protozoan Paramecium aurelia in a static magnetic field (0.78 T). P. aurelia is a complex of species termed syngens, whose cell morphology appears similar on microscopic examination. In the magnetic field, the cells of some syngens gradually changed their swimming orientation so that they were swimming perpendicular or parallel to the magnetic field, although such sensitivity to magnetic fields differs between syngens. When the temperature of the cell suspension was raised, the magnetic sensitivity of the cells was decreased. On the other hand, when the cells were cultured beforehand at a high temperature, their magnetic sensitivity was increased. These results raise the possibility that membrane lipid fluidity, which is inversely proportional to the membrane lipid order, contributes to the magnetic orientation of syngens. In this study, measurements of membrane lipid fluidity obtained using fluorescence image analysis with the lipophilic dye, laurdan (6-lauroyl-2-dimethylaminonaphtalene), showed that the degree of membrane lipid fluidity was correlated with the differences in magnetic orientation between syngens. That is, the syngens with decreased membrane fluidity showed an increased degree of magnetic orientation. Therefore, the membrane lipid order is a key factor in the magnetic orientation of Paramecium swimming.  相似文献   

9.
Seasonal changes in tissue water relations of Erica arborea L., Myrtus communis L. and Juniperus communis L., grown in a Mediterranean environment, were analysed under field conditions over a 12 month period by comparing plants grown in the proximity of a natural CO2 spring (about 700 μ mol mol ? 1 atmospheric CO2 concentration, [CO2]) with plants in ambient conditions. Tissue water relations varied in response to changes in water availability, but the seasonal course of tissue water relations parameters was also related to ontogeny. Tissue water relations of these co‐occurring shrubs were not alike. Osmotic potentials and saturated mass/dry mass ratio were lowest during peak drought stress periods. Diurnal changes in osmotic potential at the point of turgor loss were least early in the season, maximal in mid‐season, and decreased again in autumn. Turgor potentials decreased as drought progressed and were highest in late fall and mid‐winter. Symplastic water fraction was highest in mid‐spring for E. arborea and M. communis and decreased during the summer, while the opposite was observed for J. communis. Common to all species, under elevated [CO2], was an increase of turgor pressure, particularly during the summer months. Other parameters showed species‐specific responses to long‐term elevated [CO2]. In particular, exposure to elevated [CO2] increased osmotic potentials in E. arborea under drought, while the opposite was the case for J. communis. Site differences in predawn to midday shifts were not strong in any of the species. Differences in tissue water relations suggest that the coexistence of these shrubs in the same environment with similar water availability are partially based on differential water relations strategies and water use patterns. Regardless of the mechanisms, growth of these shrubs in elevated [CO2] may be either less, similarly or more affected by drought stress than plants in ambient [CO2] depending on the species and season.  相似文献   

10.
Barley (Hordeum vulgare L., cv. Hemus) plants were grown in nutrient solution with or without 54 μM Cd2+ for 12 d. A treatment with Cd2+ inhibited the growth of young barley plants. The main factor limiting plant growth was net assimilation rate, due to decreased photosynthetic rate and accelerated dark respiration rate. One of the reasons for the reduced photosynthetic rate was the lower chlorophyll and carotenoid content. Cd2+ decreased water potential and transpiration rate, but relative water content in leaves of the treated plants was not significantly changed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Pulsed magnetic fields have been used to enhance healing of bone fractures and purportedly of lesions in soft tissue. However, their mechanism of action is poorly understood. We report changes in the plasma membrane of a nonadherent mammalian cell line, U937, which was exposed to a 25-pps magnetic field for 48 hours. Aqueous polymer two-phase partition studies showed that magnetic-field-exposed cells exhibited an increased negative surface charge but membrane hydrophobicity was not significantly altered. The observed increase in membrane electronegativity of exposed cells did not reflect a significant change in growth rate.  相似文献   

12.
Four-month old seedlings of pecan [Carya illinoensis (Wangenh) C. Koch] were either not flooded or flooded for 14 days, then transferred to well-drained conditions for 23 days. Water was withheld from one-half of the trees for 6 days, then trees were rewatered, and water was withheld from all trees. Leaf expansion, leaf dry weight, and the number of new leaves that developed were reduced by flooding, but not trunk or root dry weights. Evapotranspiration rates of flooded trees after transfer to well-drained conditions were initially higher than those of unflooded trees, but decreased to rates of control trees after 12 days. Flooding had no effect on photosynthesis after trees had been transferred to well-drained conditions for 23 days. Drought-stressed trees with leaf water potentials as low as − 1.93 MPa had lower leaf photosynthetic CO2 assimilation rate (A), transpiration (E), and leaf conductance to CO2 (gL) as compared to wellwatered trees. Leaf internal CO2 concentration (ci) was reduced only by the most severe water-stress treatment. Water use rates and relative water content were lower at the permanent wilting point during a second drought stress when trees had been exposed previously to drought stress.  相似文献   

13.
Spatial distribution of cell turgor pressure, cell osmotic pressure and relative elemental growth rate were measured in growing tall fescue leaves ( Festuca arundinacea ). Cell turgor pressure (measured with a pressure probe) was c . 0.55 MPa in expanding cells but increased steeply (+0.3 MPa) in cells where elongation had stopped. However, cell osmotic pressure (measured with a picolitre osmometer) was almost constant at 0.85 MPa throughout the leaf. The water potential difference between the growth zone and the mature zone (0.3 MPa) was interpreted as a growth-induced water potential gradient. This and further implications for the mechanism of growth control are discussed.  相似文献   

14.
Effects of a moderate-intensity static magnetic field (SMF) on the early-stage development of endothelial capillary tubule formation were examined during the initial cell growth periods using co-cultured human umbilical vein endothelial cells and human diploid fibroblasts. The co-cultured cells within a well (16 mm in diameter) were exposed to SMF intensity up to 120 mT (Bmax) with the maximum spatial gradient of 21 mT/mm using a disc-shaped permanent magnet (16 mm in diameter and 2.5 mm in height) for up to 10 days. Control exposure was performed without magnet. Some vascular endothelial cells were treated with vascular endothelial growth factor (VEGF)-A (10 ng/ml) to promote the tubule formation every 2-3 days. Four experimental protocols were performed: (1) non-exposure (control); (2) SMF exposure alone; (3) non-exposure with VEGF-A; (4) SMF exposure with VEGF-A. Photomicrographs of tubule cells immunostained with an anti-platelet-endothelial cell adhesion molecule-1 (PECAM-1 [CD31[) antibody as a pan-endothelial marker, were analyzed after culture at 37 degrees C for 4, 7, and 10 days. The mean values of the area density and the length of tubules (related mainly to arteriogenesis) as well as the number of bifurcations (related mainly to angiogenesis) were determined as parameters of tubule formation and were compared between the groups. After a 10 day incubation, in the peripheral part of the culture wells, SMF alone significantly promoted the tubule formation in terms of the area density and the length of tubules, compared with control group. In the central part of the wells, however, SMF did not cause any significant changes in the parameters of tubule formation. After a 7 day incubation, VEGF-A significantly promoted all the parameters of tubule formation in any part of the wells, compared with control group. With regard to the synergistic effects of SMF and VEGF-A on tubule formation, after a 10 day incubation, SMF significantly promoted the VEGF-A-increased area density and length of tubules in the peripheral part of the wells, compared with the VEGF-A treatment alone. However, SMF did not induce any significant changes in the VEGF-A-increased number of bifurcations in any part of the wells. The tubule cells observed in the wells had elongated, spindle-like shapes, and the direction of cell elongation was random, irrespective of the presence and direction of SMF. These findings suggest that the application of SMF to intact or VEGF-A-stimulated vascular endothelial cells leads mainly to promote or enhance arteriogenesis in the peripheral part of the wells, where the spatial gradient increases relative to the central part. The effects of SMF on the VEGF-A-enhanced tubule formation appear to be synergistic or additive in arteriogenesis but not in angiogenesis.  相似文献   

15.
磁场对小鼠两种迷宫学习记忆的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
据发现,磁场对生物体有一定作用,但是磁场对于人类或实验动物的学习记忆是否有影响,目前的报道结果很不一致。本实验采用实验小白鼠,给予不同强度(65高斯/50Hz,35高斯/25Hz)的低频磁场照射(每天1小时,持续25天)。磁场照射后,采用旷场行为测试、Y-迷宫和Morris水迷宫,检测小鼠的活动性、空间辨别、空间学习记忆和非空间学习记忆能力。结果表明:65高斯/50Hz磁场显著增高小鼠的活动性,并损伤小鼠Y-迷宫的空间辨别能力,但对Morris水迷宫的空间、非空间学习记忆无明显影响。35高斯/25Hz磁场处理动物行为在三个指标上均接近对照组。提示:长期的磁场照射可能会给动物,甚至人类造成一些影响。  相似文献   

16.
17.
不同水分管理方式对稻田土壤生物学特性的影响   总被引:3,自引:1,他引:3  
在下辽河平原单季稻地区研究了常规浅湿干灌溉 (CK)、浅湿干灌溉薄膜阻渗 (IC)、湿润灌溉薄膜阻渗 (MC)、淹水灌溉薄膜阻渗 (FC) 4种不同水分管理方式下土壤线虫及土壤微生物量的动态变化。结果表明 ,耙耕前 ,CK、FC处理食细菌线虫数量显著高于MC、IC处理 ;薄膜阻渗在黄熟期显著降低了土壤食细菌线虫的数量 ,在耙耕前显著降低了食真菌线虫数量。潮棕壤稻田食真菌线虫与食细菌线虫相比数量较低。在耙耕前不同水分管理方式下土壤微生物量C显著低于对照。不同水分管理方式在水稻分蘖期、抽穗期对食细菌线虫数量、食真菌线虫数量、微生物量C和微生物量N没有影响。土壤食细菌线虫、食真菌线虫数量与土壤微生物量C、N没有达到显著相关。  相似文献   

18.
Restoration requires techniques similar to those used in agriculture to improve germination and seedling vigor. We treated 6‐year‐old (collected in 2003, S‐2003) and 1‐month‐old (S‐2009) seeds of Dodonaea viscosa with hydropriming (HP). Seeds were made permeable with hot water prior to hydration for 24 or 48 hours (HP‐24 and HP‐48, respectively) followed by dehydration. The resulting seedlings exposed to both HP treatments were sown in a lava field in soil mixed with hydrogel (HG) under the shade projected by five vegetation patches. The effects of these treatments on germination, seedling field survival, and growth were assessed. HP‐24 in S‐2009 and HP‐48 in S‐2003 increased the germination percentage from 22.5 and 31.7% in control seeds (permeable seeds) to 63.3 and 98.3%, respectively. The seedlings‐2009 (from S‐2009) with HG maintained high survival in all vegetation patches. Seedlings‐2003, however, had low survival. The lack of HG was negatively related to the photon flux in each patch. Survival of seedlings‐2009 increased with HG of up to 398.41 µmol m?2 s?1; after which survival decreased. During the rainy season, HP enhanced seedling growth, except the basal diameters and number of leaves in the seedlings‐2003 with HP‐24. During the dry season, the effects of HG and HP were similar for all the seedlings. In the following rainy season, the priming effect was lost while HG continued to promote seedling growth. The combined use of HP and HG and the shade projected by the patches resulted in a successful vegetation recovery strategy.  相似文献   

19.
Voltage activated Na(+) channels were examined in GH3 cells, using the whole cell patch clamp method. Channel currents were recorded before, during, and after a 150 s exposure to a 125 mT static magnetic field. There was a slight shift in the current-voltage relationship and a less than 5% reduction in peak current during magnetic field exposure. More pronounced, however, was an increase in the activation time constant, tau(m), during and for at least 100 s following exposure to the field. This change in tau(m) was seen primarily at lower activation voltages. No change was noted in the inactivation time constant, tau(h). Changes were clearly temperature dependent, being evident only at and above 35 degrees C. These findings are consistent with the hypothesis that reorientation of diamagnetic anisotropic molecules in the cell membrane are capable of distorting imbedded ion channels sufficiently to alter their function. The temperature dependence of this phenomenon is probably due to the greater ease with which a liquid crystal membrane can be deformed.  相似文献   

20.

Background and Aims

The Sapindaceae is one of 17 plant families in which seed dormancy is caused by a water-impermeable seed or fruit coat (physical dormancy, PY). However, until now the water gap in Sapindaceae had not been identified. The primary aim of this study was to identify the water gap in Dodonaea petiolaris (Sapindaceae) seeds and to describe its basic morphology and anatomy.

Methods

Seed fill, viability, water-uptake (imbibition) and other characteristics were assessed for D. petiolaris seeds. The location and structure of the water gap were investigated using a blocking experiment, time series photography, scanning electron microscopy and light microscopy. Dodonaea petiolaris seeds with PY also were assessed for loss of PY at four ecologically significant temperatures under moist and dry conditions. Seeds of three other species of Sapindaceae were examined for presence of a water gap.

Key Results

The water gap in D. petiolaris seeds was identified as a small plug in the seed coat adjacent to the hilum and opposite the area where the radicle emerges. The plug was dislodged (i.e. water gap opened = dormancy break) by dipping seeds in boiling water for 2·5 min or by incubating seeds on a moist substrate at 20/35 °C for 24 weeks. Layers of cells in the plug, including palisade and subpalisade, are similar to those in the rest of the seed coat. The same kind of water gap was found in three other species of Sapindaceae, Diplopeltis huegelii, Distichostemon hispidulus and Dodonaea aptera.

Conclusions

Following dormancy break (opening of water gap), initial uptake of water by the seed occurs only through the water gap. Thus, the plug must be dislodged before the otherwise intact seed can germinate. The anatomy of the plug is similar to water gaps in some of the other plant families with PY.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号