首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 808 毫秒
1.
Fungi producing high xylanase levels have attracted considerable attention because of their potential industrial applications. Batch cultivations of Aspergillus terricola fungus were evaluated in stirred tank and airlift bioreactors, by using wheat bran particles suspended in the cultivation medium as substrate for xylanase and β-xylosidase production. In the stirred tank bioreactor, in physical conditions of 30°C, 300 rpm, and aeration of 1 vvm (1 l min−1), with direct inoculation of fungal spores, 7,475 U l−1 xylanase was obtained after 36 h of operation, remaining constant after 24 h. In the absence of air injection in the stirred tank reactor, limited xylanase production was observed (final concentration 740 U l−1). When the fermentation process was realized in the airlift bioreactor, xylanase production was higher than that observed in the stirred tank bioreactor, being 9,265 U l−1 at 0.07 vvm (0.4 l min−1) and 12,845 U l−1 at 0.17 vvm (1 l min−1) aeration rate.  相似文献   

2.
A membrane bioreactor for production of nisin Z was constructed using Lactococcus lactis IO-1 in continuous culture using hydrolyzed sago starch as carbon source. A strategy used to enhance the productivity of nisin Z was to maintain the cells in a continuous growth at high cell concentration. This resulted in a volumetric productivity of nisin Z, as 50,000 IU l−1 h−1 using a cell concentration of 15 g l−1, 30°C, pH 5.5 and a dilution rate of 1.24 h−1. Adding 10 g l−1 YE and 2 g l−1 polypeptone, other inducers were unnecessary to maintain production of nisin. The operating conditions of the reactor removed nisin and lactate, thus minimizing their effects which allowed the maintenance of cells in continuous exponential growth phase mode with high metabolic activity.  相似文献   

3.
Cell cultures of Commiphora wightii (Arnott.) Bhandari were grown in shake flasks and a bioreactor and an increase in guggulsterone accumulation up to 18 μg l−1 was recorded in cells grown in the production medium containing a combination of sucrose:glucose (4% total), precursors (phenylalanine, pyruvic acid, xylose, and sodium acetate), morphactin, and 2iP. A yield of 10 g l−1 biomass and ∼200 μg l−1 guggulsterone was recorded in a 3-l flask and in a 2-l stirred tank bioreactor compared with 6.6 g biomass and 67 μg l−1 guggulsterone in 250-ml flasks. Increased vessel size was correlated with increased biomass and guggulsterone accumulation. 2iP alone was not effective for biomass and guggulsterone accumulation in cell cultures of C. wightii.  相似文献   

4.
The study was done to improve the viability of the RC1 hybridoma cell in order to produce more amount of monoclonal antibody (mAb). By using the optimized media, the cell had been cultured in two bioreactor systems which were the MiniPerm and Stirred Tank bioreactor (ST bioreactor), and the results were compared to the one obtained by using the T-Flask bioreactor which was used as a standard. The results showed that the ST bioreactor was able to improve the viability of the cell to the value of 91.8% which was a little bit better than the one obtained by the MiniPerm bioreactor (88.6%) and far better than that of achieved by the T-Flask bioreactor (76.4%). This was well correlated with the good growth performance of the cell in the ST bioreactor with the specific growth rate (μ) value of 0.0289 h−1 followed by MiniPerm bioreactor with the value of 0.0243 h−1 and then the T-Flask with the value of 0.0151 h−1. The low value of doubling time (t d ) obtained in the ST bioreactor (24 h) compared to the one obtained in the MiniPerm (29 h) and T-Flask bioreactor (46 h) had also contributed to the higher value of cell viability. As a result a higher concentration of mAb was able to be produced by the ST bioreactor (0.42 g l−1) compared to that of the MiniPerm (0.37 g l−1) and T-Flask bioreactor (0.23 g l−1).  相似文献   

5.
Fermentation of biomass derived synthesis gas to ethanol is a sustainable approach that can provide more usable energy and environmental benefits than food-based biofuels. The effects of various medium components on ethanol production by Clostridium ragsdalei utilizing syngas components (CO:CO2) were investigated, and corn steep liquor (CSL) was used as an inexpensive nutrient source for ethanol production by C. ragsdalei. Elimination of Mg2+, NH4 + and PO4 3− decreased ethanol production from 38 to 3.7, 23 and 5.93 mM, respectively. Eliminating Na+, Ca2+, and K+ or increasing Ca2+, Mg2+, K+, NH4 + and PO4 3− concentrations had no effect on ethanol production. However, increased Na+ concentration (171 mM) inhibited growth and ethanol production. Yeast extract (0.5 g l−1) and trace metals were necessary for growth of C. ragsdalei. CSL alone did not support growth and ethanol production. Nutrients limiting in CSL were trace metals, NH4 + and reducing agent (Cys: cysteine sulfide). Supplementation of trace metals, NH4 + and CyS to CSL (20 g l−1, wet weight basis) yielded better growth and similar ethanol production as compared to control medium. Using 10 g l−1, the nutritional limitation led to reduced ethanol production. Higher concentrations of CSL (50 and 100 g l−1) were inhibitory for cell growth and ethanol production. The CSL could replace yeast extract, vitamins and minerals (excluding NH4 +). The optimized CSL medium produced 120 and 50 mM of ethanol and acetate, respectively. The CSL could provide as an inexpensive source of most of the nutrients required for the syngas fermentation, and thus could improve the economics of ethanol production from biomass derived synthesis gas by C. ragsdalei.  相似文献   

6.
The nematophagous fungus Pochonia chlamydosporia (Clavicipitaceae) and entomopathogenic fungus Beauveria bassiana (Cordycipitaceae) have great potential for biological control. However, a significant barrier to their commercial development as mycopesticides is the high costs associated with production. Carbon (C) concentration and C to nitrogen ratio (C:N ratio) greatly affect fungal growth and sporulation. Effects of C concentration and C:N ratio differed when the fungi were cultivated using two different methods: the conventional (continuous cultivation) method and a novel “two-stage” method. Sporulation of P. chlamydosporia (HSY-12-14) was the highest when the media contained 6 g l−1 C and a C:N ratio of 40:1 or 8 g l−1 C and C:N ratios of 20:1 or 40:1 for the conventional method but 8 g l−1 C and a C:N ratio of only 10:1 with the novel “two-stage” method. Sporulation of B. bassiana (IBC1201) was the highest when the media contained 12 g l−1 C and a C:N ratio of 40:1 with the conventional method but only 4 g l−1 C and a C:N ratio of 5:1 with the novel “two-stage” method. In addition, the nutritional requirements as determined by the conventional method differed for mycelial growth and sporulation. Understanding the effects of nutrition on sporulation can help programs seeking to use these organisms as biological control agents and is essential for their mass production and commercialization.  相似文献   

7.
Factors affecting the production of the rare sugar l-xylulose from xylitol using resting cells were investigated. An E. coli BPT228 strain that recombinantly expresses a gene for xylitol dehydrogenase was used in the experiments. The ratio of xylitol to l-xylulose was three times lower in the cytoplasm than in the medium. The effects of pH, temperature, shaking speed, and initial xylitol concentration on l-xylulose production were investigated in shaking flasks using statistical experimental design methods. The highest production rates were found at high shaking speed and at high temperature (over 44°C). The optimal pH for both productivity and conversion was between 7.5 and 8.0, and the optimal xylitol concentration was in the range 250–350 g l−1. A specific productivity of 1.09 ± 0.10 g g−1 h−1 was achieved in a bioreactor. The response surface model based on the data from the shake flask experiments predicted the operation of the process in a bioreactor with reasonable accuracy.  相似文献   

8.
The aim of this research was to test whether NH4 + and NO3 affect the growth, P demand, cell composition and N2 fixation of Cylindrospermopsis raciborskii under P limitation. Experiments were carried out in P-limited (200 μg l−1 PO4-P) chemostat cultures of C. raciborskii using an inflowing medium containing either 4,000 μg l−1 NH4-N, 4,000 μg l−1 NO3-N or no combined N. The results showed the cellular N:P and C:P ratios of C. raciborskii decreased towards the Redfield ratio with increasing dilution rate (D) due to the alleviation of P limitation. The cellular C:N and carotenoids:chlorophyll-a ratios also decreased with D, predominantly as a result of an increase in the chlorophyll-a and N content. The NH4 + and NO3 supply reduced the P maintenance cell quota of C. raciborskii. Consequently, the biomass yield of the N2-grown culture was significantly lower. The maximum specific growth rate of N2-grown culture was also the lowest observed. It is suggested that these differences in growth parameters were caused by the P and energy requirement for heterocyte formation, nitrogenase synthesis and N2 fixation. N2 fixation was partially inhibited by NO3 and completely inhibited by NH4 +. It was probably repressed through the high N content of cells at high dissolved N concentrations. These results indicate that C. raciborskii is able to grow faster and maintain a higher biomass under P limitation where a sufficient supply of NH4 + or NO3 is maintained. Information gained about the species-specific nutrient and pigment stoichiometry of C. raciborskii could help to access the degree of nutrient limitation in water bodies. Handling editor: Luigi Naselli-Flores  相似文献   

9.
Summary Response surface methodology was employed in optimizing the nutrient levels needed towards the optimal production of phosphatidylinositol-specific phospholipase C enzyme by Bacillus thuringiensis serovar. kurstaki. A 23 factorial central composite experimental design was used. The multiple regression equation, relating the enzyme activity to the nutrient medium, was used to find the optimum values of glucose, peptone and dipotassium hydrogen phosphate. The optimum values of these variables for maximal enzyme production were found to be: glucose, 6.5 g l−1; peptone, 5.38 g l−1 and dipotassium hydrogen phosphate, 6.36 g l−1 with the predicted enzyme activity of 0.96 U ml−1.  相似文献   

10.
Butanol, a four-carbon primary alcohol (C4H10O), is an important industrial chemical and has a good potential to be used as a superior biofuel. Bio-based production of butanol from renewable feedstock is a promising and sustainable alternative to substitute petroleum-based fuels. Here, we report the development of a process for butanol production from glycerol, which is abundantly available as a byproduct of biodiesel production. First, a hyper butanol producing strain of Clostridium pasteurianum was isolated by chemical mutagenesis. The best mutant strain, C. pasteurianum MBEL_GLY2, was able to produce 10.8 g l−1 butanol from 80 g l−1 glycerol as compared to 7.6 g l−1 butanol produced by the parent strain. Next, the process parameters were optimized to maximize butanol production from glycerol. Under the optimized batch condition, the butanol concentration, yield, and productivity of 17.8 g l−1, 0.30 g g−1, and 0.43 g l−1 h−1 could be achieved. Finally, continuous fermentation of C. pasteurianum MBEL_GLY2 with cell recycling was carried out using glycerol as a major carbon source at several different dilution rates. The continuous fermentation was run for 710 h without strain degeneration. The acetone–butanol–ethanol productivity and the butanol productivity of 8.3 and 7.8 g l−1 h−1, respectively, could be achieved at the dilution rate of 0.9 h−1. This study reports continuous production of butanol with reduced byproducts formation from glycerol using C. pasteurianum, and thus could help design a bioprocess for the improved production of butanol.  相似文献   

11.
Poly(3-hydroxybutyrate) (PHB) biosynthesis from soybean oil by Cupriavidus necator was studied using a bench scale bioreactor. The highest cell concentration (83 g l−1) was achieved using soybean oil at 40 g l−1 and a pulse of the same concentration. The PHB content was 81% (w/w), PHB productivity was 2.5 g l−1 h−1, and the calculated Yp/s value was 0.85 g g−1. Growth limitation and the onset of PHB biosynthesis took place due to exhaustion of P, and probably also Cu, Ca, and Fe.  相似文献   

12.
The effects of initial culture pH ranging from 5.0 to 7.5 on biomass content, precursor 3-hydroxy-2-butanone (HB) accumulation, and 2,3,5,6-tetramethylpyrazine (TTMP) formation by Bacillus subtilis CCTCC M 208157 were investigated in shake flask fermentation. Weak acidic conditions were found to favor cell growth and precursor HB accumulation, while TTMP could be synthesized more efficiently in conditions with initial pH towards neutrality. Batch bioprocess of TTMP fermentation by Bacillus subtilis CCTCC M 208157 at various controlled pH values ranging from 5.5 to 7.0 was then examined in 7.5-l fermentor. The results suggested that optimum pH for cell growth and precursor HB accumulation was 5.5 with maximum cell growth rate (Q x) and precursor HB accumulation rate (Q HB) of 0.833 g l−1 h−1 and 1.118 g l−1 h−1, respectively, while optimum pH for TTMP formation was 7.0 with maximum TTMP formation rate (Q TTMP) of 0.095 g l−1 h−1. A pH-shifted strategy was accordingly developed to improve TTMP production in bioreactor fermentation by shifting the culture pH from 5.5 to 7.0 after 48 h of cultivation. By applying the strategy, final TTMP concentration of 7.43 g l−1 was obtained, being 22.2% greater than that of constant-pH fermentation.  相似文献   

13.
In this work, the production of 1,3-propanediol from glucose and molasses was studied in a two-step process using two recombinant microorganisms. The first step of the process is the conversion of glucose or other sugar into glycerol by the metabolic engineered Saccharomyces cerevisiae strain HC42 adapted to high (>200 g l−1) glucose concentrations. The second step, carried out in the same bioreactor, was performed by the engineered strain Clostridium acetobutylicum DG1 (pSPD5) that converts glycerol to 1,3-propanediol. This two-step strategy led to a flexible process, resulting in a 1,3-propanediol production and yield that depended on the initial sugar concentration. Below 56.2 g l−1 of sugar concentration, cultivation on molasses or glucose showed no significant differences. However, at higher molasses concentrations, glycerol initially produced by yeast could not be totally converted into 1,3-propanediol by C. acetobutylicum and a lower 1,3-propanediol overall yield was observed. In our hand, the best results were obtained with an initial glucose concentration of 103 g l−1, leading to a final 1,3-propanediol concentration of 25.5 g l−1, a productivity of 0.16 g l−1 h−1 and 1,3-propanediol yields of 0.56 g g−1 glycerol and 0.24 g g−1 sugar, which is the highest value reported for a two-step process. For an initial sugar concentration (from molasses) of 56.2 g l−1, 27.4 g l−1 of glycerol were produced, leading to 14.6 g l−1 of 1.3-propanediol and similar values of productivity, 0.15 g l−1 h−1, and overall yield, 0.26 g g−1 sugar.  相似文献   

14.
Isoflavonoid production in cell cultures of Pueraria tuberosa as influenced by an angiospermic parasite, Cuscuta reflexa, was studied. During the time course, maximum isoflavonoid content was recorded when Cuscuta elicitor was added on day 15 of culture. Among various concentrations of elicitor tried, 1 g l−1 of Cuscuta elicitor was found to be the most effective. The optimized elicitation conditions were used in vessels of varying capacity where maximum yield of ~91 mg l−1 of isoflavonoid was recorded in a 2-l bioreactor which was about 19% higher than the control cultures. In this case, puerarin content increased up to 11 mg l−1 which was 580% higher that the value recorded in the control cultures. In the bioreactor, 8 days of elicitation was optimal for the high accumulation of isoflavonoid, giving productivity of ~4 mg l−1 day−1. The study showed persistent high isoflavonoid yield even during scale-up. Use of a preparation of Cuscuta reflexa as an elicitor is reported for the first time. The increase in isoflavonoid content was elicitor dose-dependent and can be explored to trigger high yields of isoflavonoid/secondary metabolites in production.  相似文献   

15.
Pleurotus ostreatus showed atypical laccase production in submerged vs. solid-state fermentation. Cultures grown in submerged fermentation produced laccase at 13,000 U l−1, with a biomass production of 5.6 g l−1 and four laccase isoforms. However, cultures grown in solid-state fermentation had a much lower laccase activity of 2,430 U l−1, biomass production of 4.5 g l−1, and three laccase isoforms. These results show that P. ostreatus performs much better in submerged fermentation than in solid-state fermentation. This is the first report that shows such atypical behavior in the production of extracellular laccases by fungi.  相似文献   

16.
Two wild strains of Zymomonas mobilis were isolated (named as ML1 and ML2) from sugar cane molasses obtained from different farms of Santander, Colombia. Initially, selection of the best ethanol-producer strains was carried out using ethanol production parameters obtained with a commercial strain Z. mobilis DSM 3580. Three isolated strains were cultivated in a culture medium containing yeast extract, peptone, glucose and salts, at pH 6 and 32°C with stirring rate of 65 rpm during 62 h. The best results of ethanol production were obtained with the native strain ML1, reaching a maximum ethanol concentration of 79.78 g l−1. ML1 and ML2 strains were identified as Z. mobilis, according to the morphology, biochemical tests and molecular characterization by PCR of specific DNA sequences from Z. mobilis. Subsequently, the effect of different nitrogen sources on production of ethanol was evaluated. The best results were obtained using urea at a 0.73 g/l. In this case, maximum concentration of ethanol was 83.81 g l−1, with kinetic parameters of yield of ethanol on biomass (YP/X) = 69.01(g g−1), maximum volumetric productivity of ethanol (Qpmax) = 2.28 (g l−1 h−1), specific productivity of ethanol (qP) = 3.54 (h−1) and specific growth rate (μ) = 0.12 h−1. Finally, we studied the effect of different culture conditions (pH, temperature, stirring, C/N ratio) with a Placket-Burman′s experimental design. This optimization indicated that the most significant variables were temperature and stirring. In the best culture conditions a significant increase in all variables of response was achieved, reaching a maximum ethanol concentration of 93.55 g l−1.  相似文献   

17.
Succinic acid, a four-carbon diacid, has been the focus of many research projects aimed at developing more economically viable methods of fermenting sugar-containing natural materials. Succinic acid fermentation processes also consume CO2, thereby potentially contributing to reductions in CO2 emissions. Succinic acid could also become a commodity used as an intermediate in the chemical synthesis and manufacture of synthetic resins and biodegradable polymers. Much attention has been given recently to the use of microorganisms to produce succinic acid as an alternative to chemical synthesis. We have attempted to maximize succinic acid production by Actinobacillus succinogenes using an experimental design methodology for optimizing the concentrations of the medium components. The first experiment consisted of a 24−1 fractional factorial design, and the second entailed a Central Composite Rotational Design so as to achieve optimal conditions. The optimal concentrations of nutrients predicted by the model were: NaHCO3, 10.0 g l−1; MgSO4, 3.0 g l−1; yeast extract, 2.0 g l−1; KH2PO4. 5.0 g l−1; these were experimentally validated. Under the best conversion conditions, as determined by statistical analysis, the production of succinic acid was carried out in an instrumented bioreactor using sugarcane bagasse hemicellulose hydrolysate, yielding a concentration of 22.5 g l−1.  相似文献   

18.
Cynara cardunculus suspension cells were transformed by particle bombardment to overexpress the cypro11 gene coding for cyprosin B. Green fluorescent protein, used as a visual reporter through mgfp4-ER gene, facilitates the screening of transformed cells at the initial stages when antibiotics cause generalized cell death. mgfp4-ER lacks a cryptic intron and has an endoplasmic reticulum target sequence, these traits conferring an adequate use as screenable marker for transformed cells. Selected transformed cells, grown in a bioreactor, produced 3.8 g dcw l−1 of biomass, 80 mg l−1 of total protein and 2,060 U ml−1 of enzymatic activity. Specific activity of cyprosin B, purified by anionic-exchange chromatography, was 215 U mg−1 with a purification degree of 8.3-fold. The cyprosin B activity is optimal at 42°C for pH 5.1 and is inhibited by pepstatin A. The results encourage the overexpression of cypro11 gene in transformed C. cardunculus cells leading to high yields of cyprosin B production in bioreactor, which can be considered adequate for industrial production.  相似文献   

19.
Production of lactic acid from glucose by immobilized cells of Lactococcus lactis IO-1 was investigated using cells that had been immobilized by either entrapment in beads of alginate or encapsulation in microcapsules of alginate membrane. The fermentation process was optimized in shake flasks using the Taguchi method and then further assessed in a production bioreactor. The bioreactor consisted of a packed bed of immobilized cells and its operation involved recycling of the broth through the bed. Both batch and continuous modes of operation of the reactor were investigated. Microencapsulation proved to be the better method of immobilization. For microencapsulated cells at immobilized cell concentration of 5.3 g l−1, the optimal production medium had the following initial concentrations of nutrients (g l−1): glucose 45, yeast extract 10, beef extract 10, peptone 7.5 and calcium chloride 10 at an initial pH of 6.85. Under these conditions, at 37 °C, the volumetric productivity of lactic acid in shake flasks was 1.8 g l−1 h−1. Use of a packed bed of encapsulated cells with recycle of the broth through the bed, increased the volumetric productivity to 4.5 g l−1 h−1. The packed bed could be used in repeated batch runs to produce lactic acid.  相似文献   

20.
Phenol is one of the major toxic pollutants in the wastes generated by a number of industries and needs to be eliminated before their discharge. Although microbial degradation is a preferred method of waste treatment for phenol removal, the general inability of the degrading strains to tolerate higher substrate concentrations has been a bottleneck. Immobilization of the microorganism in suitable matrices has been shown to circumvent this problem to some extent. In this study, cells of Pseudomonas sp. CP4, a laboratory isolate that degrades phenol, cresols, and other aromatics, were immobilized by entrapment in Ca-alginate and agar gel beads, separately and their performance in a fluidized bed bioreactor was compared. In batch runs, with an aeration rate of 1 vol−1 vol−1 min−1, at 30°C and pH 7.0 ± 0.2, agar-encapsulated cells degraded up to 3000 mg l−1 of phenol as compared to 1500 mg l−1 by Ca-alginate-entrapped cells whereas free cells could tolerate only 1000 mg l−1. In a continuous process with Ca-alginate entrapped cells a degradation rate of 200 mg phenol l−1 h−1 was obtained while agar-entrapped cells were far superior and could withstand and degrade up to 4000 mg phenol l−1 in the feed with a maximum degradation rate of 400 mg phenol l−1 h−1. The results indicate a clear possibility of development of an efficient treatment technology for phenol containing waste waters with the agar-entrapped bacterial strain, Pseudomonas sp. CP4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号