首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B K Brightman  C Farmer    H Fan 《Journal of virology》1993,67(12):7140-7148
Mo+PyF101 M-MuLV is a variant Moloney murine leukemia virus containing polyomavirus F101 enhancers inserted just downstream from the M-MuLV enhancers in the long terminal repeat (LTR). The protein coding sequences for this virus are identical to those of M-MuLV. Mo+PyF101 M-MuLV induces T-cell disease with a much lower incidence and longer latency than wild-type M-MuLV. We have previously shown that Mo+PyF101 M-MuLV is defective in preleukemic events induced by wild-type M-MuLV, including splenic hematopoietic hyperplasia, bone marrow depletion, and generation of recombinant mink cell focus-inducing viruses (MCFs). We also showed that an M-MCF virus driven by the Mo+PyF101 LTR is infectious in vitro but does not propagate in mice. However, in these experiments, when a pseudotypic mixture of Mo+PyF101 M-MuLV and Mo+PyF101 MCF was inoculated into newborn NIH Swiss mice, they died of T-cell leukemia at times almost equivalent to those induced by wild-type M-MuLV. Tumor DNAs from Mo+PyF101 M-MuLV-Mo+PyF101 MCF-inoculated mice were examined by Southern blot analysis. The predominant forms of Mo+PyF101 MCF proviruses in these tumors contained added sequences in the U3 region of the LTR. The U3 regions of representative tumor-derived variant Mo+PyF101 MCFs were cloned by polymerase chain reaction amplification, and sequencing indicated that they had acquired an additional copy of the M-MuLV 75-bp tandem repeat in the enhancer region. NIH 3T3 cell lines infected with altered viruses were obtained from representative Mo+PyF101 M-MuLV-Mo+PyF101 MCF-induced tumors, and mice were inoculated with the recovered viruses. Leukemogenicity was approximately equivalent to that in the original Mo+PyF101 M-MuLV-Mo+PyF101 MCF viral stock. Southern blot analysis on the resulting tumors now predominantly revealed loss of the polyomavirus sequences. These results suggest that the suppressive effects of the PyF101 sequences on M-MuLV-induced disease and potentially on MCF propagation were overcome in two ways: by triplication of the M-MuLV direct repeats and by loss of the polyomavirus sequences.  相似文献   

2.
The pathogenic Friend virus complex is of considerable interest in that, although members of this group are genetically related, they differ markedly in biochemical and biological properties. Heteroduplex mapping of molecular clones of the Friend virus complex, which includes the replication-competent ecotropic Friend murine leukemia virus (F-MuLV) and mink cell focus-forming virus (F-MCF) and replication-defective polycythemia- and anemia-inducing strains of spleen focus-forming virus (SFFVp and SFFVa, respectively), was employed to provide insight into the molecular basis of their relationships. In heteroduplexes of F-MuLV X F-MCF, a major substitution of 0.89 kilobases in the env gene of F-MCF was discerned. Heteroduplexes of SFFVp X F-MuLV or F-MCF and SFFVa X F-MuLV or F-MCF showed several major deletions in the pol gene region and a single major deletion in the 3' half of the env gene region of SFFVp and SFFVa. A major substitution of 0.89 kilobases was mapped to the 5' end of the env deletion of SFFVp and SFFVa in heteroduplexes with F-MuLV, similar to that seen in F-MuLV X F-MCF heteroduplexes. In contrast, this env gene region was totally homologous in F-MCF X SFFVp or SFFVa and SFFVp X SFFVa heteroduplexes. Our results suggest that (i) both SFFVp and SFFVa lack part of the env gene at its 3' end, corresponding to the p15(E) coding region, (ii) major deletions occur in the pol and env genes which account for the replication defectiveness of SFFVp and SFFVa, (iii) minor substitutions occur in the gag gene region of SFFVa that are not present in SFFVp, F-MuLV, or F-MCF, (iv) a major substitution exists in the gp70 region of the env gene between F-MuLV and F-MCF that probably accounts for the differences in their host range specificities, (v) this substitution in F-MCF is identical to the gp70 part of the gp52 coding region of SFFVp and SFFVa, and (vi) heteroduplexes to F-MCF show unambiguously that no additional large substitutions are present in SFFVp or SFFVa that could account for differences in their leukemogenicity.  相似文献   

3.
Friend murine leukemia virus (F-MuLV) is a highly leukemogenic replication-competent murine retrovirus. Both the F-MuLV envelope gene and the long terminal repeat (LTR) contribute to its pathogenic phenotype (A. Oliff, K. Signorelli, and L. Collins, J. Virol. 51:788-794, 1984). To determine whether the F-MuLV gag and pol genes also possess sequences that affect leukemogenicity, we generated recombinant viruses between the F-MuLV gag and pol genes and two other murine retroviruses, amphotrophic clone 4070 (Ampho) and Friend mink cell focus-inducing virus (Fr-MCF). The F-MuLV gag and pol genes were molecularly cloned on a 5.8-kilobase-pair DNA fragment. This 5.8-kilobase-pair F-MuLV DNA was joined to the Ampho envelope gene and LTR creating a hybrid viral DNA, F/A E+L. A second hybrid viral DNA, F/Fr ENV, was made by joining the 5.8-kilobase-pair F-MuLV DNA to the Fr-MCF envelope gene plus the F-MuLV LTR. F/A E+L and F/Fr ENV DNAs generated recombinant viruses upon transfection into NIH 3T3 cells. F/A E+L virus (F-MuLV gag and pol, Ampho env and LTR) induced leukemia in 20% of NIH Swiss mice after 6 months. Ampho-infected mice did not develop leukemia. F/Fr ENV virus (F-MuLV gag and pol, Fr-MCV env, F-MuLV LTR) induced leukemia in 46% of mice after 3 months. Recombinant viruses containing the Ampho gag and pol, Fr-MCF env, and F-MuLV LTR caused leukemia in 38% of mice after 6 months. We conclude that the F-MuLV gag and pol genes contain sequences that contribute to the pathogenicity of murine retroviruses. These sequences can convert a nonpathogenic virus into a leukemia-causing virus or increase the pathogenicity of viruses that are already leukemogenic.  相似文献   

4.
The highly oncogenic erythroleukemia-inducing Friend mink cell focus-inducing (MCF) virus was molecularly cloned in phage lambda gtWES.lambda B, and the DNA sequences of the env gene and the long terminal repeat were determined. The nucleotide sequences of Friend MCF virus and Friend spleen focus-forming virus were quite homologous, supporting the hypothesis that Friend spleen focus-forming virus might be generated via Friend MCF virus from an ecotropic Friend virus mainly by some deletions. Despite their different pathogenicity, the nucleotide sequences of the env gene of Friend MCF virus and Moloney MCF virus were quite homologous, suggesting that the putative parent sequence for the generation of both MCF viruses and the recombinational mechanism for their generation might be the same. We compare the amino acid sequences in lymphoid leukemia-inducing ecotropic Moloney virus and Moloney MCF virus, and erythroblastic leukemia-inducing ecotropic Friend virus, Friend-MCF virus, and Friend spleen focus-forming virus. The Friend MCF virus long terminal repeat was found to be 550 base pairs long. This contained two copies of the 39-base-pair tandem repeat, whereas the spleen focus-forming virus genome contained a single copy of the same sequence.  相似文献   

5.
PVC-211 murine leukemia virus (MuLV) is a replication-competent, ecotropic type C retrovirus that was isolated after passage of the Friend virus complex through F344 rats. Unlike viruses in the Friend virus complex, it does not cause erythroleukemia but causes a rapidly progressive hind limb paralysis when injected into newborn rats and mice. We have isolated an infectious DNA clone (clone 3d) of this virus which causes neurological disease in animals as efficiently as parental PVC-211 MuLV. The restriction map of clone 3d is very similar to that of the nonneuropathogenic, erythroleukemogenic Friend murine leukemia virus (F-MuLV), suggesting that PVC-211 MuLV is a variant of F-MuLV and that no major structural alteration was involved in its derivation. Studies with chimeric viruses between PVC-211 MuLV clone 3d and wild-type F-MuLV clone 57 indicate that at least one determinant for neuropathogenicity resides in the 2.1-kb XbaI-ClaI fragment containing the gp70 coding region of PVC-211 MuLV. Compared with nonneuropathogenic ecotropic MuLVs, the env gene of PVC-211 MuLV encodes four unique amino acids in the gp70 protein. Nucleotide sequence analysis also revealed a deletion in the U3 region of the long terminal repeat (LTR) of PVC-211 MuLV clone 3d compared with F-MuLV clone 57. In contrast to the env gene of PVC-211 MuLV, particular sequences within the U3 region of the viral LTR do not appear to be required for neuropathogenicity. However, the changes in the LTR of PVC-211 MuLV may be responsible for the failure of this virus to cause erythroleukemia, because chimeric viruses containing the U3 region of F-MuLV clone 57 were erythroleukemogenic whereas those with the U3 of PVC-211 MuLV clone 3d were not.  相似文献   

6.
Nucleotide sequences encoding gp70, Prp15E, and the U3 region of the long terminal repeat (LTR) distinguish mink cell focus-forming (MCF) retroviruses that can induce leukemia in AKR mice from closely related MCF and ecotropic murine retroviruses that are nonleukemogenic in all inbred mouse strains tested (Lung et al., Cold Spring Harbor Symp. Quant. Biol. 44:1269-1274, 1979; Lung et al., J. Virol. 45:275-290, 1983). We used a set of recombinants constructed in vitro from molecular clones of leukemogenic MCF 247 and nonleukemogenic ecotropic Akv to separate and thereby directly test the role of these genetic elements in disease induction. Leukemogenicity tests of recombinants in AKR mice show that introduction of fragments containing either an MCF LTR or MCF gp70 coding sequences can confer only a very low incidence of disease induction on Akv virus, whereas an MCF type Prp15E alone is completely ineffective. Recombinants with an MCF 247 LTR in combination with MCF Prp15E are moderately oncogenic, whereas those with an MCF 247 LTR plus MCF gp70 coding segment are quite highly leukemogenic. Mice infected with the latter virus show a substantial increase in latent period of disease induction relative to MCF 247; this delay can be reduced when Prp15E, and hence the entire 3' half of the genome, is from MCF 247. Surprisingly, sequences in the 5' half of the genome can also contribute to disease induction. We found a good correlation between oncogenicity and recovery of MCF viruses from thymocytes of injected mice, with early recovery and high titers of MCF in the thymus being correlated with high oncogenicity. This correlation held for recombinants with either an MCF or ecotropic type gp70. Together, these results (i) demonstrate that at least four genes contribute to the oncogenicity of MCF viruses in AKR mice and (ii) suggest that recombinants with only some of the necessary MCF type genes induce leukemia because they recombine to generate complete MCF genomes. Although neither Akv nor MCF 247 is leukemogenic in NFS mice, recombinant viruses whose gp70 gene was derived from Akv but whose LTRs were derived from MCF 247 induced a low incidence of leukemia in this mouse strain.  相似文献   

7.
Rauscher and Friend spleen focus-forming viruses (R- and F-SFFVs) cause similar progressive erythroleukemias dependent upon a virus-encoded membrane glycoprotein. Moreover, these SFFV glycoproteins are immunologically related to each other and to the recombinant-type glycoproteins encoded by the env genes of dual tropic murine leukemia viruses. To better understand these diseases and the viral origins, we isolated a pathogenically active molecular clone of R-SFFV proviral DNA, sequenced its 3'-terminal 2,163-base-pair (bp) region, and compared these sequences with previously determined sequences of F-SFFV. The 516-bp R-SFFV long terminal repeat is highly homologous to those of F-SFFV and Friend murine leukemia virus, although only the latter contains a 65-bp direct repeat in its U3 region. The env gene of R-SFFV encodes a glycoprotein with 408 amino acids that is identical in its basic domain organization to the glycoprotein of F-SFFV. Thus, the junctions between the dual tropic-related and ecotropic sequences occur at the same nucleotide, and both SFFV env genes contain identical 585-bp deletions in their ecotropic domains and single-bp insertions which cause premature terminations at the same amino acid in their ecotropic p15E domains. Consistent with their independent origins, however, the env sequences of R- and F-SFFV are distinctive in both their 5' dual tropic-related and 3' ecotropic-related domains. Furthermore, there are several consistent amino acid differences between the polycythemic F-SFFV sequences and the anemia-inducing R-SFFV sequence. The striking similarities of the independently formed F- and R-SFFV env genes imply that all of the glycoprotein domains arranged in a precise organization may be required for its leukemogenic activity  相似文献   

8.
Two murine leukemia viruses were isolated from JLS-V9 cells which had been infected with Rauscher plasma virus. One virus was XC positive and failed to grow on mink or cat cells and thus was an ecotropic virus. The other virus formed cytopathic foci on mink cells, was XC negative, and fell into the mink cell focus-forming (MCF) viral interference group and was thus an MCF virus. The glycoproteins of the two viruses could be distinguished immunologically, by peptide mapping, and by size in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The MCF virus produced gp69, and the ecotropic virus produced gp71, explaining the origin of the heterogeneous glycoprotein (gp69 and gp71) of Rauscher leukemia virus. Amino-terminal sequences of gp69 and gp71 were determined. The MCF sequence was distinct from the ecotropic sequence, but retained partial homology to it. The data show that the glycoproteins are encoded by related yet distinct genes. The protein structural data support the proposal that MCF virus gp70 molecules have nonecotropic sequences at the amino terminus, with ecotropic sequences occurring at the 3' end of the gene. The Rauscher MCF virus glycoprotein lacks a glycosylation site found at position 12 of the ecotropic sequence.  相似文献   

9.
The sequence relationships betwen AKR ecotropic virus and an AKR-derived "mink cell focus-inducing" (MCF) isolate (AKR MCF 247), between Moloney murine leukemia virus (M-MLV) and an M-MLV MCF isolate (M-MLV83), and between AKR and M-MLV were studied by electron microscopic heteroduplex analysis. The MCF-specific sequences were found to map from 1.95 kilobases (kb) to 2.75 kb (+/- 0.15 kb) from the 3' end of the RNAs for both MCF isolates. The major sequence nonhomology regions between AKR and M-MLV lie between 0.9 and 3.5 kb from the 3' end. However, the AKR and M-MLV sequences immediately adjacent to the 1.95- and 2.75-kb junctions with MCF-specific sequences are relatively similar in AKR and M-MLV. Our results suggest that the env gene of MLVs maps from 1 kb to 3 kb from the 3' end of the genomic RNA and that the carboxyl end of the glycoprotein of each MCF strain is similar (or identical) to that of its ecotropic parent.  相似文献   

10.
Nucleotide sequence of the 3' end of MCF 247 murine leukemia virus   总被引:32,自引:24,他引:8       下载免费PDF全文
We isolated DNA clones of MCF 247, a leukemogenic, recombinant type C virus obtained from the thymus of an AKR mouse. We determined the nucleotide sequence of the viral long terminal repeat (LTR) and the 3' end of env, and we compared the sequences to corresponding sequences of the genome of Akv virus, the putative ecotropic parent of MCF 247. By analogy with Moloney leukemia virus, we identified the amino terminus of Prp15E, the C-terminal proteolytic cleavage product of env and precursor to mature virion p15E. In MCF 247 the presumptive Prp15E is encoded by a 603-nucleotide open reading frame. The majority of this sequence is identical to that of Akv. However, a recombination event near the 3' end of the Prp15E-coding region introduces nonecotropic sequences into MCF 247, and these extend to the 3' end through the U3 portion of the LTR. The U3 regions of Akv and MCF 247 are about 83% homologous. The R and U5 regions of the LTR of MCF 247 and Akv are identical. Large RNase T1-resistant oligonucleotides analyzed previously in numerous ecotropic and MCF viral genomes were located within the Akv and MCF 247 DNA sequences. The resulting precise T1 oligonucleotide maps of the 3' ends of MCF viral genomes reveal that the biologically defined, leukemogenic class I MCFs isolated from thymic neoplasms of inbred mice all share the sequence pattern seen in MCF 247, a representative of this group; they possess recombinant Prp15E genes and derive U3 from their nonecotropic parents.  相似文献   

11.
Recombinant viruses have been implicated in the pathogenesis of murine leukemias induced by a variety of long-latency retroviruses. Neonatal mice of several strains were inoculated with Friend ecotropic virus (F-Eco) and analyzed for the presence of mink cell focus-inducing (MCF) virus or DNA restriction enzyme fragments which were specific for Friend MCF virus (F-MCF). MCF virus was detected within 2 weeks of inoculation in NFS /N mice and at about 2 months after inoculation in BALB/c mice. Both of these strains developed erythroblastosis after inoculation with F-Eco. In contrast, MCF virus was not detected in F-Eco-inoculated C57BL mice. These mice were resistant to erythroblastosis but developed lymphoma or myelogenous leukemia or both at about 5 months after inoculation. Thus, although MCF viruses were associated with F-Eco erythroblastosis in NFS /N and BALB/c mice, they were not necessary for F-Eco-induced lymphoid or myeloid leukemias in C57BL mice. To investigate the association between resistance to erythroblastosis and absence of MCF virus, C57BL mice were inoculated with pseudotypic mixtures of F-Eco plus F-MCF; MCF virus replicated well in these mice, but the mice remained resistant to erythroblastosis. Furthermore, in genetic crosses between C57BL and NFS /N or BALB/c, some mice inherited resistance to F-Eco erythroblastosis without inheriting the C57BL resistance to the generation of MCF viruses. These results indicate that C57BL mice carry a gene for resistance to F-Eco erythroblastosis which is distinct from the C57BL genes which interfere with the generation of MCF viruses.  相似文献   

12.
The oncogenic potential of many nonacute retroviruses is dependent on the duplication of the enhancer sequences present in the unique 3′ (U3) region of the long terminal repeat (LTR). In a molecular clone (MCF 247-W) of the murine leukemia virus MCF 247, a leukemogenic mink cell focus-inducing (MCF) virus, the U3 enhancer sequences are tandemly repeated in the LTR. We mutated the enhancer region of MCF 247-W to test the hypothesis that the duplicated enhancer sequences of this virus have a sequence-specific and/or a stereospecific role in enhancer function required for transformation. In one virus, we inserted 14 nucleotide bp into the novel sequence generated at the junction of the two enhancers to generate an MCF virus with an interrupted enhancer region. In the second virus, only one copy of the enhancer sequences was present. This second virus also lacked the junction sequence present between the two enhancers of MCF 247-W. Both viruses were less leukemogenic and had a longer mean latency period than MCF 247-W. These data indicate that the sequence generated at the junction of the two enhancers and/or the stereospecific arrangement of the two enhancer elements are required for the full oncogenic potential of MCF 247-W. We analyzed proviral LTRs within the c-myc locus in tumor DNAs from mice injected with the MCF virus with the interrupted enhancer region. Some of the proviral LTRs integrated upstream of c-myc contain enhancer regions that are larger than those of the injected virus. These results are consistent with the suggestion that the virus with an interrupted enhancer changes in vivo to perform its role in the transformation of T cells.  相似文献   

13.
We have sequenced the envelope (env) gene and most of the adjacent 3' long terminal repeat (LTR) of Gardner-Arnstein feline leukaemia virus subtype B. The LTR of this virus contains, at corresponding positions, all signal sequence elements known from other retroviral LTRs. The deduced amino acid sequence of the longest open reading frame was compared with env polypeptide sequences of several murine leukaemia viruses. This allowed us to predict the positions of both p12/15env and gp70 polypeptides as well as a hydrophobic leader polypeptide. The env polypeptides of the different viruses show long stretches of homology and similar hydrophilicity profiles in the p12env region and in the carboxy-terminal half of gp70 (constant region). The most extensive variations are confined to certain parts of the amino-terminal half of gp70 (differential region). In this region, however, feline leukaemia virus and murine mink cell focus forming viruses are still closely related. A correspondingly spaced pattern of identical, short amino acid sequences appears in three different parts of the env polyprotein, suggesting its evolution from a primordial env-related precursor by tandem duplications.  相似文献   

14.
Rous-associated virus 0 (RAV-0), an endogenous chicken virus, does not cause disease when inoculated into susceptible domestic chickens. An infectious unintegrated circular RAV-0 DNA was molecularly cloned, and the sequence of the long terminal repeat (LTR) and adjacent segments was determined. The sequence of the LTR was found to be very similar to that of replication-defective endogenous virus EV-1. Like the EV-1 LTR, the RAV-0 LTR is smaller (278 base pairs instead of 330) than the LTRs of the oncogenic members of the avian sarcoma virus-avian leukosis virus group. There is, however, significant homology. The most striking differences are in the U(3) region of the LTR, and in this region there are a series of small segments present in the oncogenic viruses which are absent in RAV-0. These differences in the U(3) region of the LTR could account for the differences in the oncogenic potential of RAV-0 and the avian leukosis viruses. I also compared the regions adjacent to the RAV-0 LTR with the available avian sarcoma virus sequences. A segment of approximately 200 bases to the right of the LTR (toward gag) is almost identical in RAV-0 and the Prague C strain of Rous sarcoma virus. The segment of RAV-0 which lies between the end of the env gene and U(3) is approximately 190 bases in length. Essentially this entire segment is present between env and src in the Schmidt-Ruppin A strain of Rous sarcoma virus. Most of this segment is also present between env and src in Prague C; however, in Prague C there is an apparent deletion of 40 bases in the region adjacent to env. In Schmidt-Ruppin A, but not in Prague C, about half of this segment is also present between src and the LTR. This arrangement has implications for the mechanism by which src was acquired. The region which encoded the gp37 portion of env appears to be very similar in RAV-0 and the Rous sarcoma viruses. However, differences at the very end of env imply that the carboxy termini of RAV-0, Schmidt-Ruppin A, and Prague C gp37s are significantly different. The implications of these observations are considered.  相似文献   

15.
We sequenced the envelope (env) gene and 3' long terminal repeat of a Friend mink cell focus-inducing virus (F-MCFV). We also sequenced the gp70 coding regions for two cDNA clones of another F-MCFV. The deduced amino acid sequence of the env gene products of both F-MCFVs were compared to the corresponding sequences of other MCFVs and of ecotropic viruses. The env polypeptides of the different viruses showed long stretches of homology in the carboxy-terminal half of gp70 and in p15env ("constant region"). The amino-terminal half of gp70 was very similar in all MCFVs, but showed extensive variations relative to the ecotropic viruses ("differential region"). This differential region in all MCFVs is of endogeneous origin. We show evidence that this region carries determinants for ecotropic or polytropic host range. No indication could be found that the env gene products determine the histological type of disease caused by particular MCFVs. When the long terminal repeats of F-MCFV and Friend murine leukemia virus were compared with those of other viruses causing either lymphatic leukemia or erythroleukemia, several nucleotides were localized which might determine the histological type of disease caused by these viruses.  相似文献   

16.
The wild mouse ecotropic retrovirus CasBrE causes a spongiform neurodegenerative disease after neonatal inoculation, with an incubation period ranging from 2 to 12 months. We previously showed that introduction of long terminal repeat (LTR) and gag-pol sequences from a strain of Friend murine leukemia virus (FB29) resulted in a dramatic acceleration of the onset of the disease. The chimeric virus FrCasE, which consisted of the FB29 genome containing 3' pol and env sequences from the wild mouse virus, induced a highly predictable, lethal neurodegenerative disease with an incubation period of only 16 days. Here we report that the sequences which are primary determinants of the length of the incubation period are located in the 5' end of the viral genome between a KpnI site in the R region of the LTR and a PstI site immediately 5' of the start codon for pr65gag (R-U5-5' leader). This region contains the tRNA primer binding site, splice donor site for the subgenomic env mRNA, and the packaging sequence. Computer-assisted sequence analysis failed to find evidence of a consensus sequence for a DNA enhancer in this region. In addition, sequences within a region of the genome between a ClaI site at the 3' end of env to the KpnI site in the R region of the LTR (inclusive of U3) also influenced the incubation period of the disease, but the effect was distinctly weaker than that of the R-U5-5' leader sequence. This U3 effect, however, appeared to be independent of the number of direct repeats, since deletion of one of two duplicated 42-base repeats containing consensus sequences of nuclear-factor binding domains had no effect on the incubation period of the disease. On the basis of Southern blot analysis of total viral DNA in the tissues, the effect of these sequences on the incubation period appeared to be related to the level of virus replication in the central nervous system. All of the chimeric viruses analyzed, irrespective of neurovirulence, replicated to comparable levels in the spleen and induced comparable levels of viremia.  相似文献   

17.
We isolated and characterized two spontaneous, weakly leukemogenic mutants of Rauscher spleen focus-forming virus (R-SFFV) that contain mutations in nonoverlapping regions of the membrane envelope (env) glycoprotein gene. As reported previously (M. Ruta and D. Kabat, J. Virol. 35:844-853, 1980), the replication-defective R-SFFV encodes a membrane glycoprotein with an apparent Mr of 54,000 (gp54) which is structurally and immunologically related to the membrane envelope glycoproteins of dual-tropic murine leukemia viruses. Mutant R-SFFV clones 3-25 and 4-3 encode abnormally sized gp54-related glycoproteins with apparent Mrs of 52,000 (gp52) and 45,000 (gp45), respectively. Northern and Southern blot analyses of the mutant R-SFFV nucleic acids indicated that an insertion has occurred in the 3-25 env gene and that a deletion has occurred in the 4-3 env gene. Furthermore, restriction endonuclease analyses and comparisons of the fragmentation patterns of the wild-type and mutant glycoproteins generated by partial proteolysis with Staphylococcus aureus V8 protease indicated that the mutations affect nonoverlapping domains of the envelope glycoprotein (amino-terminal fragment affected in 3-25 glycoprotein and carboxyl-terminal fragment affected in 4-3 glycoprotein). Glycosylation inhibition studies indicated that the reduced size of gp52 is caused at least partly by loss of an asparagine-linked oligosaccharide. In addition, these mutant viruses have dramatically reduced leukemogenicities compared with wild-type R-SFFV. We conclude that the gp54 structural gene is required for initiation or amplification of the splenic erythroblast hyperplasia which characterizes the preleukemic phase of Rauscher disease.  相似文献   

18.
19.
N Watanabe  T Yugawa  Y Ikawa    H Amanuma 《Journal of virology》1995,69(12):7606-7611
Friend spleen focus-forming virus (F-SFFV) causes acute erythroleukemia in mice and encodes in its defective env gene an Env-like membrane glycoprotein (gp55). The F-SFFV env gene has three characteristic structures compared with that of ecotropic murine leukemia viruses (MuLVs): substitution by the polytropic MuLV env sequence, a 585-bp deletion, and a 1-bp insertion. All of these characteristic structures are essential for the leukemogenic potential of gp55 of polycythemia-inducing isolates of F-SFFV (F-SFFVp). The 1-bp insertion causes changes of six amino acids and truncation by 34 amino acids at the C terminus. In this study, we constructed 12 mutant F-SFFV genomes starting from the wild-type F-SFFVp and examined the effect of the C-terminal truncation and the six altered amino acids on the pathogenic activity of gp55. The results indicated that at least 18 to 24 amino acids must be deleted from the C terminus for the env product to be pathogenically active. We also found that the six altered amino acids contributed significantly to the pathogenic activity of gp55. Analyses of the cellular processing of these mutant gp55s supported a correlation between the pathogenic activity of gp55 and its efficiency in overall cellular processing.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号