首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The VpreB3 gene product was first characterized as an immunoglobulin (Ig) mu heavy chain-binding protein in mouse precursor B (pre-B) cells. Although its function is unknown, it has been proposed to participate in the assembly and transport of the pre-B cell receptor. We have identified a VpreB3 orthologous gene in chicken that is located close to the immunoglobulin light chain (LC) gene cluster and specifically expressed in the bursa of Fabricius. By overexpressing VpreB3 in the DT40 IgM(+) immature chicken B cell line, we have characterized VpreB3 as an endoplasmic reticulum-resident glycoprotein that binds preferentially to free IgLC. However, binding to IgHC is observed in IgLC-deficient DT40 cells. Interaction of VpreB3 with free IgLC is partly covalent and induces retention of free IgLC in the endoplasmic reticulum, preventing their secretion without affecting IgM surface expression. Our results demonstrate that this evolutionarily conserved molecule may play a role in the regulation of the maturation and secretion of free IgLC in B cells. We discuss possible implications in the regulation of the immune response.  相似文献   

2.
Heavy chain-binding protein (BiP) associates posttranslationally with nascent Ig heavy chains in the endoplasmic reticulum (ER) and remains associated with these heavy chains until they assemble with light chains. The heavy chain-BiP complex can be precipitated by antibody reagents against either component. To identify sites on heavy chain molecules that are important for association with BiP, we have examined 30 mouse myelomas and hybridomas that synthesize Ig heavy chains with well characterized deletions. Mutant Ig heavy chains that lack the CH1 domain could not be demonstrated to associate with BiP, whereas mutant Ig heavy chains with deletions of the CH2 or CH3 domain were still able to associate with BiP. In two light chain negative cell lines that produced heavy chains with deletions of the CH1 domain, free heavy chains were secreted. When Ig assembly and secretion were examined in mutants that did not associate with BiP, and were compared with normal parental lines, it was found that the rate of Ig secretion was increased in the mutant lines and that the Ig molecules were secreted in various stages of assembly. In one mutant line (CH1-) approximately one-third of the secreted Ig molecules were incompletely assembled, whereas the Ig molecules secreted by the parental line were completely assembled. Our data show the CH1 domain to be important for association with BiP and that when this association does not occur, incompletely assembled heavy chains can be secreted. This implies a role for BiP in preventing the transport of unassembled Ig molecules from the ER.  相似文献   

3.
The immunoglobulin (Ig) molecule is composed of two identical heavy chains and two identical light chains (H2L2). Transport of this heteromeric complex is dependent on the correct assembly of the component parts, which is controlled, in part, by the association of incompletely assembled Ig heavy chains with the endoplasmic reticulum (ER) chaperone, BiP. Although other heavy chain-constant domains interact transiently with BiP, in the absence of light chain synthesis, BiP binds stably to the first constant domain (CH1) of the heavy chain, causing it to be retained in the ER. Using a simplified two-domain Ig heavy chain (VH-CH1), we have determined why BiP remains bound to free heavy chains and how light chains facilitate their transport. We found that in the absence of light chain expression, the CH1 domain neither folds nor forms its intradomain disulfide bond and therefore remains a substrate for BiP. In vivo, light chains are required to facilitate both the folding of the CH1 domain and the release of BiP. In contrast, the addition of ATP to isolated BiP-heavy chain complexes in vitro causes the release of BiP and allows the CH1 domain to fold in the absence of light chains. Therefore, light chains are not intrinsically essential for CH1 domain folding, but play a critical role in removing BiP from the CH1 domain, thereby allowing it to fold and Ig assembly to proceed. These data suggest that the assembly of multimeric protein complexes in the ER is not strictly dependent on the proper folding of individual subunits; rather, assembly can drive the complete folding of protein subunits.  相似文献   

4.
A rat monoclonal antibody specific for immunoglobulin (Ig) heavy chain binding protein (BiP) has allowed the examination of the association of BiP with assembling Ig precursors in mouse B lymphocyte-derived cell lines. The anti-BiP monoclonal antibody immunoprecipitates BiP along with noncovalently associated Ig heavy chains. BiP is a component of the endoplasmic reticulum and binds free intracellular heavy chains in nonsecreting pre-B (mu+, L-) cell lines or incompletely assembled Ig precursors in (H+, L+) secreting hybridomas and myelomas. In the absence of light chain synthesis, heavy chains remain associated with BiP and are not secreted. The association of BiP with assembling Ig molecules in secreting hybridomas is transient and is restricted to the incompletely assembled molecules which are found in the endoplasmic reticulum. BiP loses affinity and disassociates with Ig molecules when polymerization with light chain is complete. We propose that the association of BiP with Ig heavy chain precursors is a novel posttranslational processing event occurring in the endoplasmic reticulum. The Ig heavy chains associated with BiP are not efficiently transported from the endoplasmic reticulum to the Golgi apparatus. Therefore, BiP may prevent the premature escape and eventual secretion of incompletely assembled Ig molecules.  相似文献   

5.
The HL-60 cell line, established from a patient with acute promyelocytic leukemia, can be induced to undergo differentiation along the granulocyte or monocyte/macrophage line, depending on the particular inducer that is used. In this communication we provide evidence that HL-60 cells also have B lymphoid characteristics because by flow cytometry and clonal excess calculations, these cells are found to express immunoglobulin (Ig) lambda light chains on their surface. Furthermore, HL-60 cells contain poly(A)+ RNA that hybridizes with a DNA fragment encoding the constant region of Ig lambda chains and comigrates with lambda mRNA on RNA blots. Treatment of HL-60 cells with a phorbol ester that induces monocyte/macrophage differentiation resulted in the loss of surface Ig lambda chains and lambda RNA.  相似文献   

6.
We have recently shown that Neovastat, an antiangiogenic extract from shark cartilage, stimulates the in vitro activation of plasminogen by facilitating the tissue-type plasminogen activator (tPA)-dependent conversion of plasminogen to plasmin. In this report, we describe the purification and characterization of the stimulatory molecules. Neovastat was subjected to a three-step purification procedure including gel filtration, preparative isoelectric focusing, and preparative SDS-PAGE. Two 28-kDa proteins with pIs of approximately 4.5 and 6.5 were purified to apparent homogeneity and identified as immunoglobulin (Ig) kappa light chains by N-terminal microsequencing. Ig light chains do not directly stimulate the activity of tPA or plasmin, suggesting a mechanism of action involving an interaction with plasminogen. Kinetic analysis showed that both Ig light chains accelerate the in vitro tPA-dependent conversion of plasminogen in plasmin by increasing the affinity of tPA for plasminogen by 32- and 38-fold (Km decrease from 456 nM to 12-14 nM). Shark Ig light chains also stimulated the degradation of fibrin by the tPA/plasminogen system in an in vitro assay. A direct interaction between Ig light chains and plasminogen (KA=4.0-5.5 x 10(7) M(-1); KD=18-25 nM) and with tPA (KA=2.8 x 10(7) M(-1); KD=36 nM) was demonstrated using real time binding measured by surface plasmon resonance. Ig light chain is the first molecule associated with the antiangiogenic activity of Neovastat to be purified and identified.  相似文献   

7.
Immunoglobulin heavy chain binding protein (BiP, GRP78) associates stably with the free, nonsecreted Ig heavy chains synthesized by Abelson virus transformed pre-B cell lines. In cells synthesizing both Ig heavy and light chains, the Ig subunits assemble rapidly and are secreted. Only incompletely assembled Ig molecules can be found bound to BiP in these cells. In addition to Ig heavy chains, a number of mutant and incompletely glycosylated transport-defective proteins are stably complexed with BiP. When normal proteins are examined for combination with BiP, only a small fraction of the intracellular pool of nascent, unfolded, or unassembled proteins can be found associated. It has been difficult to determine whether these BiP-associated molecules represent assembly intermediates which will be displaced from BiP and transported from the cell, or whether these are aberrant proteins that are ultimately degraded. In order for BiP to monitor and aid in normal protein transport, its association with these proteins must be reversible and the released proteins should be transport competent. In the studies described here, transient heterokaryons were formed between a myeloma line producing BiP-associated heavy chains and a myeloma line synthesizing the complementary light chain. Introduction of light chain synthesis resulted in assembly of prelabeled heavy chains with light chains, displacement of BiP from heavy chains, and secretion of Ig into the culture supernatant. These data demonstrate that BiP association can be reversible, with concordant release of transportable proteins. Thus, BiP can be considered a component of the exocytic secretory pathway, regulating the transport of both normal and abnormal proteins.  相似文献   

8.
Immunoglobulin (Ig)-binding bacterial proteins have attracted theoretical interest for their role in molecular host-parasite interactions, and they are widely used as tools in immunology, biochemistry, medicine, and biotechnology. Protein L of the anaerobic bacterial species Peptostreptococcus magnus binds Ig light chains, whereas streptococcal protein G has affinity for the constant (Fc) region of IgG. In this report, Ig binding parts of protein L and protein G were combined to form a hybrid molecule, protein LG, which was found to bind a large majority of intact human Igs as well as Fc and Fab fragments, and Ig light chains. Binding to Ig was specific, and the affinity constants of the reactions between protein LG and human IgG, IgGFc fragments, and kappa light chains, determined by Scatchard plots, were 5.9 x 10(9), 2.2 x 10(9), and 2.0 x 10(9) M-1, respectively. The binding properties of protein LG were more complete as compared with previously described Ig-binding proteins when also tested against mouse and rat Igs. This hybrid protein thus represents a powerful tool for the binding, detection, and purification of antibodies and antibody fragments.  相似文献   

9.
The unreduced immunoglobulins (Ig) in the bullfrog, Rana catesbeiana, dissociate into two components when subjected to electrophoresis or molecular sieving in dissociating solvents. One of these components is monomeric light chain and the other is a disulfide-bonded complex of heavy chains. This unusual behavior has been observed with all classes of bullfrog Ig that have been isolated and characterized previously: a high m.w. Ig that resembles mammalian IgM and two antigenically distinct varieties of low m.w. Ig. Light chains, isolated from the high m.w. Ig by gel filtration in 8 M urea, 1 M acidic acid, were found to contain, on average, 5.7 residues of half-cystine. None of these residues were in the free sulfhydryl form nor were they blocked by half-cystine. Moreover, none was alkylated after mild reduction of the high m.w. Ig. These findings indicate that none of the light chain half-cystine residues participate in an interchain disulfide bridge, and that most of the light chains contain three intrachain bridges. This unusual pattern of disulfide bonding appears to be responsible for the noncovalent association of heavy and light chains in this species.  相似文献   

10.
Secretory immunoglobulin (Ig) A is a decameric Ig composed of four alpha-heavy chains, four light chains, a joining (J) chain, and a secretory component (SC). The heavy and light chains form two tetrameric Ig molecules that are joined by the J chain and associate with the SC. Expression of a secretory monoclonal antibody in tobacco (Nicotiana tabacum) has been described: this molecule (secretory IgA/G [SIgA/G]) was modified by having a hybrid heavy chain sequence consisting of IgG gamma-chain domains linked to constant region domains of an IgA alpha-chain. In tobacco, about 70% of the protein assembles to its final, decameric structure. We show here that SIgA/G assembly and secretion are slow, with only approximately 10% of the newly synthesized molecules being secreted after 24 h and the bulk probably remaining in the endoplasmic reticulum. In addition, a proportion of SIgA/G is delivered to the vacuole as at least partially assembled molecules by a process that is blocked by the membrane traffic inhibitor brefeldin A. Neither the SC nor the J chain are responsible for vacuolar delivery, because IgA/G tetramers have the same fate. The parent IgG tetrameric molecule, containing wild-type gamma-heavy chains, is instead secreted rapidly and efficiently. This strongly suggests that intracellular retention and vacuolar delivery of IgA/G is due to the alpha-domains present in the hybrid alpha/gamma-heavy chains and indicates that the plant secretory system may partially deliver to the vacuole recombinant proteins expected to be secreted.  相似文献   

11.
We have previously prepared human anti-double-stranded (ds) DNA IgG Fab clones using phage-display technology. Nucleotide sequence analysis of genes of immunoglobulin (Ig) heavy and light chain variable regions in these Fab clones suggested that the DNA-binding activity of the clones depended on light chain usage. To confirm the role of the light chain in antibody binding to DNA, we constructed in the present study's new recombined Fab clones by heavy and light chain shuffling between the original anti-dsDNA Fab clones. Clones constructed by pairing Fdgamma fragments with the light chain from a high DNA-binding clone showed high DNA-binding activities, whereas other constructed clones using light chains from low DNA-binding clones showed low DNA-binding activities. Our results indicate that light chains in anti-dsDNA antibodies can determine the DNA-binding activity of the antibodies. Ig chain shuffling of phage-display antibodies may be useful for investigating the molecular mechanisms for antigen-antibody binding of human autoantibodies.  相似文献   

12.
We have generated mice that lack the ability to produce immunoglobulin (Ig) kappa light chains by targeted deletion of J kappa and C kappa gene segments and the intervening sequences in mouse embryonic stem cells. In wild type mice, approximately 95% of B cells express kappa light chains and only approximately 5% express lambda light chains. Mice heterozygous for the J kappa C kappa deletion have approximately 2-fold more lambda+ B cells than wild-type littermates. Compared with normal mice, homozygous mutants for the J kappa C kappa deletion have about half the number of B cells in both the newly generated and the peripheral B cell compartments, and all of these B cells express lambda light chains in their Ig. Therefore, homozygous mutant mice appear to produce lambda-expressing cells at nearly 10 times the rate observed in normal mice. These findings demonstrate that kappa gene assembly and/or expression is not a prerequisite for lambda gene assembly and expression. Furthermore, there is no detectable rearrangement of 3' kappa RS sequences in lambda+ B cells of the homozygous mutant mice, thus rearrangements of these sequences, per se, is not required for lambda light chain gene assembly. We discuss these findings in the context of their implications for the control of Ig light chain gene rearrangement and potential applications of the mutant animals.  相似文献   

13.
We have analysed reassociated Ig molecules, containing heavy (H) or light (L) chains of Ig-B2 monoclonal antibody with human fibronectin binding activity and L of H chains of normal mouse serum immunoglobulin (Ig-NM). Examination of Ig-B2 idiotype expression in reassociated Ig indicated that 0.4% L-NM and 0.8% H-NM were able to restore Ig-B2 idiotype. The analysis of antigen binding capacity of reassociated Ig demonstrated, that only 4% H-NM created antigen binding site in complex with L-B2. We have determined the leading role of L-chain in creation of idiotype and binding site of Ig-B2. Selectivity of interaction between H and L chains is discussed. The results indicate, that not more than 4-6% of random H--L combinations produce functional Ig.  相似文献   

14.
Consistent with an ordered immunoglobulin (Ig) gene assembly process during precursor (pre-) B cell differentiation, we find that most Abelson murine leukemia virus (A-MuLV)-transformed pre-B cells derived from scid (severe combined immune deficient) mice actively form aberrant rearrangements of their Ig heavy chain locus but do not rearrange endogenous kappa light chain variable region gene segments. However, we have identified several scid A-MuLV transformants that transcribe the germline Ig kappa light chain constant region and actively rearrange the kappa variable region gene locus. In one case progression to the stage of kappa light chain gene rearrangement did not require expression of Ig mu heavy chains; furthermore, this progression could not be efficiently induced following expression of mu heavy chains from an introduced vector. As observed in pre-B cell lines from normal mice, attempted V kappa-to-J kappa rearrangements in scid transformants occur by inversion at least as frequently as by deletion. The inverted rearrangements result in retention of both products of the recombination event in the chromosome, thus allowing their examination. scid kappa coding sequence joins are aberrant and analogous in structure to previously described scid heavy chain coding joins. In contrast, the recognition signals that flank involved coding segments frequently are joined precisely back-to-back in normal fashion. The scid VDJ recombinase defect therefore does not significantly impair recognition of, site-specific cutting at, or juxtaposition and appropriate ligation of signal sequences. Our finding that the scid defect prevents formation of correct coding but not signal joins distinguishes these events mechanistically.  相似文献   

15.
Pre-B cell receptor (pre-BCR) signals are essential for pro-B cells to mature efficiently into pre-B cells. The pre-BCR is an Ig-like transmembrane complex that is assembled from two mu H chains (mu HC) and two surrogate L chains consisting of the non-covalently associated polypeptides VpreB and lambda5. In lambda5(-/-) mice, pro-B cell maturation is impaired, but not completely blocked, implying that a mu HC induces differentiation signals in the absence of lambda5. Using a mouse model, in which transgenic mu HC expression can be controlled by tetracycline, we show that in the absence of lambda5, the transgenic mu HC promotes in vivo differentiation of pro-B cells, induces IL-7-dependent cell growth, and is expressed on the surface of pre-B cells. Our findings not only show that an incomplete pre-BCR can initiate signals, but also challenge the paradigm that an IgHC must associate with an IgLC or a SLC to gain transport and signaling competency.  相似文献   

16.
1. The light chains of human immunoglobulin (Ig) exist in two forms, kappa (type K) and lambda (type L). The two types of chains can be partially separated by taking advantage of the fact that lambda-chains, for the most part, dissociate from reduced Ig at higher pH than do the kappa-chains. The same difference in dissociation of type K and L chains was observed with myeloma IgG and IgA proteins, but not with pathological IgM proteins. 2. When analysed in urea-glycine starch gels, pH7, both kappa- and lambda-chains show ten electrophoretic bands having the same mobilities as those of the whole light-chain subfractions. Normal kappa- and lambda-chains show similar differences in overall amino acid composition to those previously found with myeloma kappa- and lambda-chains and type K and L Bence-Jones proteins.  相似文献   

17.
It is well understood how a variety of Ig H and L chains, components of BCR, are generated in the DNA level during B cell development. However, it has remained largely unknown whether and how each component is monitored for its quality and selected before the assembly into the BCR. Here we show that muH chains produced by pre-B cells display a wide spectrum of ability to form the pre-BCR, which is composed of muH and surrogate light (SL) chains and is crucial for B cell development. The level of surface pre-BCR expression varies among pre-B cells, depending on the ability of their muH chains to pair with SL chains. The higher the level of pre-BCR expression by pre-B cells, the stronger their pre-BCR signaling, and the better they proliferate and differentiate. Thus, the extent of survival, proliferation, and differentiation of individual pre-B cells is primarily determined by the SL-pairing ability of their muH chains. Furthermore, IgH chains with higher potential to assemble with IgL chains appear to be positively selected and amplified through the assessment of their ability to pair with SL chains at the pre-BCR checkpoint before the assembly into the BCR. These results indicate that the pre-BCR assesses the quality of muH chains and tunes the pre-B cell repertoire by driving the preferential expansion and differentiation of cells with the higher quality of muH chains.  相似文献   

18.
Infection of humans with HIV‐1 has previously been independently shown to result in the generation of autoantibodies (AAbs) reactive with immunoglobulin Fab fragments (Heidelberg), and with autoantibodies to T‐cell receptors (TCRs) (Tucson). Here, we carry out epitope mapping studies of affinity‐purified AAbs to Fab fragments prepared from individual HIV‐positive patients for their capacity to bind recombinant constructs and peptide‐defined epitopes modeling TCR and Ig light chains. Some affinity‐purified autoantibodies reacted strongly with TCRs expressed by intact T‐cells, and recombinant Vα/Vβ constructs as well as with certain synthetic peptide epitopes. The binding reactions of affinity‐purified AAbs of individual patients were distinct, and the AAb preparations consisted of populations of polyclonal lgs as reflected in specificity and isotype. AAb pools from individual patients all bound particular regions of TCR and Ig chains defined by comprehensive peptide synthesis including the CDR1 and Fr3 segments of the variable domains and the joining segment/switch peptide. In addition, other reactivities to restricted regions of α, β and λ light chains were documented. These results substantiate the cross‐reactivity of TCR and Ig–Fab determinants, and are consistent with the hypothesis that autoantibodies arising as a consequence of HIV infection can have an immunomodulatory role. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

19.
Serologic and primary structural analyses of Ig chains secreted by several rabbit-mouse hybridomas have shown that these hybrid cells produce heavy (H) or light (L) chains identical to those isolated from rabbit sera. Two of the cell lines (7D2, 7D6) secreted rabbit H chains with a m.w. of 55,000 each of which expressed a full complement of variable and constant region allotypes (a3, d11, e15). These apparently normal rabbit H chains were secreted in a complex with a m.w. about 130,000, and serologic studies indicated that this complex contained a covalently linked mouse kappa L chain. Two other cell lines (4C1, 12F2) produced allotype b4 L chains with m.w. of 23,000 and 25,000, and a third (1D4P5) produced an allotype b5 L chain with a m.w. of 23,000. Serologic analyses indicated that the allotypes on these chains are equivalent to those expressed by normal rabbit Ig molecules. Partial amino acid sequence data obtained for the L chain products showed them to be typical of rabbit L chains, and to be significantly different from mouse L chains.  相似文献   

20.
A typical immunoglobulin (Ig) molecule is composed of four polypeptide chains: two identical heavy (H) chains and two identical light (L) chains. This tetrameric structure is conserved in almost all jawed vertebrate species. However, it has been discovered that camels and llamas (family: Camelidae) possess a type of dimeric Ig that consists of two H chains only. These H chains do not associate with L chains, and they do not have the first constant region (CH1), which is present in the conventional Ig. In spite of these changes, the dimeric Ig maintains the normal immune function. To understand the evolution of the dimeric Ig, we studied the phylogenetic relationships of the variable region (V(H)H) genes of the dimeric Ig from Camelidae and those (V(H)) of the conventional Ig from mammals. The results showed that the V(H)H genes form a monophyletic cluster within one of the mammalian V(H) groups, group C. We examined the type of selective force in complementarity-determining regions (CDRs) and framework regions (FRs) by comparing the rate of synonymous (dS) and nonsynonymous (dN) substitutions. We found that the results obtained from V(H)H genes were similar to those from V(H) genes in that CDRs showed an excess of dN over dS (indicating positive selection), whereas the reverse was true for FRs (purifying selection). However, when the extent of positive selection or purifying selection was investigated at each codon site, three major differences between V(H)H and V(H) genes were found. That is, very different types of selective force were observed between V(H)H and V(H) genes (1) at the sites that contact the L chain in the conventional Ig, (2) at the sites that interact with the CH1 region in the conventional Ig, and (3) in the H1 loop. Our findings suggest that adaptive evolution has occurred in the functionally important sites of the V(H)H genes to maintain the normal immune function in the dimeric Ig.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号