首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The metabolite of vitamin A, retinoic acid (RA), is known to affect synaptic plasticity in the nervous system and to play an important role in learning and memory. A ubiquitous mechanism by which neuronal plasticity develops in the nervous system is through modulation of voltage-gated Ca2+ (CaV) and voltage-gated K+ channels. However, how retinoids might regulate the activity of these channels has not been determined. Here, we show that RA modulates neuronal firing by inducing spike broadening and complex spiking in a dose-dependent manner in peptidergic and dopaminergic cell types. Using patch-clamp electrophysiology, we show that RA-induced complex spiking is activity dependent and involves enhanced inactivation of delayed rectifier voltage-gated K+ channels. The prolonged depolarizations observed during RA-modulated spiking lead to an increase in Ca2+ influx through CaV channels, though we also show an opposing effect of RA on the same neurons to inhibit Ca2+ influx. At physiological levels of Ca2+, this inhibition is specific to CaV2 (not CaV1) channels. Examining the interaction between the spike-modulating effects of RA and its inhibition of CaV channels, we found that inhibition of CaV2 channels limits the Ca2+ influx resulting from spike modulation. Our data thus provide novel evidence to suggest that retinoid signaling affects both delayed rectifier K+ channels and CaV channels to fine-tune Ca2+ influx through CaV2 channels. As these channels play important roles in synaptic function, we propose that these modulatory effects of retinoids likely contribute to synaptic plasticity in the nervous system.  相似文献   

2.
A mathematical model for the periodic electrical activity of a functional unit of the small intestine is developed. Based on real morphological and electrophysiological data, the model assumes that: the functional unit is an electromyogenic syncytium; the kinetics of L, T-type Ca2+, mixed Ca2+-dependent K+, potential sensitive K+ and Cl channels determines electrical activity of the functional unit; the basic neural circuit, represented by a single cholinergic neurone, provides an excitatory input to the functional unit via receptor-linked L-type Ca2+ channels. Numerical simulation of the model has shown that it is capable of displaying the slow waves and that slight modifications of some of the parameters result in different electrical responses. The effects of the variations of the main parameters have been analyzed for their ability to reproduce various electrical patterns. The results are in good qualitative and quantitative agreement with results of experiments conducted on the small intestine.  相似文献   

3.
Summary The outer membranes of plant cells contain channels which are highly selective for K+. However, many of their properties and their similarities to K+ channels found in animal cells had not previously been established. The channels open when the cells are depolarized in solutions with a high K+/Ca2+ ratio. In this work, the pharmacology of a previously identified plant K+ channel was examined. This survey showed that the channels have many properties which are similar to those of high-conductance Ca2+-activated K+ channels (highG K+(Ca2+)). K+ currents inChara were reduced by TEA+, Na+, Cs+, Ba2+, decamethonium and quinine, all inhibitors of, among other things, highG K+(Ca2+) channels. Tetracaine also inhibited K+ currentsChara, but its effect on most types of K+ channels in animal tissues is unknown. The currents were not inhibited by 4-aminopyridine (4AP), caffeine, tolbutamide, dendrotoxin, apamin or tubocurarine, which do not inhibit highG K+(Ca2+) channels, but affect other classes of K+ channels. The channels were locked open by 4AP, in a remarkably similar manner to that reported for K+(Ca2+) channels of a molluscan neuron. No evidence for the role of the inositol cycle in channel behavior was found, but its role in K+ channel control in animal cells is obscure. Potassium conductance was slightly decreased upon reduction of cytoplasmic ATP levels by cyanide + salicylhydroxamic acid (SHAM), consistent with channel control by phosphorylation. The anomalously strong voltage dependence of blockade by some ions (e.g. Cs+) is consistent with the channels being multiion pores. However, the channels also demonstrate some differences from the highG K+(Ca2+) channels found in animal tissues. The venom of the scorption,Leiurus quinquestriatus (LQV), and a protein component, charybdotoxin (CTX), an apparently specific inhibitor of highG K+(Ca2+) channels in various animal tissues, had no effect on the K+ channels in theChara plasmalemma. Als,, pinacidil, an antihypertensive drug which may increase highG K+(Ca2+) channel activity had no effect on the channels inChara. Although the described properties of theChara K+ channels are most similar to those of high conductance K+(Ca2+) in animal cells, the effects of CTX and pinacidil are notably different; the channels are clearly of a different structure to those found in animal cells, but are possibly related.  相似文献   

4.
Extracellular potassium concentration, [K+]o, and intracellular calcium, [Ca2+]i, rise during neuron excitation, seizures and spreading depression. Astrocytes probably restrain the rise of K+ in a way that is only partly understood. To examine the effect of glial K+ uptake, we used a model neuron equipped with Na+, K+, Ca2+ and Cl conductances, ion pumps and ion exchangers, surrounded by interstitial space and glia. The glial membrane was either “passive”, incorporating only leak channels and an ion exchange pump, or it had rectifying K+ channels. We computed ion fluxes, concentration changes and osmotic volume changes. Increase of [K+]o stimulated the glial uptake by the glial 3Na/2K ion pump. The [K+]o flux through glial leak and rectifier channels was outward as long as the driving potential was outwardly directed, but it turned inward when rising [K+]o/[K+]i ratio reversed the driving potential. Adjustments of glial membrane parameters influenced the neuronal firing patterns, the length of paroxysmal afterdischarge and the ignition point of spreading depression. We conclude that voltage gated K+ currents can boost the effectiveness of the glial “potassium buffer” and that this buffer function is important even at moderate or low levels of excitation, but especially so in pathological states.  相似文献   

5.
To explore non-synaptic mechanisms in paroxysmal discharges, we used a computer model of a simplified hippocampal pyramidal cell, surrounded by interstitial space and a “glial-endothelial” buffer system. Ion channels for Na+, K+, Ca2+ and Cl , ion antiport 3Na/Ca, and “active” ion pumps were represented in the neuron membrane. The glia had “leak” conductances and an ion pump. Fluxes, concentration changes and cell swelling were computed. The neuron was stimulated by injecting current. Afterdischarge (AD) followed stimulation if depolarization due to rising interstitial K+ concentration ([K+]o) activated persistent Na+ current (I Na,P). AD was either simple or self-regenerating; either regular (tonic) or burst-type (clonic); and always self-limiting. Self-regenerating AD required sufficient I Na,P to ensure re-excitation. Burst firing depended on activation of dendritic Ca2+ currents and Ca-dependent K+ current. Varying glial buffer function influenced [K+]o accumulation and afterdischarge duration. Variations in Na+ and K+ currents influenced the threshold and the duration of AD. The data show that high [K+]o and intrinsic membrane currents can produce the feedback of self-regenerating afterdischarges without synaptic input. The simulated discharge resembles neuron behavior during paroxysmal firing in living brain tissue. Action Editor: David Terman  相似文献   

6.
Moran N  Fox D  Satter RL 《Plant physiology》1990,94(2):424-431
A depolarization-activated K+ channel capable of carrying the large K+ currents that flow from shrinking cells during movements of Samanea saman leaflets has been described in the plasmalemma of Samanea motor cell protoplasts (N Moran et al [1988] Plant Physiol 88:643-648). We now characterize this channel in greater detail. It is selective for K+ over other monovalent ions, with the following order of relative permeability: K+ > Rb+ > Na+ Cs+ Li+. It is blocked by Cs+ and by Ba2+ in a voltage dependent manner, exhibiting a `long-pore' behavior, similarly to various types of K+ channels in animal systems. Cadmium, known for its blockage of Ca2+ channels in animal systems, and Gd3+, closely related to La3+, which also blocks Ca2+ channels in animal cells, both block K+ currents in Samanea in a voltage-independent manner, and without interfering with the kinetics of the currents. The suggested mechanism of block is either (a) by a direct interaction with the K+ channel, but external to its lumen, or, alternatively, (b) by blocking putative Ca2+ channels, and preventing the influx of Ca2+, on which the activation of the K+ channels may be dependent.  相似文献   

7.
Multiple types of voltage‐activated calcium (Ca2+) channels are present in all nerve cells examined so far; however, the underlying functional consequences of their presence is often unclear. We have examined the contribution of Ca2+ influx through N‐ and L‐ type voltage‐activated Ca2+ channels in sympathetic neurons to the depolarization‐induced activation of tyrosine hydroxylase (TH), the rate‐limiting enzyme in norepinephrine (NE) synthesis, and the depolarization‐induced release of NE. Superior cervical ganglia (SCG) were decentralized 4 days prior to their use to eliminate the possibility of indirect effects of depolarization via preganglionic nerve terminals. The presence of both ω‐conotoxin GVIA (1 μM), a specific blocker of N‐type channels, and nimodipine (1 μM), a specific blocker of L‐type Ca2+ channels, was necessary to inhibit completely the stimulation of TH activity by 55 mM K+, indicating that Ca2+ influx through both types of channels contributes to enzyme activation. In contrast, K+ stimulation of TH activity in nerve fibers and terminals in the iris could be inhibited completely by ω‐conotoxin GVIA alone and was unaffected by nimodipine as previously shown. K+ stimulation of NE release from both ganglia and irises was also blocked completely when ω‐conotoxin GVIA was included in the medium, while nimodipine had no significant effect in either tissue. These results indicate that particular cellular processes in specific areas of a neuron are differentially dependent on Ca2+ influx through N‐ and L‐type Ca2+ channels. © 1999 John Wiley & Sons, Inc. J Neurobiol 40: 137–148, 1999  相似文献   

8.
SK2- and KV4.2-containing K+ channels modulate evoked synaptic potentials in CA1 pyramidal neurons. Each is coupled to a distinct Ca2+ source that provides Ca2+-dependent feedback regulation to limit AMPA receptor (AMPAR)- and NMDA receptor (NMDAR)-mediated postsynaptic depolarization. SK2-containing channels are activated by Ca2+ entry through NMDARs, whereas KV4.2-containing channel availability is increased by Ca2+ entry through SNX-482 (SNX) sensitive CaV2.3 R-type Ca2+ channels. Recent studies have challenged the functional coupling between NMDARs and SK2-containing channels, suggesting that synaptic SK2-containing channels are instead activated by Ca2+ entry through R-type Ca2+ channels. Furthermore, SNX has been implicated to have off target affects, which would challenge the proposed coupling between R-type Ca2+ channels and KV4.2-containing K+ channels. To reconcile these conflicting results, we evaluated the effect of SK channel blocker apamin and R-type Ca2+ channel blocker SNX on evoked excitatory postsynaptic potentials (EPSPs) in CA1 pyramidal neurons from CaV2.3 null mice. The results show that in the absence of CaV2.3 channels, apamin application still boosted EPSPs. The boosting effect of CaV2.3 channel blockers on EPSPs observed in neurons from wild type mice was not observed in neurons from CaV2.3 null mice. These data are consistent with a model in which SK2-containing channels are functionally coupled to NMDARs and KV4.2-containing channels to CaV2.3 channels to provide negative feedback regulation of EPSPs in the spines of CA1 pyramidal neurons.  相似文献   

9.
Summary 1. The ability of various divalent metal ions to substitute for Ca2+ in activating distinct types of Ca2+-dependent K+ [K+(Ca2+] channels has been investigated in excised, inside-out membrane patches of human erthrocytes and of clonal N1E-115 mouse neuroblastoma cells using the patch clamp technique. The effects of the various metal ions have been compared and related to the effects of Ca2+.2. At concentrations between 1 and 100 µM Pb2+, Cd2+ and Co2+ activate intermediate conductance K+(Ca2+) channels in erythrocytes and large conductance K+(Ca2+) channels in neuroblastoma cells. Pb2+ and Co2+, but not Cd2+, activate small conductance K+(Ca2+) channels in neuroblastoma cells. Mg2+ and Fe2+ do not activate any of the K+(Ca2+) channels.3. Rank orders of the potencies for K+(Ca2+) activation are Pb2+, Cd2+>Ca2+, Co2+>>Mg2+, Fe2+ for the intermediate erythrocyte K+(Ca2+) channel, and Pb2+, Cd2+>Ca2+>Co2+>>Mg2+, Fe2+ for the small, and Pb2+>Ca2+>Co2+>>Cd2+, Mg2+, Fe2+ for the large K+(Ca2+) channel in neuroblastoma cells.4. At high concentrations Pb2+, Cd2+, and Co2+ block K+(Ca2+) channels in erythrocytes by reducing the opening frequency of the channels and by reducing the single channel amplitude. The potency orders of the two blocking effects are Pb2+>Cd2+, Co2+>>Ca2+, and Cd2+>Pb2+, Co2+>>Ca2+, respectively, and are distinct from the potency orders for activation.5. It is concluded that the different subtypes of K+(Ca2+) channels contain distinct regulatory sites involved in metal ion binding and channel opening. The K+(Ca2+) channel in erythrocytes appears to contain additional metal ion interaction sites involved in channel block.  相似文献   

10.
Olfactory receptor neurons respond to odorants with G-protein mediated increases in the concentration of cyclic adenosine 3′,5′-monophosphate (cAMP) and/or inositol 1,4,5-triphosphate (InsP3). These two second messengers directly regulate opening of cAMP- and InsP3-regulated conductances localized to the apical transduction compartments of the cell (cilia and olfactory knob). In the presence of physiological concentrations of extracellular Ca2+, these second messenger regulated conductances mediate influx of Ca2+ into the olfactory neuron resulting in large, localized increases in intracellular Ca2+ ([Ca2+]i). A significant advance in our understanding of the molecular mechanisms of olfaction is the recent realization that this increase in [Ca2+]i plays an important role as a “third messenger” in olfactory transduction. Second messenger dependent increases in [Ca2+]i cause opening of ciliary Ca2+-activated Cl, cation and/or K+ channels that can carry a large percentage of the generator current, thus amplifying the signal substantially. As a result of this sequence of events, the generator potential in olfactory neurons can be depolarizing, leading to excitation of the neuron, or hyperpolarizing, leading to suppression of basal action potential firing rate. This dual effect of odorants on olfactory neurons may play an important role in quality coding and in the ability to detect low concentrations of odorants, particularly in complex mixtures. © 1996 John Wiley & Sons, Inc.  相似文献   

11.
Electrical signals, including action potential (AP), play an important role in plant adaptation to the changing environmental conditions. Experimental and theoretical investigations of the mechanisms of AP generation are required to understand the relationships between environmental factors and electrical activity of plants. In this work we have elaborated a mathematical model of AP generation, which takes into account the participation of vacuole in the generation of electrical response. The model describes the transporters of the plasma membrane (Ca2+, Cl, and K+ channels, H+- and Ca2+-ATPases, H+/K+ antiporter, and 2H+/Cl symporter) and the tonoplast (Ca2+, Cl, and K+ channels; H+- and Ca2+-ATPases; H+/K+, 2H+/Cl, and 3H+/Ca2+ antiporters), with due consideration of their regulation by second messengers (Ca2+ and IP3). The apoplastic, cytoplasmic and vacuolar buffers are also described. The properties of the simulated AP are in good agreement with experimental data. The AP model describes the attenuation of electrical signal with an increase in the vacuole area and volume; this effect is related to a decrease in the Ca2+ spike magnitude. The electrical signal was weakly influenced by the K+ and Cl content in the vacuole. It was also shown that the contribution of vacuolar IP3-dependent Ca2+ channels into the generation of calcium spike during AP was insignificant with the given parameters of the model. The results provide theoretical evidence for the significance of the vacuolar area and volume in plant cell excitability.  相似文献   

12.
As described by others, an extracellular calcium-sensitive non-selective cation channel ([Ca2+]o-sensitive NSCC) of central neurons opens when extracellular calcium level decreases. An other non-selective current is activated by rising intracellular calcium ([Ca2+] i ). The [Ca2+]o-sensitive NSCC is not dependent on voltage and while it is permeable by monovalent cations, it is blocked by divalent cations. We tested the hypothesis that activation of this channel can promote seizures and spreading depression (SD). We used a computer model of a neuron surrounded by interstitial space and enveloped in a glia-endothelial “buffer” system. Na+, K+, Ca2+ and Cl concentrations, ion fluxes and osmotically driven volume changes were computed. Conventional ion channels and the NSCC were incorporated in the neuron membrane. Activation of NSCC conductance caused the appearance of paroxysmal afterdischarges (ADs) at parameter settings that did not produce AD in the absence of NSCC. The duration of the AD depended on the amplitude of the NSCC. Similarly, NSCC also enabled the generation of SD. We conclude that NSCC can contribute to the generation of epileptiform events and to spreading depression.  相似文献   

13.
M. Tester  E. A. C. MacRobbie 《Planta》1990,180(4):569-581
The action of a wide range of drugs effective on Ca2+ channels in animal tissues has been measured on Ca2+ channels open during the action potential of the giant-celled green alga,Chara corallina. Of the organic effectors used, only the 1,4-dihydropyridines were found to inhibit reversibly Ca2+ influx, including, unexpectedly, Bay K 8644 and both isomers of 202–791. Methoxyverapamil (D-600), diltiazem, and the diphenylbutylpiperidines, fluspirilene and pimozide were found not to affect the Ca2+ influx. Conversely, bepridil greatly and irreversibly stimulated Ca2+ influx, and with time, stopped cytoplasmic streaming (which is sensitive to increases in cytoplasmic Ca2+). By apparently altering the cytoplasmic Ca2+ levels with various drugs, it was found that (with the exception of the inorganic cation, La3+) treatments likely to lead to an increase in cytoplasmic Ca2+ levels caused an increase in the rate of closure of the K+ channels. Similarly, treatments likely to lead to a decrease in cytoplasmic Ca2+ decreased the rate of K+ channel closure. The main effect of bepridil on the K+ channels was to increase the rate of voltage-dependent channel closure. The same effect was obtained upon increasing the external concentration of Ca2+, but it is likely that this was due to effects on the external face of the K+ channel. Addition of any of the 1,4-dihydropyridines had the opposite effect on the K+ channels, slowing the rate of channel closure. They sometimes also reduced K+ conductance, but this could well be a direct effect on the K+ channel; high concentrations (50 to 100 μM) of bepridil also reduced K+ conductance. No effect of photon irradiance or of abscisic acid could be consistently shown on the K+ channels. These results indicate a control of the gating of K+ channels by cytoplasmic Ca2+, with increased free Ca2+ levels leading to an increased rate of K+-channel closure. As well as inhibiting Ca2+ channels, it is suggested that La3+ acts on a Ca2+-binding site of the K+ channel, mimicking the effect of Ca2+ and increasing the rate of channel closure.  相似文献   

14.
Leech neurons exposed to salines containing inorganic Ca2+-channel blockers generate rhythmic bursts of impulses. According to an earlier model, these blockers unmask persistent Na+ currents that generate plateau-like depolarizations, each triggering a burst of impulses. The resulting increase in intracellular Na+ activates an outward Na+/K+ pump current that contributes to burst termination. We tested this model by examining systematically the effects of six transition metal ions (Co2+, Ni2+, Mn2+, Cd2+, La3+, and Zn2+) on the electrical activity of neurons in isolated leech ganglia. Each ion induced bursting activity, but the amplitude, form, and persistence of bursting differed with the ion used and its concentration relative to Ca2+. All ions tested suppressed chemical synaptic transmission between identified motor neurons, consistent with block of voltage-dependent Ca2+ currents in these cells. In addition, a strong correlation between suppression of synaptic transmission and burst amplitudes was obtained. Finally, burst duration was increased and the rate of repolarization decreased in reduced K+ saline, as expected for pump-dependent repolarization. These results provide further support for the hypothesis that a novel form of oscillatory electrical activity driven by persistent Na+ currents and the Na+/K+ pump occurs in leech ganglia exposed to Ca2+-channel blockers. Accepted: 15 May 1997  相似文献   

15.
It is crucial to determine the effects on the network level of a modulation of intrinsic membrane properties. The role calcium-dependent potassium channels, KCa, in the lamprey locomotor system has been investigated extensively. Earlier experimental studies have shown that apamin, which affects one type of KCa, increases the cycle duration of the locomotor network, due to effects on the burst termination. The effects of apamin were here larger when the network had a low level of activity (burst frequency 0.5 to 1 Hz) as compared to a higher rate (>2 Hz). By using a previously developed simulation model based on the lamprey locomotor network, we show that the model could account for the frequency dependence of the apamin modulation, if only the KCa conductance activated by Ca2+ entering during the action potential was altered and not the KCa conductance activated by Ca2+ entering through NMDA channels. The present simulation model of the spinal network in the lamprey can thus account for earlier experimental results with apamin on the network and cellular level that previously appeared enigmatic.  相似文献   

16.
Our previous studies suggested the cross talk of nitric oxide (NO) with Ca2+ in regulating stomatal movement. However, its mechanism of action is not well defined in plant roots. In this study, sodium nitroprusside (SNP, a NO donor) showed an inhibitory effect on the growth of wheat seedling roots in a dose-dependent manner, which was alleviated through reducing extracellular Ca2+ concentration. Analyzing the content of Ca2+ and K+ in wheat seedling roots showed that SNP significantly promoted Ca2+ accumulation and inhibited K+ accumulation at a higher concentration of extracellular Ca2+, but SNP promoted K+ accumulation in the absence of extracellular Ca2+. To gain further insights into Ca2+ function in the NO-regulated growth of wheat seedling roots, we conducted the patch-clamped protoplasts of wheat seedling roots in a whole cell configuration. In the absence of extracellular Ca2+, NO activated inward-rectifying K+ channels, but had little effects on outward-rectifying K+ channels. In the presence of 2 mmol L−1 CaCl2 in the bath solution, NO significantly activated outward-rectifying K+ channels, which was partially alleviated by LaCl3 (a Ca2+ channel inhibitor). In contrast, 2 mmol L−1 CaCl2 alone had little effect on inward or outward-rectifying K+ channels. Thus, NO inhibits the growth of wheat seedling roots likely by promoting extracellular Ca2+ influx excessively. The increase in cytosolic Ca2+ appears to inhibit K+ influx, promotes K+ outflux across the plasma membrane, and finally reduces the content of K+ in root cells.  相似文献   

17.
We show that the voltage-gated K+ and Ca2+ currents of rat osteoblastic cells are strongly modulated by arachidonic acid (AA), and that these modulations are very sensitive to the AA concentration. At 2 or 3 μm, AA reduces the amplitude and accelerates the inactivation of the K+ current activated by depolarization; at higher concentrations (≥5 μm), AA still blocks this K+ current, but also induces a very large noninactivating K+ current. At 2 or 3 μm, AA enhances the T-type Ca2+ current, close to its threshold of activation, whereas at 10 μm, it blocks that current. AA (1–10 μm) also blocks the dihydropyridine-sensitive L-type Ca2+ current. Thus, the effect of AA on Ca2+ entry through voltage-gated Ca2+ channels can change qualitatively with the AA concentration: at 2 or 3 μm, AA will favor Ca2+ entry through T channels, both by lowering the voltage-gated K+ conductance and by increasing the T current, whereas at 10 μm, AA will prevent Ca2+ entry through voltage-gated Ca2+ channels, both by inducing a K+ conductance and by blocking Ca2+ channels.  相似文献   

18.
The addition of trypsin or thrombin or of Ca2+ ions to pig blood platelets was followed by a K+- dependent change of the membrane potential similar to that produced by the ionophore valinomycin. The effect of trypsin and of Ca2+, but not of valinomycin, was prevented by La3+ and by EGTA. It is proposed that upon the modification of the platelet surface by trypsin (and by thrombin under physiological conditions) membrane Ca2+ move from the external to the internal side of the platelet surface membrane and open the gates of K+ - specific channels.  相似文献   

19.
The cellular mechanisms that regulate potassium (K+) channels in guard cells have been the subject of recent research, as K+ channel modulation has been suggested to contribute to stomatal movements. Patch clamp studies have been pursued on guard cell protoplasts of Vicia faba to analyze the effects of physiological cytosolic free Ca2+ concentrations, Ca2+ buffers and GTP-binding protein modulators on inward-rectifying K+ channels. Ca2+ inhibition of inward-rectifying K+ currents depended strongly on the concentration and effectiveness of the Ca2+ buffer used, indicating a large Ca2+ buffering capacity and pH increases in guard calls. When the cytosolic Ca2+ concentration was buffered to micromolar levels using BAPTA, inward-rectifying K+ channels were strongly inhibited. However, when EGTA was used as the Ca2+ buffer, much less inhibition was observed, even when pipette solutions contained 1 µM free Ca2+. Under the imposed conditions, GTPγS did not significantly inhibit inward-rectifying K+ channel currents when cytosolic Ca2+ was buffered to low levels or when using EGTA as the Ca2+ buffer. Furthermore, GDPβS reduced inward K+ currents at low cytosolic Ca2+, indicating a novel mode of inward K+ channel regulation by G-protein modulators, which is opposite in effect to that from previous reports. On the other hand, when Ca2+ was effectively elevated in the cytosol to 1 µM using BAPTA, GTPγS produced an additional inhibition of the inward-rectifying K+ channel currents in a population of cells, indicating possible Ca2+-dependent action of GTP-binding protein modulators in K+ channel inhibition. Assays of stomatal opening show that 90% inhibition of inward K+ currents does not prohibit, but slows, stomatal opening and reduces stomatal apertures by only 34% after 2 h light exposure. These data suggest that limited K+ channel down-regulation alone may not be rate-limiting, and it is proposed that the concerted action of proton-pump inhibition and additional anion channel activation is likely required for inhibition of stomatal opening. Furthermore, G-protein modulators regulate inward K+ channels in a more complex and limited, possibly Ca2+-dependent, manner than previously proposed.  相似文献   

20.
Ca2+ influx through voltage‐activated Ca2+ channels and its feedback regulation by Ca2+‐activated K+ (BK) channels is critical in Ca2+‐dependent cellular processes, including synaptic transmission, growth and homeostasis. Here we report differential roles of cacophony (CaV2) and Dmca1D (CaV1) Ca2+ channels in synaptic transmission and in synaptic homeostatic regulations induced by slowpoke (slo) BK channel mutations. At Drosophila larval neuromuscular junctions (NMJs), a well‐established homeostatic mechanism of transmitter release enhancement is triggered by experimentally suppressing postsynaptic receptor response. In contrast, a distinct homeostatic adjustment is induced by slo mutations. To compensate for the loss of BK channel control presynaptic Sh K+ current is upregulated to suppress transmitter release, coupled with a reduction in quantal size. We demonstrate contrasting effects of cac and Dmca1D channels in decreasing transmitter release and muscle excitability, respectively, consistent with their predominant pre‐ vs. postsynaptic localization. Antibody staining indicated reduced postsynaptic GluRII receptor subunit density and altered ratio of GluRII A and B subunits in slo NMJs, leading to quantal size reduction. Such slo‐triggered modifications were suppressed in cac;;slo larvae, correlated with a quantal size reversion to normal in double mutants, indicating a role of cac Ca2+ channels in slo‐triggered homeostatic processes. In Dmca1D;slo double mutants, the quantal size and quantal content were not drastically different from those of slo, although Dmca1D suppressed the slo‐induced satellite bouton overgrowth. Taken together, cac and Dmca1D Ca2+ channels differentially contribute to functional and structural aspects of slo‐induced synaptic modifications. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 74: 1–15, 2014  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号