首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The absorption of oxygen in aqueous–organic solvent emulsions was studied in a laboratory-scale bubble reactor at a constant gas flow rate. The organic and the gas phases were dispersed in the continuous aqueous phase. Volumetric mass transfer coefficients (kLa) of oxygen between air and water were measured experimentally using a dynamic method. It was assumed that the gas phase contacts preferentially the water phase. It was found that addition of silicone oils hinders oxygen mass transfer compared to air–water systems whereas the addition of decane, hexadecane and perfluorocarbon PFC40 has no significant influence. By and large, the results show that, for experimental conditions (organic liquid hold-up ≤10% and solubility ratio ≤10), the kLa values of oxygen determined in binary air–water systems can be used for multiphase (gas–liquid–liquid) reactor design with applications in environmental protection (water and air treatment processes).  相似文献   

2.
Encapsulation devices are often hindered by the inability to achieve sufficient oxygen levels for sustaining long-term cell survival both in vivo and in vitro. We have investigated the use of synthetic oxygen carriers in alginate gels to improve metabolic activity and viability of HepG2 cells over time. Perfluorocarbons (PFCs), specifically perfluorotributylamine (PFTBA) and perfluorooctylbromide (PFOB), were emulsified with alginate and used to encapsulate HepG2 cells in a spherical geometry. Cellular state was assessed using the MTT assay and Live/Dead stain as well as through analysis of both lactate and lactate dehydrogenase (LDH) levels which are indirect indicators of oxygen availability. Addition of 1% surfactant resulted in stable emulsions with evenly dispersed PFC droplets of the order of 1-2 microm in diameter, with no influence on cell viability. Both PFCs evaluated were effective in increasing cellular metabolic activity over alginate-only gels. The presence of 10% PFOB significantly increased cellular growth rate by 10% and reduced both intracellular LDH and extracellular lactate levels by 20-40%, improving glucose utilization efficiency. The characteristic drop in cellular metabolic activity upon encapsulation was eliminated with addition of 10% PFC and viability was better maintained throughout the bead, with a significant decrease in necrotic core size. Results were consistent under a physiologically relevant 5% oxygen environment. The incorporation of PFC synthetic oxygen carriers into encapsulation matrices has been successfully applied to improve cell function and viability with implication for a variety of tissue engineering applications.  相似文献   

3.
Chymotrypsin is easily extracted from an aqueous solution into isooctane containing the anionic surfactant aerosol OT (AOT). The concentration of AOT needed to efficiently extract 0.5 mg/mL CMT is as low as 1 mM and as low as 0.2 mM AOT was sufficient to extract the protein into isooctane. The extraction process was unaffected by 10% (v/v) ethyl acetate in the isooctane phase. Moreover, spectroscopic analysis by electron paramagnetic resonance indicated that CMT did not exist inside a discreet water pool of a reversed micelle. Calculations of the number of AOT molecules associated per extracted CMT molecule indicate that only ca. 30 surfactant molecules interact with the protein, a value too low for reversed micellar incorporation of the protein in isooctane. These studies suggested that reversed micelles do not need to be involved in the actual transfer of the protein from the aqueous to the organic phase and protein solubilization in the organic phase is possible in the absence of reversed micelles. Based on these findings, a new mechanism has been proposed herein for protein extraction via the phase transfer method involving ionic surfactants. The central theme of this mechanism is the formation of an electrostatic complex between CMT and AOT at the aqueous/organic interface between AOT and CMT, thereby leading to the formation of a hydrophobic species that partitions into the organic phase. Consistent with this mechanism, the efficiency of extraction is dependent on the interfacial mass transfer, the concentrations of CMT and AOT in the aqueous and organic phases, respectively; the ionic strength of the aqueous phase; and the presence of various cosolvents. (c) 1994 John Wiley & Sons, Inc.  相似文献   

4.
A variety of contactor types have been assessed for the liquid-liquid extraction of proteins using reversed micelles; however, many of these contactors suffer from drawbacks such as emulsion formation and poor mass transfer performance. In this study, a small (1.25 L) Graesser "raining bucket" contactor was assessed for use with this system since it has the potential to ameliorate many of these problems. The aim of the work was to evaluate the hydrodynamics of the contactor in order to use this information for future work on mass transfer performance. Hydrodynamic characteristics such as the axial mixing coefficient were determined by residence time distribution studies using a tracer injection method. The effect of rotor speed and flow rate of each phase on axial mixing was investigated, and as a result of its unusual structure, i.e., falling/rising sheet, the interfacial mass transfer area in the Graesser was determined by image analysis. It was found that rotor speed had more influence on the axial mixing coefficient in the aqueous phase than in the reverse micellar phase. The axial mixing coefficient in each phase increased by increasing the flow rate of the same phase. The images obtained in a dropping cell showed that under the conditions of this study (3 rpm, 22 degrees C), the bucket pours one phase through the other in the form of a curtain or sheet. A new image technique was developed to determine the interfacial area of both phases, and it was found that the specific area was 8.6 m(2)/m(3), which was higher than in a spray column but considerably lower than in a RDC or a Graesser run at high rotational speed (50 rpm) without the addition of a surfactant.  相似文献   

5.
A steady-state model of oxygen distribution in a cardiac tissue construct with a parallel channel array was developed and solved for a set of parameters using the finite element method and commercial software (FEMLAB). The effects of an oxygen carrier [Oxygent; 32% volume perfluorocarbon (PFC) emulsion] were evaluated. The parallel channel array mimics the in vivo capillary tissue bed, and the PFC emulsion has a similar role as the natural oxygen carrier hemoglobin in increasing total oxygen content. The construct was divided into an array of cylindrical domains with a channel in the center and tissue space surrounding the channel. In the channel, the main modes of mass transfer were axial convection and radial diffusion. In the tissue region, mass transfer was by axial and radial diffusion, and the consumption of oxygen was by Michaelis-Menten kinetics. Neumann boundary conditions were imposed at the channel centerline and the half distance between the domains. Supplementation of culture medium by PFC emulsion improved mass transport by increasing convective term and effective diffusivity of culture medium. The model was first implemented for the following set of experimentally obtained parameters: construct thickness of 0.2 cm, channel diameter of 330 mum, channel center-to-center spacingof 700 microm, and average linear velocity per channel of 0.049 cm/s, in conjunction with PFC supplemented and unsupplemented culture medium. Subsequently, the model was used to define favorable scaffold geometry and flow conditions necessary to cultivate cardiac constructs of high cell density (10(8) cells/ml) and clinically relevant thickness (0.5 cm). In future work, the model can be utilized as a tool for optimization of scaffold geometry and flow conditions.  相似文献   

6.
Morpho-functional characteristics of mononuclear phagocyte system (MPS) have been studied in experimental animals upon the infusions of perfluorocarbon (PFC) emulsions. It has been established that the infusion of high doses of PFC emulsions following massive hemorrhage causes the reduction in the histoenzymatic activity in MPS of PFC-accumulating organs. Low doses of PFC emulsions increase histochemical activity in PFC-containing macrophages, suggesting a stimulating effect of PFC emulsions on MPS.  相似文献   

7.
Perfluorocarbon emulsions have been considered as potential blood substitutes for years due to their high capacity of dissolving respiratory oxygen and carbon dioxide. However, they have been reported to associate with side effects (e.g., flu-like syndrome) after being injected into animal's bloodstream. The cause of these side effects is related to the phagocytosis of perfluorocarbon emulsions by cells (e.g., macrophages). Inspired by the approach of using polyethylene glycol (PEG) to camouflage liposomes, we synthesized a perfluoroalkylated PEG (R(F)-PEG) surfactant to provide steric hindrance for decreasing phagocytosis of perfluorocarbon emulsions. The R(F)-PEG surfactant along with Pluronic F-68 and egg yolk phospholipid mediated perfluorocarbon emulsions were incubated individually with J774A.1 macrophages to examine the degree of phagocytosis. 19F NMR studies were used to quantitatively determine the amount of perfluorocarbon emulsions phagocytosed by macrophages. Results showed that the degree of phagocytosis was diminished to a large extent for perfluorocarbon microparticles emulsified by the R(F)-PEG surfactant.  相似文献   

8.

Background

Perfluorocarbons (PFC) are used to improve gas exchange in diseased lungs. PFC have been shown to affect various cell types. Thus, effects on alveolar type II (ATII) cells and surfactant metabolism can be expected, data, however, are controversial.

Objective

The study was performed to test two hypotheses: (I) the effects of PFC on surfactant exocytosis depend on their respective vapor pressures; (II) different pathways of surfactant exocytosis are affected differently by PFC.

Methods

Isolated ATII cells were exposed to two PFC with different vapor pressures and spontaneous surfactant exocytosis was measured. Furthermore, surfactant exocytosis was stimulated by either ATP, PMA or Ionomycin. The effects of PFC on cell morphology, cellular viability, endocytosis, membrane permeability and fluidity were determined.

Results

The spontaneous exocytosis was reduced by PFC, however, the ATP and PMA stimulated exocytosis was slightly increased by PFC with high vapor pressure. In contrast, Ionomycin-induced exocytosis was decreased by PFC with low vapor pressure. Cellular uptake of FM 1-43 - a marker of membrane integrity - was increased. However, membrane fluidity, endocytosis and viability were not affected by PFC incubation.

Conclusions

We conclude that PFC effects can be explained by modest, unspecific interactions with the plasma membrane rather than by specific interactions with intracellular targets.  相似文献   

9.
Solubilization and interaction of α-tocopherol into bis(2-ethylhexyl)sulphosuc cinate sodium salt microemulsion systems have been studied by temperature dependent phase transition, viscosity and nuclear magnetic resonance studies. Tocopherol being an amphiphilic molecule dissolves into the interfacial surfactant monolayer of the microemul sion droplets. The dissolution leads to an enhancement of the rigidity of the surfactant monolayer as studied by the increase in mixing and phase transition temperatures of the microemulsion droplets. Solubilization of tocopherol into microemulsion droplets causes an increase in the effective size of the droplet and as a consequence, the inter-droplet interactions are also increased. The water binding capacity of the surfactant (bis(2-ethylhexyl)sulphosuccinate sodium salt) is reduced due to solubilization of tocopherol as is evidenced from the downfield shifts of water proton magnetic resonances. In the presence of the dissolved electrolytes into the aqueous core, tocopherol is squeezed out of the microemulsion droplets increasing the membrane fluidity and permeability.  相似文献   

10.
Perfluorodecalin is a superior artificial oxygen carrier because of its high oxygen dissolving capacity, low toxicity, and short retention times within tissues. However, the instability of perfluorodecalin emulsions has hindered its application in blood substitutes. The present study addressed two questions. First, is perfluorodecalin deleterious to the endocrine function of testes? This question was examined by comparing testosterone secretion by testes perfused in vitro with medium incorporating either perfluorodecalin or erythrocytes as oxygen carriers. Second, can stable emulsions of perfluorodecalin be attained with the new surfactant Butronic U-1? This question was approached by determining the stability of perfluorodecalin emulsions containing either Butronic U-1 or Pluronic F-68, a proven ineffective surfactant. The experimental results support the efficacy of perfluorodecalin emulsions as oxygen carriers for mouse and rat testes perfused in vitro. Perfluorodecalin emulsions formed with Butronic U-1 were stable during the 4-hr perfusions but not during long-term storage.  相似文献   

11.
On liquid-liquid mass transfer in two-liquid-phase fermentations   总被引:1,自引:0,他引:1  
Almost all two-liquid phase bioprocesses are characterized by the presence of surface active materials (biosurfactants), which significantly influence the interaction between the phases. In order to predict mass transfer rates during cultivations of Pseudomonas oleovorans biosurfactant was isolated from the biosuspension and added in defined amounts to n-octane/water model-dispersions. Effects of biosurfactant concentration on interfacial tension, mean Sauter-diameter, drop size distribution, dispersion stability and liquid-liquid mass transfer coefficients were studied. A comparison was made between calculated solvent transfer rates (STR) and measured solvent uptake rates (SUR) of P. oleovorans cultures. With increasing interfacial surfactant concentration interfacial tension and mean Sauter-diameter decreased until a minimum for both, interfacial tension and mean Sauter-diameter, were reached. Interfacial tension measurements indicate that these minima have to be attributed to a maximum monomolecular surfactant concentration and the formation of polymolecular adsorption layers. Drop size distributions showed that, coalescence and droplet break-up disappear because droplets are stabilized by the biosurfactant adsorption layers at the interface. Mass transfer regime shifted from forced convection and surface renewal to diffusion. Comparison of solvent uptake rates (SUR) and solvent transfer rates (STR) showed that n-octane transfer usually will not be limiting P. oleovorans cultures, however, can become dominant in cultures where solvents with very low miscibilities like n-decane are used.  相似文献   

12.
A model was developed to evaluate the effects of cells and surfactants on oxygen transfer in surface-aerated bioreactors. The model assumed the presence of serial layers of adsorbed surfactants and microorganisms directly adjacent to the gas-liquid interface due to their surface activities, followed by a stagnant liquid layer to account for the oxygen transfer resistance in the liquid phase. The interfacial surfactant film, although posing as an additional resistance, was found to have negligible effect on the oxygen transfer rate because of its extremely small thickness as compared to the cell monolayer and the stagnant liquid layer. On the other hand, cells affect oxygen transfer by two mechanisms: the biological enhancement due to the respiration of interfacial cells and the physical blocking resulting from the semipermeable nature of cell bodies. Due to the low specific oxygen uptake rates of the sludges, the two mechanisms were found to be of comparable importance in activated-sludge systems; the oxygen transfer enhancement factor, E, varied from about 0.97 to 1.10 depending on the operating conditions. The biological enhancement effect, however, predominated in fermentations of actively growing bacteria. At relatively low agitation speed (e. g., 300 rpm), the value of E could reach about 3 to 5 in fermentations with high cell concentrations. Effects of other operating variables, such as the agitation intensity, the oxygen content in the mixed liquor, and the bulk cell concentration, on biological oxygen transfer enhancement were also studied. (c) 1992 John Wiley & Sons, Inc.  相似文献   

13.
The growth of the yeast Saccharomyces cerevisiae, the fungus Rhizopus nigricans and Nicotiana tabacum cells with perfluorodecalin as an oxygen carrier has been studied. The volumetric mass transfer coefficient (kLa) measured by the dynamic method was higher for the perfluorodecalin oxygenation system than for the conventional aeration system. The results show that perfluorocarbon can be successfully used as an efficient gas carrier, especially for the culture of delicate plant cells. The increase in yeast biomass in the suspension culture aerated by perfluorodecalin was as much as 110% higher than in the culture aerated by air. The fungus R. nigricans grew better when the conventional aeration system was used due to the fact that growth of the mycelium is limited by the transport of oxygen by diffusion in the pellets rather than by interfacial oxygen transport. In the case of isolated tobacco cells, an increase of over 350% in biomass growth was observed for the PFC aeration system.  相似文献   

14.
Perfluorocarbon (PFC) emulsions used as artificial oxygen carriers lack colloid osmotic pressure (COP) and must be administered with colloid‐based plasma expanders (PEs). Although PFC emulsions have been widely studied, there is limited information about PFC emulsion interaction with PEs and blood. Their interaction forms aggregates due to electrostatic and rheological phenomena, and change blood rheology and blood flow. This study analyzes the effects of the interaction between PFC emulsions with blood in the presence of clinically‐used PEs. The rheological behavior of the mixtures was analyzed in vitro in parallel with in vivo analysis of blood flow in the microcirculation using intravital microscopy, when PEs were administered in a clinically relevant scenario. The interaction between the PFC emulsion and PE with blood produced PFC droplets and red blood cell (RBCs) aggregation and increased blood viscosity in a shear dependent fashion. The PFC droplets formed aggregates when mixed with PEs containing electrolytes, and the aggregation increased with the electrolyte concentration. Mixtures of PFC with PEs that produced PFC aggregates also induced RCBs aggregation when mixed with blood, increasing blood viscosity at low shear rates. The more viscous suspension at low shear rates produced a blunted blood flow velocity profile in vivo compared to nonaggregating mixtures of PFC and PEs. For the PEs evaluated, human serum albumin produced minimal to undetectable aggregation. PFC and PEs interaction with blood can affect sections of the microcirculation with low shear rates (e.g., arterioles, venules, and pulmonary circulation) when used in a clinical setting, because persistent aggregates could cause capillary occlusion, decreased perfusion, pulmonary emboli or focal ischemia. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:796–807, 2013  相似文献   

15.
A surfactant–heme complex which shows peroxidase activity in organic media has been prepared by a method utilizing water‐in‐oil (W/O) emulsions. Both the aqueous phase pH and the type of surfactant appeared to have prominent effect on the catalytic activity of the heme complex in benzene. The catalytic efficiency of the heme complex was enhanced more than ten times by adding histidine to the aqueous phase of W/O emulsions in the preparation process. The enhancement of peroxidase activity was observed only in a nonaqueous medium due to the increase of the effective concentration of histidine as an activator. In the present study, we propose a simple preparation method for an artificial heme enzyme which works in nonaqueous media. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 64: 502–506, 1999.  相似文献   

16.
Cytochrome P450 monooxygenases (P450s) are powerful biocatalysts that have the ability to oxidize a broad range of substrates, often at non-reactive carbon centers. However, incorporation of P450s into synthetic schemes has so far been limited to a few whole-cell transformations. P450 substrates are often hydrophobic and have low water solubility, limiting the amount of product that can be produced. To help overcome this limitation, we have examined P450cam activity in two-phase hexane/water emulsions with and without the anionic surfactant, bis(2-ethylhexyl) sulfosuccinate sodium salt (AOT). Hydroxylation of camphor to hydroxycamphor by the three- component P450cam system was chosen as the model reaction, and regeneration of NADH was accomplished with yeast alcohol dehydrogenase (YADH). P450cam was activated in the surfactant-free emulsions, and addition of AOT improved the activity even further, at least over the range of camphor concentrations for which initial rates were readily measurable in all media. The largest observed rate enhancement was 4.5-fold. Nearly 50-times more product was formed in the surfactant-stabilized emulsions than was achieved in aqueous buffer, with total turnover numbers reaching 28,900 for P450cam and 11,800 for YADH. In the absence of surfactant, the two-phase reaction appeared to be mass-transfer limited, while inclusion of AOT alleviated transport limitations and/or afforded a larger interfacial area for P450 activation. The oxidation of hydroxycamphor to 2,5-diketocamphane was also observed, owing to the large concentration of hydroxycamphor relative to camphor in the aqueous phase of the two-phase emulsion. This competing reaction was accompanied by the uncoupled oxidation of NADH (i.e., NADH oxidation without formation of 2,5-diketocamphane), which reduced the availability of NADH for camphor oxidation and further limited the yield of hydroxycamphor in the two-phase emulsions. These results indicate that a surfactant-stabilized two-phase emulsion is a promising reaction medium for practical P450 biocatalysis, although its effectiveness for a given P450/substrate combination can depend on several factors, including competitive or sequential reactions, product inhibition, and NAD(P)H uncoupling.  相似文献   

17.
Gas-liquid mass transfer properties of shaken 96-well microtiter plates were characterized using a recently described method. The maximum oxygen transfer capacity (OTR(max)), the specific mass transfer area (a), and the mass transfer coefficient (k(L)) in a single well were determined at different shaking intensities (different shaking frequencies and shaking diameters at constant filling volume) and different filling volumes by means of sulfite oxidation as a chemical model system. The shape (round and square cross-sections) and the size (up to 2 mL maximum filling volume) of a microtiter plate well were also considered as influencing parameters. To get an indication of the hydrodynamic behavior of the liquid phase in a well, images were taken during shaking and the liquid height derived as a characteristic parameter. The investigations revealed that the OTR(max) is predominantly dependent on the specific mass transfer area (a) for the considered conditions in round-shaped wells. The mass transfer coefficient (k(L)) in round-shaped wells remains at a nearly constant value of about 0.2 m/h for all shaking intensities, thus within the range reported in the literature for surface-aerated bioreactors. The OTR(max) in round-shaped wells is strongly influenced by the interfacial tension, determined by the surface tension of the medium used and the surface properties of the well material. Up to a specific shaking intensity the liquid surface in the wells remains horizontal and no liquid movement can be observed. This critical shaking intensity must be exceeded to overcome the surface tension and, thus, to increase the liquid height and enlarge the specific mass transfer area. This behavior is solely specific to microtiter plates and has not yet been observed for larger shaking bioreactors such as shaking flasks. In square-shaped microtiter plate wells the corners act as baffles and cause a significant increase of OTR(max), a, and k(L). An OTR(max) of up to 0.15 mol/L/h can be reached in square-shaped wells.  相似文献   

18.
19.
Pulmonary surfactant is a lipid-protein complex that coats the alveolar air-liquid interface, enabling the proper functioning of lung mechanics. The hydrophobic surfactant protein SP-B, in particular, plays an indispensable role in promoting the rapid adsorption of phospholipids into the interface. For this, formation of SP-B ring-shaped assemblies seems to be important, as oligomerization could be required for the ability of the protein to generate membrane contacts and to mediate lipid transfer among surfactant structures. SP-B, together with the other hydrophobic surfactant protein SP-C, also promotes permeability of surfactant membranes to polar molecules although the molecular mechanisms underlying this property, as well as its relevance for the surface activity of the protein, remain undefined. In this work, the contribution of SP-B and SP-C to surfactant membrane permeability has been further investigated, by evaluation of the ability of differently-sized fluorescent polar probes to permeate through giant vesicles with different lipid/protein composition. Our results are consistent with the generation by SP-B of pores with defined size in surfactant membranes. Furthermore, incubation of surfactant with an anti-SP-B antibody not only blocked membrane permeability but also affected lipid transfer into the air-water interface, as observed in a captive bubble surfactometer device. Our findings include the identification of SP-C and anionic phospholipids as modulators required for maintaining native-like permeability features in pulmonary surfactant membranes. Proper permeability through membrane assemblies could be crucial to complement the overall role of surfactant in maintaining alveolar equilibrium, beyond its biophysical function in stabilizing the respiratory air-liquid interface.  相似文献   

20.
Interphase mass transfer of a sparingly soluble solute is often the rate-limiting step in multiphase biocatalytic processes. Colloidal liquid aphrons (CLA) provide very large interfacial areas, and thus could enhance mass transfer in such processes. The aim of this study was to characterize mass transfer properties of CLA dispersions during transfer of heptanoic acid from water to limonene. The interfacial area per unit volume (a), film mass transfer coefficient (K(L)), and volumetric mass transfer coefficient (K(L)a) values were determined in a stirred-tank reactor. These results were used, along with a literature correlation, to estimate the mass transfer coefficient of the surfactant-stabilized shell surrounding the CLA. The very large increase in a provided by the CLA was only partially offset by a slight increase in the mass transfer resistance of the shell. As a result, the range of K(L)a values obtained using CLA was about an order of magnitude greater than that obtained using a conventional dispersion. The concentration of the aqueous-phase surfactant used to form the CLA strongly affected the Sauter mean diameter of the CLA; however, the concentration of the nonpolar-phase surfactant had little effect. These results suggest that CLA have considerable potential for multiphase biocatalytic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号