首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Despite significant progress in identifying the guidance pathways that control cell migration, how a cell starts to move within an intact organism, acquires motility, and loses contact with its neighbors is poorly understood. We show that activation of the G protein–coupled receptor (GPCR) trapped in endoderm 1 (Tre1) directs the redistribution of the G protein Gβ as well as adherens junction proteins and Rho guanosine triphosphatase from the cell periphery to the lagging tail of germ cells at the onset of Drosophila melanogaster germ cell migration. Subsequently, Tre1 activity triggers germ cell dispersal and orients them toward the midgut for directed transepithelial migration. A transition toward invasive migration is also a prerequisite for metastasis formation, which often correlates with down-regulation of adhesion proteins. We show that uniform down-regulation of E-cadherin causes germ cell dispersal but is not sufficient for transepithelial migration in the absence of Tre1. Our findings therefore suggest a new mechanism for GPCR function that links cell polarity, modulation of cell adhesion, and invasion.  相似文献   

2.
3.
4.
5.
The Drosophila Genome Project website (www.flybase.org) contains the sequence of an annotated gene (CG6111) expected to code for a G protein-coupled receptor. We have cloned this receptor and found that its gene was not correctly predicted, because an annotated neighbouring gene (CG14547) was also part of the receptor gene. DNA corresponding to the corrected gene CG6111 was expressed in Chinese hamster ovary cells, where it was found to code for a receptor that could be activated by low concentrations of crustacean cardioactive peptide, which is a neuropeptide also known to occur in Drosophila and other insects (EC(50), 5.4 x 10(-10)M). Other known Drosophila neuropeptides, such as adipokinetic hormone, did not activate the receptor. The receptor is expressed in all developmental stages from Drosophila, but only very weakly in larvae. In adult flies, the receptor is mainly expressed in the head. Furthermore, we identified a gene sequence in the genomic database from the malaria mosquito Anopheles gambiae that very likely codes for a crustacean cardioactive peptide receptor.  相似文献   

6.
Cell migration requires integration of signals arising from both the extracellular matrix and messengers acting through G protein-coupled receptors (GPCRs). We find that increased levels of G protein-coupled receptor kinase 2 (GRK2), a key player in GPCR regulation, potentiate migration of epithelial cells towards fibronectin, whereas such process is decreased in embryonic fibroblasts from hemizygous GRK2 mice or upon knockdown of GRK2 expression. Interestingly, the GRK2 effect on fibronectin-mediated cell migration involves the paracrine/autocrine activation of a sphingosine-1-phosphate (S1P) Gi-coupled GPCR. GRK2 positively modulates the activity of the Rac/PAK/MEK/ERK pathway in response to adhesion and S1P by a mechanism involving the phosphorylation-dependent, dynamic interaction of GRK2 with GIT1, a key scaffolding protein in cell migration processes. Furthermore, decreased GRK2 levels in hemizygous mice result in delayed wound healing rate in vivo, consistent with a physiological role of GRK2 as a regulator of coordinated integrin and GPCR-directed epithelial cell migration.  相似文献   

7.
8.
Both beta- and gammaherpesviruses encode G protein-coupled receptors (GPCRs) with unique pharmacological phenotypes and important biological functions. An example is ORF74, the gamma2-herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded GPCR, which is highly constitutively active and considered the key oncogene in Kaposi's sarcoma pathogenesis. In contrast, the current annotation of the Epstein-Barr virus (EBV) genome does not reveal any GPCR homolog encoded by this human oncogenic gamma1-herpesvirus. However, by employing bioinformatics, we recognized that the previously established EBV open reading frame BILF1 indeed encodes a GPCR. Additionally, BILF1 is a member of a new family of related GPCRs exclusively encoded by gamma1-herpesviruses. Expression of hemagglutinin-tagged BILF1 in the HEK293 epithelial cell line revealed that BILF1 is expressed as an approximately 50-kDa glycosylated protein. Immunocytochemistry and confocal microscopy revealed that BILF1 localizes predominantly to the plasma membrane, similar to the localization of KSHV ORF74. Using chimeric G proteins, we found that human and rhesus EBV-encoded BILF1 are highly potent constitutively active receptors, activating Galphai. Furthermore, BILF1 is able to inhibit forskolin-triggered CREB activation via stimulation of endogenous G proteins in a pertussis toxin-sensitive manner, verifying that BILF1 signals constitutively through Galphai. We suggest that EBV may use BILF1 to regulate Galphai-activated pathways during viral lytic replication, thereby affecting disease progression.  相似文献   

9.
Sphingosine-1-phosphate (SPP) acts as a first messenger in immortalized human airway epithelial cells (CFNPE9o(-)), possibly interacting with an Edg family receptor. Expression of the SPP receptors Edg-1 and Edg-3, as well as a low level of Edg-5/H218, was detected in these cells, in agreement with their ability to specifically bind SPP. The related lipids, lysophosphatidic acid and sphingosylphosphorylcholine, were unable to displace SPP from its high affinity binding sites, suggesting that the biological responses to these different lysolipids are mediated by distinct receptors. SPP markedly inhibited forskolin-stimulated cAMP accumulation in a dose-dependent manner and caused a remarkable elevation of intracellular calcium, both effects being sensitive to pertussis toxin treatment. Most importantly, SPP stimulated phosphatidic acid formation, which was maximal after 2 min and decreased within 8-10 min. In the presence of butan-1-ol, suppression of SPP-induced phosphatidic acid formation and production of phosphatidylbutanol were found, clearly indicating activation of phospholipase D (PLD). This finding was also confirmed by analysis of the fatty acid composition of phosphatidic acid, showing an increase in the monounsaturated oleic acid only. The decrease of phosphatidic acid level after 8-10 min incubation with SPP was accompanied by a parallel increase of diacylglycerol production, which was abolished in the presence of butan-1-ol. This result indicates that activation of phospholipase D is followed by stimulation of phosphatidate phosphohydrolase activity. Phosphatidic acid formation was insensitive to protein kinase C inhibitors and almost completely inhibited by pertussis toxin treatment, suggesting that SPP activates phospholipase D via a G(i/o) protein-coupled receptor.  相似文献   

10.
Accurate characterization of the molecular mechanisms of the action of ligands is an extremely important issue for their appropriate research, pharmacological, and therapeutic uses. In view of this fact, the aim of the present work was to investigate the mechanisms involved in the actions of mepyramine at the guinea pig H(1) receptor stably expressed in Chinese hamster ovary cells. We found that mepyramine is able to decrease the basal constitutive activity of the guinea pig H(1) receptor, to bind with high affinity to a G(q/11) protein-coupled form of the receptor and to promote a G protein-coupled inactive state of the H(1) receptor that interferes with the G(q/11)-mediated signaling of the endogenously expressed ATP receptor, as predicted by the Cubic Ternary Complex Model of receptor occupancy. The effect of mepyramine on ATP-induced signaling was specifically neutralized by Galpha(11) overexpression, indicating that mepyramine is able to reduce G protein availability for other non-related receptors associated with the same signaling pathway. Finally, we found a loss of mepyramine efficacy in decreasing basal levels of intracellular calcium at high Galpha(11) expression levels, which can be theoretically explained in terms of high H(1) receptor constitutive activity. The whole of the present work sheds new light on H(1) receptor pharmacology and the mechanisms H(1) receptor inverse agonists could use to exert their observed negative efficacy.  相似文献   

11.
The G protein-coupled receptors (GPCRs), which form the largest group of transmembrane proteins involved in signal transduction, are major targets of currently available drugs. Thus, the search for cognate and surrogate peptide ligands for GPCRs is of both basic and therapeutic interest. Here we describe the application of an in vitro DNA display technology to screening libraries of peptide ligands for full-length GPCRs expressed on whole cells. We used human angiotensin II (Ang II) type-1 receptor (hAT1R) as a model GPCR. Under improved selection conditions using hAT1R-expressing Chinese hamster ovary (CHO)-K1 cells as bait, we confirmed that Ang II gene could be enriched more than 10,000-fold after four rounds of selection. Further, we successfully selected diverse Ang II-like peptides from randomized peptide libraries. The results provide more precise information on the sequence-function relationships of hAT1R ligands than can be obtained by conventional alanine-scanning mutagenesis. Completely in vitro DNA display can overcome the limitations of current display technologies and is expected to prove widely useful for screening diverse libraries of mutant peptide and protein ligands for receptors that can be expressed functionally on the surface of CHO-K1 cells.  相似文献   

12.
BACKGROUND: The Drosophila circadian clock controls rhythms in the amplitude of odor-induced electrophysiological responses that peak during the middle of night. These rhythms are dependent on clocks in olfactory sensory neurons (OSNs), suggesting that odorant receptors (ORs) or OR-dependent processes are under clock control. Because responses to odors are initiated by heteromeric OR complexes that form odor-gated and cyclic-nucleotide-activated cation channels, we tested whether regulators of ORs were under circadian-clock control. RESULTS: The levels of G protein-coupled receptor kinase 2 (Gprk2) messenger RNA and protein cycle in a circadian-clock-dependent manner with a peak around the middle of the night in antennae. Gprk2 overexpression in OSNs from wild-type or cyc(01) flies elicits constant high-amplitude electroantennogram (EAG) responses to ethyl acetate, whereas Gprk2 mutants produce constant low-amplitude EAG responses. ORs accumulate to high levels in the dendrites of OSNs around the middle of the night, and this dendritic localization of ORs is enhanced by GPRK2 overexpression at times when ORs are primarily localized in the cell body. CONCLUSIONS: These results support a model in which circadian-clock-dependent rhythms in GPRK2 abundance control the rhythmic accumulation of ORs in OSN dendrites, which in turn control rhythms in olfactory responses. The enhancement of OR function by GPRK2 contrasts with the traditional role of GPRKs in desensitizing activated receptors and suggests that GPRK2 functions through a fundamentally different mechanism to modulate OR activity.  相似文献   

13.
14.
Evidence for a G protein-coupled gamma-hydroxybutyric acid receptor   总被引:1,自引:0,他引:1  
gamma-Hydroxybutyric acid (GHB) is a naturally occurring metabolite of GABA that has been postulated to exert ubiquitous neuropharmacological effects through GABA(B) receptor (GABA(B)R)-mediated mechanisms. The alternative hypothesis that GHB acts via a GHB-specific, G protein-coupled presynaptic receptor that is different from the GABA(B)R was tested. The effect of GHB on regional and subcellular brain adenylyl cyclase in adult and developing rats was determined and compared with that of the GABA(B)R agonist (-)-baclofen. Also, using guanosine 5'-O:-(3-[(35)S]thiotriphosphate) ([(35)S]GTPgammaS) binding and low-K:(m) GTPase activity as markers the effects of GHB and (-)-baclofen on G protein activity in the brain were determined. Neither GHB nor baclofen had an effect on basal cyclic AMP (cAMP) levels. GHB significantly decreased forskolin-stimulated cAMP levels by 40-50% in cortex and hippocampus but not thalamus or cerebellum, whereas (-)-baclofen had an effect throughout the brain. The effect of GHB on adenylyl cyclase was observed in presynaptic and not postsynaptic subcellular tissue preparations, but the effect of baclofen was observed in both subcellular preparations. The GHB-induced alteration in forskolin-induced cAMP formation was blocked by a specific GHB antagonist but not a specific GABA(B)R antagonist. The (-)-baclofen-induced alteration in forskolin-induced cAMP formation was blocked by a specific GABA(B)R antagonist but not a specific GHB antagonist. The negative coupling of GHB to adenylyl cyclase appeared at postnatal day 21, a developmental time point that is concordant with the developmental appearance of [(3)H]GHB binding in cerebral cortex, but the effects of (-)-baclofen were present by postnatal day 14. GHB and baclofen both stimulated [(35)S]GTPgammaS binding and low-K:(m) GTPase activity by 40-50%. The GHB-induced effect was blocked by GHB antagonists but not by GABA(B)R antagonists and was seen only in cortex and hippocampus. The (-)-baclofen-induced effect was blocked by GABA(B)R antagonists but not by GHB antagonists and was observed throughout the brain. These data support the hypothesis that GHB induces a G protein-mediated decrease in adenylyl cyclase via a GHB-specific G protein-coupled presynaptic receptor that is different from the GABA(B)R.  相似文献   

15.
Lowered extracellular pH in a variety of tissues is associated with increased tissue destruction and initiation of inflammatory processes. Although the acid-sensing receptors described previously are ion channels, we describe a G protein-coupled proton-sensitive receptor that stimulates Ca(2+) release from intracellular stores in a tumor-derived synoviocyte cell line (SW982) and in primary cultures of human synovial cells from patients with inflammatory arthropathies. We established a link between proton-dependent receptor activation and intracellular Ca(2+) mobilization by demonstrating 1) dependence on the integrity of the intracellular Ca(2+) store, 2) independence from extracellular Ca(2+), and 3) proton-induced production of inositol phosphate and 4) by abolishing the effect with GTPase inhibitors. We propose that this G protein-coupled acid-sensing receptor linked to intracellular Ca(2+) mobilization in synoviocytes can contribute to downstream inflammatory and cellular proliferative processes in synovial fibroblasts. The acid-sensing receptor has distinct characteristics as a metabotropic G protein-coupled receptor on human synoviocytes in this emerging new class of receptors.  相似文献   

16.
The internalization of G protein-coupled receptors is regulated by several important proteins that act in concert to finely control this complex cellular process. Here, we have applied the RNA interference approach to demonstrate that ADP-ribosylation factor 6 (ARF6) is essential for the endocytosis of a broad variety of receptors. Reduction of endogenous expression of ARF6 in HEK 293 cells resulted in a correlated inhibition of the beta(2) -adrenergic receptor internalization previously characterized as being sequestered via the clathrin-coated vesicle pathway. Furthermore, other receptors internalizing via this endocytic route, namely the angiotensin type 1 receptor and the vasopressin type 2 receptor, were also impaired in their ability to be sequestered when levels of endogenous ARF6 in cells were reduced. Interestingly, endocytosis of the endothelin type B receptor, characterized as being internalized via the caveolae pathway, was also markedly inhibited in ARF6-depleted cells. In contrast, internalization of the vasoactive intestinal peptide receptor was unaffected by reduced levels of ARF6. Finally, internalization of the acetylcholine-muscarinic type 2 receptor via the non-clathrin-coated vesicle pathway was also inhibited in ARF6-depleted cells. Taken together, our results demonstrate that ARF6 proteins play an essential role in the internalization process of most G protein-coupled receptors regardless of the endocytic route being utilized. However, this phenomenon is not general. In some cases, another ARF isoform or other proteins may be essential to regulate the endocytic process.  相似文献   

17.
G protein-coupled receptor kinase 2 (GRK2) is a key modulator of G protein-coupled receptors and other plasma membrane receptors stimulated by chemotactic messengers. On top of that, GRK2 has been reported to interact with a variety of signal transduction proteins related to cell migration such as MEK, Akt, PI3Kgamma or GIT. Interestingly, the levels of expression and activity of this kinase are altered in a number of inflammatory disorders (as rheumatoid arthritis or multiple sclerosis), thus suggesting that it may play an important role in the onset or development of these pathologies. This review summarizes the mechanisms involved in the control of GRK2 expression and function and highlights novel functional interactions of this protein that might help to explain how altered GRK2 levels affects cell migration in different cell types and pathological settings.  相似文献   

18.
G protein-coupled receptors (GPCRs) represent a major focus in functional genomics programs and drug development research, but their important potential as drug targets contrasts with the still limited data available concerning their activation mechanism. Here, we investigated the activation mechanism of the cholecystokinin-2 receptor (CCK2R). The three-dimensional structure of inactive CCK2R was homology-modeled on the basis of crystal coordinates of inactive rhodopsin. Starting from the inactive CCK2R modeled structure, active CCK2R (namely cholecystokinin-occupied CCK2R) was modeled by means of steered molecular dynamics in a lipid bilayer and by using available data from other GPCRs, including rhodopsin. By comparing the modeled structures of the inactive and active CCK2R, we identified changes in the relative position of helices and networks of interacting residues, which were expected to stabilize either the active or inactive states of CCK2R. Using targeted molecular dynamics simulations capable of converting CCK2R from the inactive to the active state, we delineated structural changes at the atomic level. The activation mechanism involved significant movements of helices VI and V, a slight movement of helices IV and VII, and changes in the position of critical residues within or near the binding site. The mutation of key amino acids yielded inactive or constitutively active CCK2R mutants, supporting this proposed mechanism. Such progress in the refinement of the CCK2R binding site structure and in knowledge of CCK2R activation mechanisms will enable target-based optimization of nonpeptide ligands.  相似文献   

19.
The effect of sphingosine-1-phosphate (S1P) on large-conductance Ca2+-activated K+ (BKCa) channels was examined in primary cultured human umbilical vein endothelial cells by measuring intracellular Ca2+ concentration ([Ca2+]i), whole cell membrane currents, and single-channel activity. In nystatin-perforated current-clamped cells, S1P hyperpolarized the membrane and simultaneously increased [Ca2+]i. [Ca2+]i and membrane potentials were strongly correlated. In whole cell clamped cells, BKCa currents were activated by increasing [Ca2+]i via cell dialysis with pipette solution, and the activated BKCa currents were further enhanced by S1P. When [Ca2+]i was buffered at 1 µM, the S1P concentration required to evoke half-maximal activation was 403 ± 13 nM. In inside-out patches, when S1P was included in the bath solution, S1P enhanced BKCa channel activity in a reversible manner and shifted the relationship between Ca2+ concentration in the bath solution and the mean open probability to the left. In whole cell clamped cells or inside-out patches loaded with guanosine 5'-O-(2-thiodiphosphate) (GDPS; 1 mM) using a patch pipette, GDPS application or pretreatment of cells with pertussis toxin (100 ng/ml) for 15 h did not affect S1P-induced BKCa current and channel activation. These results suggest that S1P enhances BKCa channel activity by increasing Ca2+ sensitivity. This channel activation hyperpolarizes the membrane and thereby increases Ca2+ influx through Ca2+ entry channels. Inasmuch as S1P activates BKCa channels via a mechanism independent of G protein-coupled receptors, S1P may be a component of the intracellular second messenger that is involved in Ca2+ mobilization in human endothelial cells. sphingolipid metabolites; intracellular second messenger; Ca2+ mobilization  相似文献   

20.
A DNA fragment encoding an amino acid sequence possessing common features to the G protein-coupled receptor (GPCR) superfamily was found in the human genomic sequence, and from this information, the full-length cDNA of a novel GPCR, designated SLT, was cloned from the human hippocampus cDNA library. SLT showed the highest homology to the melanin-concentrating hormone (MCH) receptor, SLC-1 (31.5% identity), and to a lesser extent, to the somatostatin (SST) receptor subtypes. MCH exhibited agonistic behavior when applied to the SLT-expressing CHO cells at subnanomolar doses whereas more than 200 known peptides, including SST and cortistatin, did not. These results indicated that MCH is the cognate ligand of the SLT receptor and that this newly cloned GPCR is the second subtype of the MCH receptor. Quantitative polymerase chain reaction analysis of the SLT gene expression in human tissues showed that the SLT receptor is expressed mainly in brain areas including the cerebral cortex, amygdala, hippocampus, and corpus callosum, as well as in a limited number of peripheral tissues. The distribution of the SLT nearly overlapped that of SLC-1, suggesting that some of the neural functions of MCH may be mediated by both of these receptor subtypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号