首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The frequency of labeled mitoses (FLM) method for analyzing cell-cycle phases necessitates a determination of cell-cycle interdivision times and the absolute lengths of the cell-cycle phases. The change to flow sorting (FACS) analysis, a simpler, less labor intensive, and more rapid method, eliminated determinations of absolute phase times, yielding only percents of cells exhibiting particular DNA contents. Without an interdivision time value, conversion of these fractions into absolute phase lengths is not possible. This change in methodology has led to an alteration in how the cell cycle is viewed. The FLM method allowed the conclusion that G1-phase variability resulted from constancy of S and G2 phase lengths. In contrast, with FACS analysis, slow growing cells exhibiting a large fraction of cells with a G1-phase amount of DNA appeared to be “arrested in G1 phase”. The loss of absolute phase length determinations has therefore led to the proposals of G1-phase arrest, G1-phase controls, restriction points, and G0 phase. It is suggested that these G1-phase controls and phenomena require a critical reevaluation in the light of an alternative cell-cycle model that does not require or postulate such G1-phase controls.  相似文献   

2.
3.
Mean transit times as well as variances of the transit times through the individual phases of the cell cycle have been determined for the crypt epithelial cells of the jejunum of the mouse. To achieve this the fraction of labelled mitoses (FLM) technique has been modified by double labelling with [3H] and [14C]thymidine. Mice were given a first injection of [3H]thymidine, and 2 hr later a second injection of [14C]thymidine. This produces a narrow subpopulation of purely 3H-labelled cells at the beginning of G2-phase and a corresponding subpopulation of purely 14C-labelled cells at the beginning of the S-phase. When these two subpopulations progress through the cell cycle, one obtains FLM waves of purely 3H- and purely 14C-labelled mitoses. These waves have considerably better resolution than the conventional FLM-curves. From the temporal positions of the observed maxima the mean transit times of the cells through the individual phases of the cycle can be determined. Moreover one obtains from the width of the individual waves the variances of the transit times through the individual phases. It has been found, that the variances of the transit times through successive phases are additive. This indicates that the transit times of cells through successive phases are independently distributed. This statistical independence is an implicit assumption in most of the models applied to the analysis of FLM curves, however there had previously been no experimental support of this assumption. A further result is, that the variance of the transit time through any phase of the cycle is proportional to the mean transit time. This implies that the progress of the crypt epithelial cells is subject to an equal degree of randomness in the various phases of the cycle.  相似文献   

4.
Previous studies have shown that the cell-cycle phase at the onset of starvation is a naturally occurring variable that is closely involved in the subsequent sorting and differentiation of cells during Dictyostelium development. Here the cell-cycle progression during the development of D. discoideum Ax-2 cells and its relation to the subsequent cell-sorting were analyzed in detail using synchronized cells and their pulse-labeling by 5'-bromodeoxyuridine (BrdU). Measurements of cell number and nuclearity provided evidence that about 80% of cells progressed their cell-cycle after formation of multicellular structures (mounds). Many cells (T7 cells) starved at mid–late G2-phase (just before the PS-point from which cells initiate development when starved) progressed to the cell-cycle after mound formation. In contrast, a less amount of cells (T1 cells) starved at late G2-phase (just after the PS-point) progressed through the cell-cycle after mound formation. The significance of cell-cycle progression presented here is discussed, with reference to cell differentiation and pattern formation.  相似文献   

5.
During cell division in the yeast Saccharomyces cerevisiae mother cells produce buds (daughter cells) which are smaller and have longer cell cycles. We performed experiments to compare the lengths of cell cycle phases in mothers and daughters. As anticipated from earlier indirect observations, the longer cell cycle time of daughter cells is accounted for by a longer G1 interval. The S-phase and the G2-phase are of the same duration in mother and daughter cells. An analysis of five isogenic strains shows that cell cycle phase lengths are independent of cell ploidy and mating type.  相似文献   

6.
Cell cycle-dependent activation of Ras   总被引:1,自引:0,他引:1  
Background Ras proteins play an essential role in the transduction of signals from a wide range of cell-surface receptors to the nucleus. These signals may promote cellular proliferation or differentiation, depending on the cell background. It is well established that Ras plays an important role in the transduction of mitogenic signals from activated growth-factor receptors, leading to cell-cycle entry. However, important questions remain as to whether Ras controls signalling events during cell-cycle progression and, if so, at which point in the cell-cycle it is activated.Results To address these questions we have developed a novel, functional assay for the detection of cellular activated Ras. Using this assay, we found that Ras was activated in HeLa cells, following release from mitosis, and in NIH 3T3 fibroblasts, following serum-stimulated cell-cycle entry. In each case, peak Ras activation occurred in mid-G1 phase. Ras activation in HeLa cells at mid-G1 phase was dependent on RNA and protein synthesis and was not associated with tyrosine phosphorylation of Shc proteins and their binding to Grb2. Significantly, activation of Ras and the extracellular-signal regulated (ERK) subgroup of mitogen-activated protein kinases were not temporally correlated during G1-phase progression.Conclusions Activation of Ras during mid-G1 phase appears to differ in many respects from its rapid activation by growth factors, suggesting a novel mechanism of regulation that may be intrinsic to cell-cycle progression. Furthermore, the temporal dissociation between Ras and ERK activation suggests that Ras targets alternate effector pathways during G1-phase progression.  相似文献   

7.
Abstract. The FLM method, modified by double labelling with [3H]- and [14C]-thymidine, has been applied to the 4-day old JB-1 ascites tumour of the mouse. It results in well separated waves of purely [3H]- and purely [14C]-labelled mitoses, which show a remarkable asymmetry with long tails to the right. The following values for the mean transit times of the cells have been derived from this FLM curve, for a tumour age of 4–6 days: TC= 32.5 hr, TS= 16.7 hr, TG1= 3.7 hr, TG1= 11.0 hr and TM= 1.1 hr. A further evaluation of the FLM curve, however, is difficult, due to the non-stationary growth of the tumour. A number of other experimental findings (growth curve, decrease of the labelling and mitotic index with increasing tumour age, two single-labelled FLM curves starting 4 and 6 days after tumour inoculation) indicate that the cell cycle time increases during the experimental period of the double-labelled FLM curve (about 2 days). A lengthening of the cycle time should result in an increasing enlargement of the areas under the waves of the modified FLM curve. However, such an increase in area has not been found; the areas are constant. All the results of the present cell kinetic studies would be consistent if it were postulated that the cell cycle time lengthens with increasing tumour age up to about 4 days after inoculation, then remains relatively constant at between 4 and 6 days and thereafter increases again. Short-term double labelling experiments suggest that this is actually the case. Under the assumption of nearly constant phase durations during the 5th and 6th day of tumour growth further conclusions can be drawn from the modified FLM curve. In particular, it follows that the transit times of the cells through successive cycle phases are uncorrelated and the variances of the transit times through a cycle phase are proportional to the duration of this phase.  相似文献   

8.
In Xenopus and Drosophila, the nucleocytoplasmic ratio controls many aspects of cell-cycle remodeling during the transitory period that leads from fast and synchronous cell divisions of early development to the slow, carefully regulated growth and divisions of somatic cells. After the fifth cleavage in sea urchin embryos, there are four populations of differently sized blastomeres, whose interdivision times are inversely related to size. The inverse relation suggests nucleocytoplasmic control of cell division during sea urchin development as well. To investigate this possibility, we developed a mathematical model based on molecular interactions underlying early embryonic cell-cycle control. Introducing the nucleocytoplasmic ratio explicitly into the molecular mechanism, we are able to reproduce many physiological features of sea urchin development.  相似文献   

9.
We propose that cell-cycle-dependent timing of FEN1 nuclease activity is essential for cell-cycle progression and the maintenance of genome stability. After DNA replication is complete at the exit point of the S phase, removal of excess FEN1 may be crucial. Here, we report a mechanism that controls the programmed degradation of FEN1 via a sequential cascade of posttranslational modifications. We found that FEN1 phosphorylation stimulated its SUMOylation, which in turn stimulated its ubiquitination and ultimately led to its degradation via the proteasome pathway. Mutations or inhibitors that blocked the modification at any step in this pathway suppressed FEN1 degradation. Critically, the presence of SUMOylation- or ubiquitination-defective, nondegradable FEN1 mutant protein caused accumulation of Cyclin B, delays in the G1 and G2/M phases, and polyploidy. These findings may represent a newly identified regulatory mechanism used by cells to ensure precise cell-cycle progression and to prevent transformation.  相似文献   

10.
Cell-cycle regulation of center initiation in Dictyostelium discoideum   总被引:3,自引:0,他引:3  
The center-initiating behavior of Dictyostelium discoideum amoebae in various cell-cycle phases was investigated. Small populations of synchronized AX-2 cells were seeded 1 in 1000 into cultures of a nonsignaling mutant (NP160) incapable of initiating centers. The ability of the wild-type AX-2 cells to initiate centers among mutant amoebae displayed cell-cycle regulation. Approximately 50% of a population of S-phase cells initiated centers while only 7.5% of a population of late G2-phase cells resulted in center formation. The timing of center formation also varied with cycle position. Synchronous cultures containing only AX-2 S-phase amoebae (no NP160) displayed the initial signs of aggregation after 4.5 hr of starvation and streaming into the aggregate was complete after 6 hr. In contrast, cultures of late G2-phase amoebae initiated aggregation centers after 5.5 hr of starvation and did not complete streaming until 7.5 hr. In addition, the number of aggregates formed by these synchronous cultures of AX-2 cells also varied with cycle position. In general, these results suggest a cell-cycle modulation of the autonomous signaling responsible for center initiation.  相似文献   

11.
Mean transit times as well as variances of the transit times through the individual phases of the cell cycle have been determined for the crypt epithelial cells of the jejunum of the mouse. To achieve this the fraction of labelled mitoses (FLM) technique has been modified by double labelling with [3H] and [14C]thymidine. Mice were given a first injection of [3H]thymidine, and 2 hr later a second injection of [14C]thymidine. This produces a narrow subpopulation of purely 3H-labelled cells at the beginning of G2-phase and a corresponding subpopulation of purely 14C-labelled cells at the beginning of the S-phase. When these two subpopulations progress through the cell cycle, one obtains FLM waves of purely 3H- and purely 14C-labelled mitoses. These waves have considerably better resolution than the conventional FLM-curves. From the temporal positions of the observed maxima the mean transit times of the cells through the individual phases of the cycle can be determined. Moreover one obtains from the width of the individual waves the variances of the transit times through the individual phases. It has been found, that the variances of the transit times through successive phases are additive. This indicates that the transit times of cells through successive phases are independently distributed. This statistical independence is an implicit assumption in most of the models applied to the analysis of FLM curves, however there had previously been no experimental support of this assumption. A further result is, that the variance of the transit time through any phase of the cycle is proportional to the mean transit time. This implies that the progress of the crypt epithelial cells is subject to an equal degree of randomness in the various phases of the cycle.  相似文献   

12.
Using an asynchronously growing cell population, we investigated how X-irradiation at different stages of the cell cycle influences individual cell–based kinetics. To visualize the cell-cycle phase, we employed the fluorescent ubiquitination-based cell cycle indicator (Fucci). After 5 Gy irradiation, HeLa cells no longer entered M phase in an order determined by their previous stage of the cell cycle, primarily because green phase (S and G2) was less prolonged in cells irradiated during the red phase (G1) than in those irradiated during the green phase. Furthermore, prolongation of the green phase in cells irradiated during the red phase gradually increased as the irradiation timing approached late G1 phase. The results revealed that endoreduplication rarely occurs in this cell line under the conditions we studied. We next established a method for classifying the green phase into early S, mid S, late S, and G2 phases at the time of irradiation, and then attempted to estimate the duration of G2 arrest based on certain assumptions. The value was the largest when cells were irradiated in mid or late S phase and the smallest when they were irradiated in G1 phase. In this study, by closely following individual cells irradiated at different cell-cycle phases, we revealed for the first time the unique cell-cycle kinetics in HeLa cells that follow irradiation.  相似文献   

13.
Paclitaxel (taxol) is a chemotherapeutic agent frequently used in combination with other anti-neoplastic drugs. It is most effective during the M phase of the cell-cycle and tends to cause synchronization in malignant cells lines. In this study, we investigated whether timed, sequential treatment based on the cell-cycle characteristics could be exploited to enhance the cytotoxic effect of paclitaxel. We characterized the cell-cycle properties of a rapidly multiplying cell line (Sp2, mouse myeloma cells) by propidium-iodide DNA staining such as the lengths of various cell cycle phases and population duplication time. Based on this we designed a paclitaxel treatment protocol that comprised a primary and a secondary, timed treatment. We found that the first paclitaxel treatment synchronized the cells at the G2/M phase but releasing the block by stopping the treatment allowed a large number of cells to enter the next cell-cycle by a synchronized manner. The second treatment was most effective during the time when these cells approached the next G2/M phase and was least effective when it occurred after the peak time of this next G2/M phase. Moreover, we found that after mixing Sp2 cells with another, significantly slower multiplying cell type (Jurkat human T-cell leukemia) at an initial ratio of 1:1, the ratio of the two different cell types could be influenced by timed sequential paclitaxel treatment at will. Our results demonstrate that knowledge of the cell-cycle parameters of a specific malignant cell type could improve the effectivity of the chemotherapy. Implementing timed chemotherapeutic treatments could increase the cytotoxicity on the malignant cells but also decrease the side-effects since other, non-malignant cell types will have different cell-cycle characteristic and be out of synch during the treatment.  相似文献   

14.
In a previous study of the mouse ascending colon we showed that epithelial cell proliferation is more active on the tops of mucosal folds than in the flat mucosal areas between folds. In order to define the cytokinetic characteristics of this phenomenon more precisely, we have undertaken an autoradiographic investigation with 3H-thymidine. The fraction of labelled mitoses (FLM) curves and cell labelling indices have been worked out in fold top areas (FTA) and on flat areas off the folds (OFA). A new method has been adopted to draw the FLM curves. The results show no difference between the cell cycle times or in the times corresponding to G2-phase and S-phase in FTA and OFA. In contrast, the proliferative cell compartment in FTA is 40% higher than in OFA.  相似文献   

15.
When denervated at the medium bud stage, limb blastemas of the newt, Pleurodeles waltlii Michah, stop growing. In order to better understand the role of nerves in the cell cycle in blastemas, we studied the distribution of mesenchymal cells in the G0-1, G1, S, G2 and M phases 48 and 96 h after denervation. The cell-cycle phases were determined by examining Feulgen-stained nuclei using a SAMBA 200 (System for Analytical Microscopy in Biological Applications) cell image processor. The cell nuclei were automatically analyzed by calculating 18 parameters related to the densitometry and texture of chromatin, and the shape of each nucleus. Cell-cycle phases were classified according to the unsupervised recognition method using a SAMBA 200 system as proposed by Moustafa and Brugal for cell-kinetics analysis. The classification obtained was tested against the results of stepwise linear discriminant analysis performed according to the method of Giroud. Our results show that, in blastemas 96 h after denervation, the percentage of cells in the S, G2, and M phases decreases significantly, while the percentage of G1 and G0-1 cells increases (+ 51% for G1 cells; + 30% for G0-1 cells). Thus, it appears that denervation of medium-bud-stage limb blastemas promotes the lengthening of G1 and premature exiting of cells from the cycle into the G0-1 phase. These results show that nerves (i.e., neurotrophic factor) regulate cell kinetics during newt limb regeneration by maintaining blastema mesenchymal cells in the cell-cycle.  相似文献   

16.
The lengths of the synthetic phase (S) and postsynthetic gap plus a half of the mitotic time (G2+1/2 M) has been investigated in hepatocytes of control and thyroxine-treated male white rats using percent labeled mitosis curves after injection of isotope at 10, 16, 22 and 4 o'clock. In the control, the minimum lengths of G2 lasted 3.0 hours without being changed during 24 hours. On the contrary, G2+1/2 M and S varied from 3.2 to 4.4 and from 8.0 to 9.5 hours, accordingly. A prolonged administration or hormone induced changes in duration of all the above phases whose alterations in thyroxine-treated group of animals showed 2.0--3.0, 2.9--3.4 and 6.4--11.3 hours, respectively. During 24 hours, there was observed a characteristic pattern of changes in the labeling index (LI) of both groups of animals. It has been established for both the groups that the increased in LI coincides with the shortening of S-phase. The data allow to conclude that some intracycle mechanisms may exist controlling the cell division and exerting their effects on the cells at the end of G1-phase and during G2-phase. Thyroxine is a regulator of cell proliferation, and its effect was found to occur due to the intracycle mechanisms of cell cycle kinetics.  相似文献   

17.
Cultured, freshly-isolated rat fibroblasts were exposed in vitro to vincristine sulphate (VC), amethopterin (AM), bleomycin (BL), benomyl (BE) and practolol (PR). Cells treated for 5 h were subjected 24 h later to a two-parameter (DNA/protein) flow cytometry analysis. The fluorochromes used were sulphorhodamin 101 and DAPI. From DNA and protein histograms, alterations in cell-cycle kinetics, variations in the amount of DNA in individual G1-phase cells and the enhancement of or increased variation in the protein content of the exposed cells were determined. Each of the 5 chemicals induced a specific dose-dependent pattern of changes in the DNA and protein histograms. DNA dispersion was enhanced with VC, AM, BL and BE but not with PR. The cell cycle was blocked in the G2 phase with VC, at early S phase with amethopterin and, depending on the dose, at the G1 or G2 phase with bleomycin or at the S phase or G2 phase with benomyl. Practolol inhibited cells slightly in the S phase at the highest exposure level. Protein analysis allows cytotoxic activity (loss of proteins) or induced unbalanced growth (protein accumulation) of test compounds to be recognized. The results obtained imply that the proposed two-parameter DNA/protein analysis by flow cytometry is a suitable method for prospective testing of chemicals for their induction of structural or numerical chromosome aberrations. Simultaneously, a broad range of cytotoxic, cytostatic and cell-cycle perturbing activities of the test agents can be recognized.  相似文献   

18.
At different time intervals after injection of Bleomycin (BLM) th effect on several kinetic parameters of the hairless mouse epidermis stimulated to proliferate by previous adhesive tape stripping was measured. Micro-flow fluorometry was used to determine the relative number of cells in the various phases of the cell cycle (G1, S and G2). Tritiated thymidine was used to determine labelling indices and grain counts. Colcemid was used to observe the mitotic rate. An initial decrease followed by a subsequent significant increase compared to the non-BLM-treated controls was observed in all parameters studied except the mitotic rate, which remained lower than in the control animals during all 48 hours. The transit time of the cells through the S-phase was initially slightly prolonged, but thereafter it seemed to be shorter than that of the controls. BLM seems to provoke a partial blocking of cells in the G1 phase. When the block is released, a greater number of cells pass through the S phase in partial synchrony at a higher than normal speed. BLM induced a low mitotic rate which remained below the level of that of the normal animals after stripping, even though there obviously was a considerably higher influx of cells from the S phase to the G2 phase. This resulted in a subsequent accumulation of cells in the G2-phase. Thus, BLM has also a blocking effect on the G2-M boundary of the cell cycle. This inhibitory effect of BLM on the mitotic rate was shown to be independent of the effect of BLM on the DNA synthesis. BLM therefore seems to have complex influence on epidermal cell kinetics in vivo. Cells in G1-phase are partially and transiently blocked, but this block is soon released. These cells thereafter pass through the S-phase and pile up in the G2-phase, because BLM also blocks the passage of cells from the G2-phase to mitosis. The overall reduction in cell proliferation seen after BLM in vivo seems mainly to be due to the effect on the G2-M boundray of the cell cycle.  相似文献   

19.
Vimentin expression throughout the cell cycle has been analyzed at the single-cell level in asynchronously growing MPC-11 cells using multiparameter flow cytometry. We have previously shown that these cells normally lack detectable amounts of intermediate filament proteins. In the presence of the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), cell proliferation ceases and large quantities of the intermediate filament protein vimentin are synthesized and accumulate in most of the cells. In the present study, the short-term effect of TPA on distribution of cells within the cell cycle was a depletion in early S phase followed by a depletion in mid- and late S phase. In parallel, the G1-phase fraction increased significantly. In addition, a delay in progression through G2/M phase was observed. These data strongly suggest an inhibition of progression of cells through the cell cycle in G1 phase as the primary event on cell cycle kinetics elicited by TPA. Vimentin accumulation could be detected by flow cytometry as early as 2 h after TPA addition; at this time, the percentage of vimentin-positive cells was highest in G2/M phase. Prolonged TPA treatment induced vimentin accumulation in cells of all cell cycle phases. However, even at later times, the G1-phase population consisted of two subpopulations with low and high vimentin content, respectively. The fraction of cells which displayed a higher level of vimentin probably represents those G1-phase cells which previously had undergone cell division in the presence of TPA. Our data indicate that TPA-induced vimentin synthesis is regulated in a cell cycle-dependent manner and is maximally induced in cells which have passed a putative cell cycle restriction point in G1 phase.  相似文献   

20.
Evidence has been presented supporting the existence of heterogeneity in cell-cycle progression in mouse epidermis, The present study was undertaken to characterize this heterogeneity in more detail. Hairless mice were continuously labelled with tritiated thymidine every 4 hr for 4 days. Basal cell suspensions were prepared from slices of mouse skin at intervals during the experiment and subjected to DNA flow cytometry. Cell-cycle analysis was combined with sorting of cells from windows in G1, S and G2 phase, and the proportion of labelled cells within each window was determined in autoradiographs. Reanalysis and resorting to control the purity of of sorted fractions were performed. Computer simulations of the data were made using a mathematical model assuming different S and G2 phase characteristics. A good fit to the data was only obtained when heterogeneity in mouse epidermal cell-cycle progression was assumed, indicating the existence of slowly traversing, distinct subpopulations of cells in G2 and S phase. These cells are assumed to contribute to about 40% of all cells in S phase and to about 70% of all in G2 phase. The estimated residence times in the resting states were 38 and 32 hr in S and G2 phase, respectively. Two-parameter sorting based on DNA and light scatter indicated that slowly cycling cells were larger than the average. There is no evidence of significant subpopulations of permanently non-proliferating keratinocytes in any of the cell-cycle phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号