共查询到20条相似文献,搜索用时 12 毫秒
1.
ZHAO KehaoSONG Shiying LIN ZhengjiongZHOU Yuancong 《中国科学:生命科学英文版》1999,42(1):80-89
The basic phospholipase A2 from the venom of Agkistrodon halys Pallas is a potent hemolytic toxin and anticoagulant. The accurate rotation and translation parameters of the molecules in orthorhombic crystal form I were successfully obtained using the fitting refinement technique. The structure was refined in the resolution range of 0. 6-0.25 nm using least square refinement with non-crystallographic two fold symmetry restraint, and resulted in the final R factor of 20.1 % , and the rms deviations from ideal stereochemistry were 0. 001 3 nm for bond lengths and 1. 32° for bond angles. The overall architecture of the present structure was similar to that of the determined structure of the orthorhombic crystal form Ⅱ, with a few differences in the regions of the β-wing and Ca2+-binding loop. The dimers formed by the two molecules in the asymmetric unit in both crystal forms were also similar. However, one of the monomers showed an orientational difference of 5.5° along the dimer interface in the two crystal forms, suggesting the flexibility of the interface of the dimer to some degree. The molecular packing of the dimer in crystal form I was much more compact than that in crystal form Ⅱ. 相似文献
2.
The crystal structure of turkey egg lysozyme (TEL) complexed with di-N-acetylchitobiose (NAG2) was refined at 1.19 A resolution by the full-matrix least-squares method with anisotropic temperature factors, and its thermal motion was evaluated by the TLS method. The average ESDs of atomic parameters of nonhydrogen atoms were 0.030 A for coordinates and 0.025 A(2) for anisotropic temperature factors. The active site cleft of TEL binds the alpha-anomer of NAG2 in a nonproductive binding mode with its pyranose rings parallel to a beta-sheet. The TEL structure was compared with the re-refined 1.12 A structure of native TEL. The RMS difference for equivalent Calpha atoms was 0.103 A and a relatively large difference was observed in the region of residues 104-125 rather than in the beta-sheet region where NAG2 was bound. In contrast, the temperature factor of the beta-sheet region was significantly decreased by the NAG2 binding. The TLS model that describes the rigid body motion in translation, libration, and screw motion was adopted for the evaluation of the molecular motion of TEL and NAG2, and the TLS parameters were determined by the least-squares fit to U(ij). The contribution of the external motion of TEL was estimated to be 55.8% of the observed temperature factor for the native structure and 45.9% for the NAG2 complex. The internal motion of TEL represented with atomic thermal ellipsoids was very similar between the native and complex structures except the NAG2 binding region. In the structure of NAG2, the rigid body motion dominates the thermal motion. The center of rotation of NAG2, 4.45A far from the center of gravity, is on the nitrogen atom of the acetylamino group that is hydrogen bonded to the main-chain peptide groups of Asn49 and Ala107. The rigid body motion of NAG2 indicates that the acetylamino group is most strongly bound to the active site, and the recognition of this group is a crucial step of the substrate binding. 相似文献
3.
The basic phospholipase A2 from the venom of Agkistrodon halys Pallas is a potent hemolytic toxin and anticoagulant. The accurate rotation and translation parameters of the molecules in orthorhombic crystal form I were successfully obtained using the fitting refinement technique. The structure was refined in the resolution range of 0. 6-0.25 nm using least square refinement with non-crystallographic two fold symmetry restraint, and resulted in the final R factor of 20.1 % , and the rms deviations from ideal stereochemistry were 0. 001 3 nm for bond lengths and 1. 32° for bond angles. The overall architecture of the present structure was similar to that of the determined structure of the orthorhombic crystal form Ⅱ, with a few differences in the regions of the β-wing and Ca2 -binding loop. The dimers formed by the two molecules in the asymmetric unit in both crystal forms were also similar. However, one of the monomers showed an orientational difference of 5.5° along the dimer interface in the two cr 相似文献
4.
Endothiapepsin is derived from the fungus Endothia parasitica and is a member of the aspartic proteinase class of enzymes. This class of enzyme is comprised of two structurally similar lobes, each lobe contributing an aspartic acid residue to form a catalytic dyad that acts to cleave the substrate peptide bond. The three-dimensional structures of endothiapepsin bound to five transition state analogue inhibitors (H189, H256, CP-80,794, PD-129,541 and PD-130,328) have been solved at atomic resolution allowing full anisotropic modelling of each complex. The active sites of the five structures have been studied with a view to studying the catalytic mechanism of the aspartic proteinases by locating the active site protons by carboxyl bond length differences and electron density analysis. In the CP-80,794 structure there is excellent electron density for the hydrogen on the inhibitory statine hydroxyl group which forms a hydrogen bond with the inner oxygen of Asp32. The location of this proton has implications for the catalytic mechanism of the aspartic proteinases as it is consistent with the proposed mechanism in which Asp32 is the negatively charged aspartate. A number of short hydrogen bonds (approximately 2.6 A) with ESD values of around 0.01 A that may have a role in catalysis have been identified within the active site of each structure; the lengths of these bonds have been confirmed using NMR techniques. The possibility and implications of low barrier hydrogen bonds in the active site are considered. 相似文献
5.
Perumal Samy R Gopalakrishnakone P Thwin MM Chow TK Bow H Yap EH Thong TW 《Journal of applied microbiology》2007,102(3):650-659
AIMS: Venoms of snakes, scorpions, bees and purified venom phospholipase A(2) (PLA(2)) enzymes were examined to evaluate the antibacterial activity of purified venom enzymes as compared with that of the crude venoms. METHODS AND RESULTS: Thirty-four crude venoms, nine purified PLA(2)s and two L-amino acid oxidases (LAAO) were studied for antibacterial activity by disc-diffusion assay (100 microg ml(-1)). Several snake venoms (Daboia russelli russelli, Crotalus adamanteus, Naja sumatrana, Pseudechis guttata, Agkistrodon halys, Acanthophis praelongus and Daboia russelli siamensis) showed activity against two to four different pathogenic bacteria. Daboia russelli russelli and Pseudechis australis venoms exhibited the most potent activity against Staphylococcus aureus, while the rest showed only a moderate activity against one or more bacteria. The order of susceptibility of the bacteria against viperidae venoms was -S. aureus > Proteus mirabilis > Proteus vulgaris > Enterobacter aerogenes > Pseudomonas aeruginosa and Escherichia coli. The minimum inhibitory concentrations (MIC) against S. aureus was studied by dilution method (160-1.25 microg ml(-1)). A stronger effect was noted with the viperidae venoms (20 microg ml(-11)) as compared with elapidae venoms (40 microg ml(-1)). The MIC were comparable with those of the standard drugs (chloramphenicol, streptomycin and penicillin). CONCLUSION: The present findings indicate that viperidae (D. russelli russelli) and elapidae (P. australis) venoms have significant antibacterial effects against gram (+) and gram (-) bacteria, which may be the result of the primary antibacterial components of laao, and in particular, the PLA(2) enzymes. The results would be useful for further purification and characterization of antibacterial agents from snake venoms. SIGNIFICANCE AND IMPACT OF THE STUDY: The activity of LAAO and PLA(2) enzymes may be associated with the antibacterial activity of snake venoms. 相似文献
6.
The role of cytosolic phospholipase A2α in amyloid precursor protein induction by amyloid beta1‐42: implication for neurodegeneration 下载免费PDF全文
Chen Sagy‐Bross Ksenia Kasianov Yulia Solomonov Alex Braiman Alon Friedman Nurit Hadad Rachel Levy 《Journal of neurochemistry》2015,132(5):559-571
Amyloid‐β peptides generated by proteolysis of the β‐amyloid precursor protein (APP) play an important role in the pathogenesis of Alzheimer's disease. The present study aimed to determine whether cytosolic phospholipase A2α (cPLA2α) plays a role in elevated APP protein expression induced by aggregated amyloid‐β1‐42 (Aβ) in cortical neurons and to elucidate its specific role in signal events leading to APP induction. Elevated cPLA2α and its activity determined by phosphorylation on serine 505 as well as elevated APP protein expression, were detected in primary rat cortical neuronal cultures exposed to Aβ for 24 h and in cortical neuron of human amyloid‐β1‐42 brain infused mice. Prevention of cPLA2α up‐regulation and its activity by oligonucleotide antisense against cPLA2α (AS) prevented the elevation of APP protein in cortical neuronal cultures and in mouse neuronal cortex. To determine the role of cPLA2α in the signals leading to APP induction, increased cPLA2α expression and activity induced by Aβ was prevented by means of AS in neuronal cortical cultures. Under these conditions, the elevated cyclooxygenase‐2 and the production of prostaglandin E2 (PGE2) were prevented. Addition of PGE2 or cyclic AMP analogue (dbcAMP) to neuronal cultures significantly increased the expression of APP protein, while the presence protein kinase A inhibitor (H‐89) attenuated the elevation of APP induced by Aβ. Inhibition of elevated cPLA2α by AS prevented the activation of cAMP response element binding protein (CREB) as detected by its phosphorylated form, its translocation to the nucleus and its DNA binding induced by Aβ which coincided with cPLA2α dependent activation of CREB in the cortex of Aβ brain infused mice. Our results show that accumulation of Aβ induced elevation of APP protein expression mediated by cPLA2α, PGE2 release, and CREB activation via protein kinase A pathway.
7.
Atomic resolution analysis of the catalytic site of an aspartic proteinase and an unexpected mode of binding by short peptides 下载免费PDF全文
Erskine PT Coates L Mall S Gill RS Wood SP Myles DA Cooper JB 《Protein science : a publication of the Protein Society》2003,12(8):1741-1749
The X-ray structures of native endothiapepsin and a complex with a hydroxyethylene transition state analog inhibitor (H261) have been determined at atomic resolution. Unrestrained refinement of the carboxyl groups of the enzyme by using the atomic resolution data indicates that both catalytic aspartates in the native enzyme share a single negative charge equally; that is, in the crystal, one half of the active sites have Asp 32 ionized and the other half have Asp 215 ionized. The electron density map of the native enzyme refined at 0.9 A resolution demonstrates that there is a short peptide (probably Ser-Thr) bound noncovalently in the active site cleft. The N-terminal nitrogen of the dipeptide interacts with the aspartate diad of the enzyme by hydrogen bonds involving the carboxyl of Asp 215 and the catalytic water molecule. This is consistent with classical findings that the aspartic proteinases can be inhibited weakly by short peptides and that these enzymes can catalyze transpeptidation reactions. The dipeptide may originate from autolysis of the N-terminal Ser-Thr sequence of the enzyme during crystallization. 相似文献
8.
Chandra V Jasti J Kaur P Betzel Ch Srinivasan A Singh TP 《Journal of molecular biology》2002,320(2):215-222
This is the first structural evidence of alpha-tocopherol (alpha-TP) as a possible candidate against inflammation, as it inhibits phospholipase A2 specifically and effectively. The crystal structure of the complex formed between Vipera russelli phospholipase A2 and alpha-tocopherol has been determined and refined to a resolution of 1.8 A. The structure contains two molecules, A and B, of phospholipase A2 in the asymmetric unit, together with one alpha-tocopherol molecule, which is bound specifically to one of them. The phospholipase A2 molecules interact extensively with each other in the crystalline state. The two molecules were found in a stable association in the solution state as well, thus indicating their inherent tendency to remain together as a structural unit, leading to significant functional implications. In the crystal structure, the most important difference between the conformations of two molecules as a result of their association pertains to the orientation of Trp31. It may be noted that Trp31 is located at the mouth of the hydrophobic channel that forms the binding domain of the enzyme. The values of torsion angles (phi, psi, chi(1) and chi(2)) for both the backbone as well as for the side-chain of Trp31 in molecules A and B are -94 degrees, -30 degrees, -66 degrees, 116 degrees and -128 degrees, 170 degrees, -63 degrees, -81 degrees, respectively. The conformation of Trp31 in molecule A is suitable for binding, while that in B hinders the passage of the ligand to the binding site. Consequently, alpha-tocopherol is able to bind to molecule A only, while the binding site of molecule B contains three water molecules. In the complex, the aromatic moiety of alpha-tocopherol is placed in the large space at the active site of the enzyme, while the long hydrophobic channel in the enzyme is filled by hydrocarbon chain of alpha-tocopherol. The critical interactions between the enzyme and alpha-tocopherol are generated between the hydroxyl group of the six-membered ring of alpha-tocopherol and His48 N(delta1) and Asp49 O(delta1) as characteristic hydrogen bonds. The remaining part of alpha-tocopherol interacts extensively with the residues of the hydrophobic channel of the enzyme, giving rise to a number of hydrophobic interactions, resulting in the formation of a stable complex. 相似文献
9.
Novel gene exon homologous to pancreatic phospholipase A2: sequence and chromosomal mapping of both human genes 总被引:3,自引:0,他引:3
J J Seilhamer T L Randall L K Johnson C Heinzmann I Klisak R S Sparkes A J Lusis 《Journal of cellular biochemistry》1989,39(3):327-337
We described previously the cloning and DNA sequence of the human gene encoding pancreatic phospholipase A2 [DNA 5, 519]. When pancreatic phospholipase A2 (PLA2) cDNA was used to screen a human genomic library, two classes of clones were obtained. One class encoded the pancreatic enzyme, and a second class encoded one exon of an apparently related PLA2. No additional PLA2 gene exons displayed sufficient homology to be detected by the probe. A homologous sequence in both rat and porcine genomic DNA was detected by DNA blot hybridization, and the corresponding gene fragments were cloned and sequenced. Within the deduced amino acid sequences, the presence of known functional residues along with the high degree of interspecies conservation suggests the genes encode a functional PLA2 enzyme form. The encoded sequence lacks Cys11, as do the "type II" viperid venom and other nonpancreatic mammalian PLA2 enzymes. The sequence is distinct from porcine intestinal PLA2 and appears not to be a direct homolog of the recently published rabbit ascites and rat platelet enzymes. Hybridization of DNA probes containing sequences from these genes to genomic DNA blots of mouse/human somatic cell hybrids permitted chromosomal assignment for both. The pancreatic gene mapped to human chromosome 12, and the homologous gene mapped to chromosome 1. 相似文献
10.
Rangel J Quesada O Gutiérrez JM Angulo Y Lomonte B 《Cell biochemistry and function》2011,29(5):365-370
Lys49 phospholipase A2 (PLA2) homologues present in crotalid snake venoms lack enzymatic activity, yet they induce skeletal muscle necrosis by a membrane permeabilizing mechanism whose details are only partially understood. The present study evaluated the effect of altering the membrane cholesterol content on the cytolytic activity of myotoxin II, a Lys49 PLA2 isolated from the venom of Bothrops asper, using the myogenic cell line C2C12 as a model target. Cell membrane cholesterol depletion by methyl-β-cyclodextrin (MβCD) treatment enhanced the cytolytic action of myotoxin II, as well as of its bioactive C-terminal synthetic peptide p(115-129) . Conversely, cell membrane cholesterol enrichment by preformed cholesterol-MβCD complexes reduced the cytolytic effect of myotoxin II. The toxic actions of myotoxin I, a catalytically active PLA2 from the same venom, as well as of the cytolytic peptide melittin from bee venom, also increased in cholesterol-depleted cells. Although physical and functional changes resulting from variations in membrane cholesterol are complex, these findings suggest that membrane fluidity could be a relevant parameter to explain the observed modulation of the cytolytic mechanism of myotoxin II, possibly influencing bilayer penetration. In concordance, the cytolytic effect of myotoxin II decreased in direct proportion to lower temperature, a physical factor that affects membrane fluidity. In conclusion, physicochemical properties that depend on membrane cholesterol content significantly influence the cytolytic mechanism of myotoxin II, reinforcing the concept that the primary site of action of Lys49 PLA2 myotoxins is the plasma membrane. 相似文献
11.
Ku‐Chung Chen Pei‐Hsiu Kao Shinne‐Ren Lin Long‐Sen Chang 《Journal of cellular biochemistry》2009,106(1):93-102
The aim of the present study is to elucidate the signaling pathway involved in death of human neuroblastoma SK‐N‐SH cells induced by Naja naja atra phospholipase A2 (PLA2). Upon exposure to PLA2, p38 MAPK activation, ERK inactivation, ROS generation, increase in intracellular Ca2+ concentration, and upregulation of Fas and FasL were found in SK‐N‐SH cells. SB202190 (p38MAPK inhibitor) suppressed upregulation of Fas and FasL. N‐Acetylcysteine (ROS scavenger) and BAPTA‐AM (Ca2+ chelator) abrogated p38 MAPK activation and upregulation of Fas and FasL expression, but restored phosphorylation of ERK. Activated ERK was found to attenuate p38 MAPK‐mediated upregulation of Fas and FasL. Deprivation of catalytic activity could not diminish PLA2‐induced cell death and Fas/FasL upregulation. Moreover, the cytotoxicity of arachidonic acid and lysophosphatidylcholine was not related to the expression of Fas and FasL. Taken together, our results indicate that PLA2‐induced cell death is, in part, elicited by upregulation of Fas and FasL, which is regulated by Ca2+‐ and ROS‐evoked p38 MAPK activation, and suggest that non‐catalytic PLA2 plays a role for the signaling pathway. J. Cell. Biochem. 106: 93–102, 2009. © 2008 Wiley‐Liss, Inc. 相似文献
12.
Jeremy R. Lohman Andrew C. Olson S. James Remington 《Protein science : a publication of the Protein Society》2008,17(11):1935-1945
Enzymes of the glyoxylate shunt are important for the virulence of pathogenic organisms such as Mycobacterium tuberculosis and Candida albicans. Two isoforms have been identified for malate synthase, the second enzyme in the pathway. Isoform A, found in fungi and plants, comprises ~530 residues, whereas isoform G, found only in bacteria, is larger by ~200 residues. Crystal structures of malate synthase isoform G from Escherichia coli and Mycobacterium tuberculosis were previously determined at moderate resolution. Here we describe crystal structures of E. coli malate synthase A (MSA) in the apo form (1.04 Å resolution) and in complex with acetyl‐coenzyme A and a competitive inhibitor, possibly pyruvate or oxalate (1.40 Å resolution). In addition, a crystal structure for Bacillus anthracis MSA at 1.70 Å resolution is reported. The increase in size between isoforms A and G can be attributed primarily to an inserted α/β domain that may have regulatory function. Upon binding of inhibitor or substrate, several active site loops in MSA undergo large conformational changes. However, in the substrate bound form, the active sites of isoforms A and G from E. coli are nearly identical. Considering that inhibitors bind with very similar affinities to both isoforms, MSA is as an excellent platform for high‐resolution structural studies and drug discovery efforts. 相似文献
13.
Koji Tomoo Hirofumi Ohishi Toshimasa Ishida Masatoshi Inoue Kiyoshi Ikeda Shigeyuki Sumiya Kunihiro Kitamura 《Proteins》1994,19(4):330-339
The crystal structure of n-dodecylphosphorylcholine (n-C12PC)–bovine pancreas phospholipase A2 (PLA2) complex provided the following structural.characteristics: (1) the dodecyl chain of n-C12PC was located at the PLA2 N -terminal helical region by hydrophobic interactions, which corresponds to the binding pocket of 2-acyl fatty acid chain (β-chain) of the substrate phospholipid, (2) the region from Lys-53 to Lys-56 creates a cholinereceiving pocket of n-C12PC and (3) the N-termillal group of Ala-1 shifts significantly toward the Tyr-52 OH group by the binding of the n-C12PC inhibitor. Since the accuracy of the X-ray analysis (R = 0.275 at 2.3 Å resolution) was insufficient to establish these important X-ray insights, the complex structure was further investigated through the molecular dynamics (M D) simulation, assuming a system in aqueous solution at 310K. The M D simulation covering 176 ps showed that the structural characteristics observed by X-ray analysis are intrinsic and also stable in the dynamic state. Furthermore, the M D simulation made clear that the PLA2 binding pocket is large enough to permit the conformational fluctuation of the n-C12PC hydrocarbon chain. © 1994 Wiley-Liss, Inc. © 1994 Wiley-Liss, Inc. 相似文献
14.
Cyclooxygenase-2 (COX-2) is inducible by myriad stimuli. The inducible COX-2 in primary cultured human cells has been reported to localize to nuclear envelope, endoplasmic reticulum, nucleus and caveolae. As COX-2 plays an important role in tumor growth, we were interested in its subcellular location in cancer cells. We examined COX-2 localization in several cancer cell lines by confocal microscopy. A majority of COX-2 was colocalized with heat shock protein 60, a mitochondrial protein, in colon cancer (HT-29, HCT-15 and DLD-1), breast cancer (MCF7), hepatocellular cancer (HepG2) and lung cancer cells (A549) with a similar distribution pattern. By contrast, COX-2 was not localized to mitochondria in human foreskin fibroblasts or endothelial cells. Immunoblot analysis of COX-2 in mitochondrial and cytosolic fractions confirmed localization of COX-2 to mitochondria in HT-29 and DLD-1 cells but not in fibroblasts. Calcium-independent phospholipase A2 was colocalized with heat shock protein 60 to mitochondria not only in cancer cells (HT-29 and DLD-1) but also in fibroblasts. HT-29 which expressed more abundant mitochondrial COX-2 than DLD-1 was highly resistant to arachidonic acid and H2O2-induced apoptosis whereas DLD-1 was less resistant and human fibroblasts were highly susceptible. Treatment of HT-29 cells with sulindac or SC-236, a selective COX-2 inhibitor, resulted in loss of resistance to apoptosis. These results suggest that mitochondrial COX-2 in cancer cells confer resistance to apoptosis by reducing the proapoptotic arachidonic acid. 相似文献
15.
B. van den Berg M. Tessari R. Boelens R. Dijkman R. Kaptein G. H. de Haas H. M. Verheij 《Journal of biomolecular NMR》1995,5(2):110-121
Summary The three-dimensional structure of porcine pancreatic PLA2 (PLA2), present in a 40 kDa ternary complex with micelles and a competitive inhibitor, has been determined using multidimensional heteronuclear NMR spectroscopy. The structure of the protein (124 residues) is based on 1854 constraints, comprising 1792 distance and 62 torsion angle constraints. A total of 18 structures was calculated using a combined approach of distance geometry and restrained molecular dynamics. The atomic rms distribution about the mean coordinate positions for residues 1–62 and 72–124 is 0.75±0.09 Å for the backbone atoms and 1.14±0.10 Å for all atoms. The rms difference between the averaged minimized NMR structures of the free PLA2 and PLA2 in the ternary complex is 3.5 Å for the backbone atoms and 4.0 Å for all atoms. Large differences occur for the calcium-binding loop and the surface loop from residues 62 through 72. The most important difference is found for the first three residues of the N-terminal -helix. Whereas free in solution Ala1, Leu2 and Trp3 are disordered, with the -amino group of Ala1 pointing out into the solvent, in the ternary complex these residues have an -helical conformation with the -amino group buried inside the protein. As a consequence, the important conserved hydrogen bonding network which is also seen in the crystal structures is present only in the ternary complex, but not in free PLA2. Thus, the NMR structure of the N-terminal region (as well as the calcium-binding loop and the surface loop) of PLA2 in the ternary complex resembles that of the crystal structure. Comparison of the NMR structures of the free enzyme and the enzyme in the ternary complex indicates that conformational changes play a role in the interfacial activation of PLA2. 相似文献
16.
Devirammanahalli Mahadevaswamy Lokeshwari Dileep Kumar Achutha Bharath Srinivasan Naveen Shivalingegowda Lokanath Neratur Krishnappagowda Ajay Kumar Kariyappa 《Bioorganic & medicinal chemistry letters》2017,27(16):3806-3811
Oxidative-stress induces inflammatory diseases. Further, infections caused by drug-resistant microbial strains are on the rise. This necessitates the discovery of novel small-molecules for intervention therapy. A series of 3-(2,3-dichlorophenyl)-1-(aryl)prop-2-en-1-ones are synthesized as intermediates via Claisen-Schmidt reaction approach. Subsequently, these intermediates were transformed into 2-pyrazolines by their reaction with phenylhydrazine hydrochlorides in methanol and few drops of acetic acid under reflux conditions. Synthesized compounds were characterized by spectroscopic, crystallographic and elemental analyses studies and then, were evaluated for their in vitro antimicrobial and anti-inflammatory activities. Amongst the series, 3-(4-chlorophenyl)-5-(2,3-dichlorophenyl)-1-phenyl-4,5-dihydro-1H-pyrazole (5e), 5-(2,3-dichlorophenyl)-3-(4-fluorophenyl)-1-phenyl-4,5-dihydro-1H-pyrazole (5c) and 5-(2,3-dichlorophenyl)-3-(4-methoxyphenyl)-1-phenyl-4,5-dihydro-1H-pyrazole (5h) showed significant inhibition of phospholipase A2 with IC50 values of 10.2, 11.1 and 11.9 µM, respectively. Protein structure modelling and docking studies indicated that the compounds showed binding to a highly conserved calcium-binding pocket on the enzyme. Further, compounds (5e), 1-(3-chlorophenyl)-5-(2,3-dichlorophenyl)-3-phenyl-4,5-dihydro-1H-pyrazole (5b), and 1-(3-chlorophenyl)-3-(4-chlorophenyl)-5-(2,3-dichlorophenyl)-4,5-dihydro-1H-pyrazole (5f) showed excellent antimicrobial activities against various bacterial and fungal strains. In conclusion, this study is a successful attempt at the synthesis and characterization of chalcone derivatives that can target phospholipase A2, an enzyme that is a prominent player in the physiological inflammatory cascade. Thus, these compounds show promise for development as next-generation nonsteroidal anti-inflammatory drugs. 相似文献
17.
Abstract An entomopathogenic bacterium, Xenorhabdus nematophila, has been known to induce significant immunosuppression of target insects by inhibiting immune‐associated phospholipase A2 (PLA2), which subsequently shuts down biosynthesis of eicosanoids that are critical in immune mediation in insects. Some metabolites originated from the bacterial culture broth have been identified and include benzylideneacetone, proline‐tyrosine and acetylated phenylalanine‐glycine‐valine, which are known to inhibit enzyme activity of PLA2 extracted from hemocyte and fat body. This study tested their effects on digestive PLA2 of the beet armyworm, Spodoptera exigua. Young larvae fed different concentrations of the three metabolites resulted in significant adverse effects on larval development even at doses below 100 μg/mL. In particular, they induced significant reduction in digestive efficiency of ingested food. All three metabolites significantly inhibited catalytic activity of digestive PLA2 extracted from midgut lumen of the fifth instar larvae at a low micromolar range. These results suggest that the inhibitory activities of the three bacterial metabolites on digestive PLA2 of S. exigua midgut may explain some of their oral toxic effects. 相似文献
18.
Secondary structure analysis of 34 internal transcribed spacer 2 (ITS-2) sequences showed that the current model for the green algae Scenedesmus and Desmodesmus is not accurate. In particular, helix I of the currently used model showed considerable deviations from our new model. The newly proposed model is supported by many two-sided compensated base pair changes and fully compensated insertions in all four helices. Phylogenetic analysis by maximum parsimony based on the new alignment confirmed the recent division of the old genus Scenedesmus into the new genera Scenedesmus and Desmodesmus. However, the analysis was not able to show phylogenetic relationships within these two genera. Hence, the ITS-2 region alone is not suitable for clarifying the phylogeny of Scenedesmus and Desmodesmus and new regions have to be found for future sequence analyses. 相似文献
19.
El-Kabbani O Darmanin C Schneider TR Hazemann I Ruiz F Oka M Joachimiak A Schulze-Briese C Tomizaki T Mitschler A Podjarny A 《Proteins》2004,55(4):805-813
The X-ray structures of human aldose reductase holoenzyme in complex with the inhibitors Fidarestat (SNK-860) and Minalrestat (WAY-509) were determined at atomic resolutions of 0.92 A and 1.1 A, respectively. The hydantoin and succinimide moieties of the inhibitors interacted with the conserved anion-binding site located between the nicotinamide ring of the coenzyme and active site residues Tyr48, His110, and Trp111. Minalrestat's hydrophobic isoquinoline ring was bound in an adjacent pocket lined by residues Trp20, Phe122, and Trp219, with the bromo-fluorobenzyl group inside the specificity pocket. The interactions between Minalrestat's bromo-fluorobenzyl group and the enzyme include the stacking against the side-chain of Trp111 as well as hydrogen bonding distances with residues Leu300 and Thr113. The carbamoyl group in Fidarestat formed a hydrogen bond with the main-chain nitrogen atom of Leu300. The atomic resolution refinement allowed the positioning of hydrogen atoms and accurate determination of bond lengths of the inhibitors, coenzyme NADP+ and active-site residue His110. The 1'-position nitrogen atom in the hydantoin and succinimide moieties of Fidarestat and Minalrestat, respectively, form a hydrogen bond with the Nepsilon2 atom of His 110. For Fidarestat, the electron density indicated two possible positions for the H-atom in this bond. Furthermore, both native and anomalous difference maps indicated the replacement of a water molecule linked to His110 by a Cl-ion. These observations suggest a mechanism in which Fidarestat is bound protonated and becomes negatively charged by donating the proton to His110, which may have important implications on drug design. 相似文献
20.
Crotoxin B (CB or Cdt PLA(2)) is a basic Asp49-PLA(2) found in the venom of Crotalus durissus terrificus and it is one of the subunits that constitute the crotoxin (Cro). This heterodimeric toxin, main component of the C. d. terrificus venom, is completed by an acidic, nontoxic, and nonenzymatic component (crotoxin A, CA or crotapotin), and it is related to important envenomation effects such as neurological disorders, myotoxicity, and renal failure. Although Cro has been crystallized since 1938, no crystal structure of this toxin or its subunits is currently available. In this work, the authors present the crystal structure of a novel tetrameric complex formed by two dimers of crotoxin B isoforms (CB1 and CB2). The results suggest that these assemblies are stable in solution and show that Ser1 and Glu92 of CB1 and CB2, respectively, play an important role in the oligomerization. The tetrameric and dimeric conformations resulting from the association of the isoforms may increase the neurotoxicity of the toxin CB by the creation of new binding sites, which could improve the affinity of the molecular complexes to the presynaptic membrane. 相似文献