首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the question of postural and focal components integration by the central nervous system (CNS) is investigated through whole body reaching task performance in microgravity. Because of the especially important difficulties suffered by one subject during parabolic flight, observation of temporal relationship evolution was allowed. From these results, short-term adaptation based on the restoration of this relationship could be postulated.  相似文献   

2.
Although a wealth of evidence supports the hypothesis that some functions of the nervous system may be altered during exposure to microgravity, the possible changes in basic neuronal physiology are not easy to assess. Indeed, few studies have examined whether microgravity affects the development of neurons in culture. In the present study, a suspension of dissociated cortical cells from rat embryos were exposed to 24 h of simulated microgravity before plating in a normal adherent culture system. Both preexposed and control cells were used after a period of 7-10 d in vitro. The vitality and the level of reactive oxygen species of cultures previously exposed did not differ from those of normal cultures. Cellular characterization by immunostaining with a specific antibody displayed normal neuronal phenotype in control cells, whereas pretreatment in simulated microgravity revealed an increase of glial fibrillary acidic protein fluorescence in the elongated stellate glial cells. Electrophysiological recording indicated that the electrical properties of neurons preexposed were comparable with those of controls. Overall, our results indicate that a short time of simulated microgravity preexposure does not affect dramatically the ability of dissociated neural cells to develop and differentiate in an adherent culture system.  相似文献   

3.
A three-element model of the cardiovascular system was used to monitor stroke volume (SV) changes during parabolic flight. Aortic blood flow was estimated from continuous arterial finger pressure and SV computed by integrating simulated aortic flow during each systole. SV was significantly higher in microgravity (microgravity) compared to 1 G whereas in hypergravity (hG), SV was significantly lower. Exponential SV transients were observed after the transitions to and from microgravity and the succeeding or preceeding hG phases. These SV transients present different time constants, which reflect two different mechanisms of cardiovascular adaptation to sudden gravitational changes. These results show that beat-to-beat computation of SV provides noninvasive information on circulatory adaptation to acute hydrostatic pressure changes.  相似文献   

4.
Exposure to actual or simulated microgravity is known to result in changes in lower limb venous compliance or distensibility which may play a role in post-bedrest or postflight orthostatic intolerance. Venous deconditioning has only been described in terms of changes in vascular compliance or distensibility. But a complete understanding of changes in venous hemodynamics and cardiovascular regulation occurring under these conditions has to take into account changes in emptying capacities of the veins which influence venous return, cardiac filling, and cardiac output regulation. Moreover, few data are available about the course of changes in venous hemodynamics for periods of simulated microgravity longer than 4 weeks. The purpose of this investigation was to measure parameters of venous compliance and venous emptying before, during, and after a 42-day period of bedrest at -6 degrees head-down tilt for a better understanding of long term venous physiological adaptation to microgravity.  相似文献   

5.
The depression of cardiac contractility induced by space microgravity is an important issue of aerospace medicine research, while its precise mechanism is still unknown. In the present study, we explored effects of simulated microgravity on nitric oxide (NO) level, inducible nitric oxide synthase (iNOS) expression and related regulative mechanism using electron spin resonance (ESR) spectroscopy, immunocytochemistry and in situ hybridization. We found a remarkable increase of NO level and up-regulation of iNOS and iNOS mRNA expression in rat cardiac myocytes under simulated microgravity. Staurosporine (a nonselective protein kinase inhibitor), calphostin C (a selective protein kinase C inhibitor), partially inhibited the effect of simulated microgravity. Thus regulative effect of simulated microgravity on iNOS expression is mediated at least partially via activation of protein kinase C. These results indicate that NO system in cardiac myocytes is sensitive to simulated microgravity and may play an important role in the depression of cardiac contractility induced by simulated microgravity.  相似文献   

6.
Prolonged exposure to space microgravity results in cardiovascular deconditioning and the depression of cardiac contractility, while its mechanism is still unknown[1]. Thus study about ef-fects of microgravity on cardiac myocytes and related mechanism is an important issue in space medicine. It would also contribute to understanding effects of mechanical signal on signal transduction in cardiac myocytes and pathology of related diseases. Nitric oxide (NO) is a universal signal molecular in ce…  相似文献   

7.
A variety of evidence suggests that nervous system function is altered during microgravity, however, assessing changes in neuronal physiology during space flight is a non-trivial task. We have used a rotating wall bioreactor with a high aspect ratio vessel (HARV), which simulates the microgravity environment, to investigate the how the viability, neurite extension, and signaling of differentiated neuron-like cells changes in different culture environments. We show that culture of differentiated PC12 and SH-SY5Y cells in the simulated microgravity HARV bioreactor resulted in high cell viability, moderate neurite extension, and cell aggregation accompanied by NO production. Neurite extension was less than that seen in static cultures, suggesting that less than optimal differentiation occurs in simulated microgravity relative to normal gravity. Cells grown in a mixed vessel under normal gravity (a spinner flask) had low viability, low neurite extension, and high glutamate release. This work demonstrates the feasibility of using a rotating wall bioreactor to explore the effects of simulated microgravity on differentiation and physiology of neuron-like cells.  相似文献   

8.
9.
10.
Studies in modeled microgravity or during orbital space flights have clearly demonstrated that endothelial cell physiology is strongly affected by the reduction of gravity. Nevertheless, the molecular mechanisms by which endothelial cells may sense gravity force remain unclear. We previously hypothesized that endothelial cell caveolae could be a mechanosensing system involved in hypergravity adaptation of human endothelial cells. In this study, we analyzed the effect on the physiology of human umbilical vein endothelial cell monolayers of short exposure to modeled microgravity (24–48h) obtained by clinorotation. For this purpose, we evaluated the levels of compounds, such as nitric oxide and prostacyclin, involved in vascular tone regulation and synthesized starting from caveolae-related enzymes. Furthermore, we examined posttranslational modifications of Caveolin (Cav)-1 induced by simulated microgravity. The results we collected clearly indicated that short microgravity exposure strongly affected endothelial nitrix oxide synthase activity associated with Cav-1 (Tyr 14) phosphorylation, without modifying the angiogenic response of human umbilical vein endothelial cells. We propose here that one of the early molecular mechanisms responsible for gravity sensing of endothelium involves endothelial cell caveolae and Cav-1 phosphorylation.  相似文献   

11.
目的:构建模拟微重力条件下PC12细胞的培养体系,探讨模拟微重力对PC12细胞衰老的影响。方法:用Cytodex-3型微载体作为PC12细胞的贴附载体,旋转细胞培养系统所提供10-2g的微重力环境进行模拟微重力条件下的细胞培养。在倒置显微镜下观察PC12细胞的生长情况;用扫描电镜观察PC12细胞超微结构的变化;衰老相关β半乳糖苷酶(SA-β-gal)特异性染色对衰老的PC12细胞进行评估。结果:光镜下模拟微重力培养的PC12细胞表现出类衰老细胞的形态,扫描电子显微镜下观察发现其微绒毛增多。SA-β-gal染色的结果显示在模拟微重力的作用下,PC12细胞SA-β-gal的活性升高。结论:模拟微重力可以引起PC12细胞衰老样的形态变化,以及SA-β-gal的活性升高。  相似文献   

12.
In the present study, we discovered that mouse oocyte maturation was inhibited by simulated microgravity via disturbing spindle organization. We cultured mouse oocytes under microgravity condition simulated by NASA''s rotary cell culture system, examined the maturation rate and observed the spindle morphology (organization of cytoskeleton) during the mouse oocytes meiotic maturation. While the rate of germinal vesicle breakdown did not differ between 1 g gravity and simulated microgravity, rate of oocyte maturation decreased significantly in simulated microgravity. The rate of maturation was 8.94% in simulated microgravity and was 73.0% in 1 g gravity. The results show that the maturation of mouse oocytes in vitro was inhibited by the simulated microgravity. The spindle morphology observation shows that the microtubules and chromosomes can not form a complete spindle during oocyte meiotic maturation under simulated microgravity. And the disorder of γ-tubulin may partially result in disorganization of microtubules under simulated microgravity. These observations suggest that the meiotic spindle organization is gravity dependent. Although the spindle organization was disrupted by simulated microgravity, the function and organization of microfilaments were not pronouncedly affected by simulated microgravity. And we found that simulated microgravity induced oocytes cytoplasmic blebbing via an unknown mechanism. Transmission electron microscope detection showed that the components of the blebs were identified with the cytoplasm. Collectively, these results indicated that the simulated microgravity inhibits mouse oocyte maturation via disturbing spindle organization and inducing cytoplasmic blebbing.  相似文献   

13.
Results of the electron-microscopic investigation of root apices of Arabidopsis thaliana 3-, 5- and 7-days-old seedlings grown in the stationary conditions and under clinorotation are presented. It was shown the similarity in the root apex cell ultrastructure in control and under clinorotation. At the same time there were some differences in the ultrastructure of statocytes and the distal elongation zone under clinorotation. For the first time the sensitivity of ER-bodies, which are derivatives of GER and contain beta-glucosidase, to the influence of simulated microgravity was demonstrated by increased quantity and area of ER-bodies at the cell section as well as by higher variability of their form under clinorotation. A degree of these changes correlated with the duration of clinorotation. On the basis of experimental data a protective role of ER-bodies in adaptation of plants to microgravity is supposed.  相似文献   

14.
Astronauts are susceptible to a variety of conditions such as motion sickness, muscular atrophy, bone demineralization and cardiovascular deconditioning. These findings suggest that the adaptation to the absence of gravity is due, at least in part, to the effects exerted by microgravity at the cellular level. Indeed, a number of studies have indicated that gravity affects mammalian cell growth and differentiation through the modulation of gene expression. We have characterized the behaviour of endothelial cells and of the human monocytic cell line U937 cultured in the NASA-developed bioreactor to simulate microgravity, the Rotating Wall Vessels (RWV). In simulated microgravity endothelial cells showed a different behavior which was dependent from the species and from the district of origin, while U937 in the RWV proliferated slower than the controls. All the effects we observed were promptly reversible upon return to normal culture conditions. It is noteworthy that all the cells which maintained the capability to proliferate in microgravity upregulated the stress protein HSP70. We therefore propose that only the cells which sense microgravity as a stressful condition and, consequently, overexpress HSP70 maintain their proliferative potential in simulated microgravity.  相似文献   

15.
Changes in sympathoadrenal function and cardiovascular deconditioning have long been recognized as a feature of the physiological adaptation to microgravity. The deconditioning process, coupled with altered hydration status, is thought to significantly contribute to orthostatic intolerance upon return to Earth gravity. The cardiovascular response to stimulation by sympathomimetic agents before, during, and after exposure to simulated microgravity was determined in healthy volunteers equilibrated on normal or high sodium diets in order to further the understanding of the deconditioning process.  相似文献   

16.
Many lines of evidence suggest that microgravity results in increased oxidative stress in the nervous system. In order to protect neuronal cells from oxidative damage induced by microgravity, we selected some flavonoids that might prevent oxidative stress because of their antioxidant activities. Among the 20 flavonoids we examined, we found that isorhamnetin and luteolin had the best protective effects against H2O2 or SIN-1-induced cytotoxicity in SH-SY5Y cells. Using a clinostat to simulate microgravity, we found that isorhamnetin and luteolin treatment protected SH-SY5Y cells by preventing microgravity-induced increases in reactive oxygen species (ROS), nitric oxide (NO) and 3-nitrotyrosine (3-NT) levels, and a decrease in antioxidant power (AP). Moreover, isorhamnetin and luteolin treatment downregulated the expression of inducible nitric oxide synthase (iNOS), and oxidative stress was significantly inhibited by an iNOS inhibitor in SH-SY5Y cells exposed to simulated microgravity (SMG). These results indicate that isorhamnetin and luteolin could protect against microgravity-induced oxidative stress in neuroblastoma SH-SY5Y cells by inhibiting the ROS-NO pathway. These two flavonoids may have potential for preventing oxidative stress induced by space flight or microgravity.  相似文献   

17.
目的:构建模拟微重力条件下PC12细胞的培养体系,探讨模拟微重力对PC12细胞衰老的影响。方法:用Cytodex-3型微载体作为PC12细胞的贴附载体,旋转细胞培养系统所提供10-2g的微重力环境进行模拟微重力条件下的细胞培养。在倒置显微镜下观察PC12细胞的生长情况;用扫描电镜观察PC12细胞超微结构的变化;衰老相关β半乳糖苷酶(SA-β-gal)特异性染色对衰老的PC12细胞进行评估。结果:光镜下模拟微重力培养的PC12细胞表现出类衰老细胞的形态,扫描电子显微镜下观察发现其微绒毛增多。SA-β-gal染色的结果显示在模拟微重力的作用下,PC12细胞SA-β-gal的活性升高。结论:模拟微重力可以引起PC12细胞衰老样的形态变化,以及SA-β-gal的活性升高。  相似文献   

18.
Gravity heavily influences living organisms on earth including their circadian rhythm, which is fundamentally important for coordinately physiology in organisms as diverse as cyanobacteria, fungus and humans. Numerous researches have revealed that microgravity in outer space can affect circadian rhythm of astronauts and rodent animals, but the mechanism remains unknown. Using rotary cell culture system to simulate microgravity environment, we investigated the role of simulated microgravity in regulating the circadian rhythm of NIH3T3 cells. Our experiments found that simulated microgravity can not only influence the mRNA level of some core circadian genes, but also modify the circadian rhythm of Per1 and Per2 synchronized after phorbol myristate acetate treatment. Remarkably, MEK/ERK pathway was transiently activated after a 2-h simulated microgravity treatment, with a significant upregulation of Kras, Raf1 and p-ERK1/ERK2. Moreover, U0126, a selective inhibitor of MEK/ERK pathway, could disrupt the circadian rhythm of Per1 and Per2 synchronized after simulated microgravity treatment. Together, our results unveil that simulated microgravity could act like a zeitgeber to influence the circadian rhythm of NIH3T3 by acting on MEK/ERK pathway, indicating that MEK/ERK pathway may act as a bridge which connects cells mechanotransduction pathway and circadian rhythm regulation.  相似文献   

19.
In a tail suspension rat model, we investigated changes in myofilament protein during cardiac adaptation in simulated microgravity. Contractile force and velocity of cardiac muscle were decreased in the tail suspension rats as compared with the control. Ca(2+)-dependent actomyosin ATPase activity was also decreased; however, sensitivity of cardiac muscle to Ca(2+) activation was unchanged. There was no change in expression of myosin heavy chain, tropomyosin, troponin T, or troponin I isoforms in hearts of tail suspension rats. A novel finding is a fragment of cardiac troponin I (cTnI) that had increased amounts in the heart of tail suspension rats. Binding of this cTnI fragment by a monoclonal antibody that specifically recognizes the COOH terminus indicates an intact COOH terminus. NH(2)-terminal sequence analysis of the cTnI fragment revealed truncations primarily of amino acids 1-26 and 1-27 and smaller amounts of 1-30, including Ser(23) and Ser(24), which are substrates of protein kinase A phosphorylation. This cTnI fragment is present in normal cardiac muscle and incorporated into myofibrils, indicating a role in regulating contractility. This proteolytic modification of cTnI up-regulated during simulated microgravity suggests a potential role of the NH(2)-terminal segment of cTnI in functional adaptations of cardiac muscle.  相似文献   

20.
Post-flight orthostatic intolerance is a dramatic physiological consequence of human adaptation to microgravity made inappropriate by a sudden return to 1-G. The immediate mechanism is almost always a failure to maintain adequate tissue perfusion, specifically perfusion of the central nervous system, but vestibular dysfunction may occasionally be the primary cause. Orthostatic intolerance is present in a wide range of clinical disorders of the nervous and cardiovascular systems. The intolerance that is produced by spaceflight and 1-G analogs (bed rest, head-down tilt at a moderate angle, water immersion) is different from its clinical counterparts by being only transiently present in subjects who otherwise have normal cardiovascular and regulatory systems. However, the same set of basic pathophysiological elements should be considered in the analysis of any form of orthostatic intolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号