首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The use of 5-methyltryptophan as an internal standard to facilitate tryptophan determination is described. Protein is hydrolyzed in the presence of 5-methyltryptophan for 18 hr at 120° in 5.0n NaOH in the absence of oxygen and in the presence of starch or thiodiglycol as an antioxidant. Ion-exchange chromatography of the hydrolysate on Durrum DC-2 resin using pH 5.43 citrate (0.175n Na+) completely resolved tryptophan and 5-methyltryptophan from one another, other amino acids, and artifacts of the alkaline hydrolysate. The chromatographic conditions and stability of tryptophan and 5-methyltryptophan were established initially by demonstrating quantitative recovery of both amino acids that had been added prior to hydrolysis of ribonuclease A, a protein devoid of tryptophan. The tryptophan content of several well-characterized proteins was determined, and the results, after correction to 100% recovery of 5-methyltryptophan, agreed well with values obtained by established procedures.  相似文献   

2.
Ethanol production from cotton linter and waste of blue jeans textiles was investigated. In the best case, alkali pretreatment followed by enzymatic hydrolysis resulted in almost complete conversion of the cotton and jeans to glucose, which was then fermented by Saccharomyces cerevisiae to ethanol. If no pretreatment applied, hydrolyses of the textiles by cellulase and beta-glucosidase for 24 h followed by simultaneous saccharification and fermentation (SSF) in 4 days, resulted in 0.140-0.145 g ethanol/g textiles, which was 25-26% of the corresponding theoretical yield. A pretreatment with concentrated phosphoric acid prior to the hydrolysis improved ethanol production from the textiles up to 66% of the theoretical yield. However, the best results obtained from alkali pretreatment of the materials by NaOH. The alkaline pretreatment of cotton fibers were carried out with 0-20% NaOH at 0 degrees C, 23 degrees C and 100 degrees C, followed by enzymatic hydrolysis up to 4 days. In general, higher concentration of NaOH resulted in a better yield of the hydrolysis, whereas temperature had a reverse effect and better results were obtained at lower temperature. The best conditions for the alkali pretreatment of the cotton were obtained in this study at 12% NaOH and 0 degrees C and 3 h. In this condition, the materials with 3% solid content were enzymatically hydrolyzed at 85.1% of the theoretical yield in 24 h and 99.1% in 4 days. The alkali pretreatment of the waste textiles at these conditions and subsequent SSF resulted in 0.48 g ethanol/g pretreated textiles used.  相似文献   

3.
Three methods of wheat straw treatment (with NaOH, H2O2 and butylamine) and its subsequent saccharification by Trichoderma reesei cellulases and Aspergillus niger β-glucosidase are reported. The treatment of straw with NaOH for 1 h in the autoclave (120°C) caused a great loss of the hemicellulose content and a partial removal of lignin, provoking an increase of the cellulose content (from 24% to 69%) in the residue. When the straw was pre-treated with H2O2 at 25°C for 20 h, the relative content of cellulose in the straw increased (from 24% to 52%) due to the solubilisation of hemicellulose.

The effect of varying the hydrolysis parameters (enzyme and substrate concentration, temperature and pH) was studied in order to maximise the yield of sugars. Under the best conditions and after 48 h with a mixture of 2:1 (w/w) cellulase/β-glucosidase (with a concentration of 7 and 0.1 U ml-1, respectively) the native, NaOH-treated and H2O2-treated straw material were degraded to reducing sugars for 28%, 89% and 97% respectively.  相似文献   

4.
Enzymatic hydrolysis of triglycerides of soy deodorized distillate (DOD), using immobilized Candida rugosa lipase under supercritical carbon dioxide (SC-CO2) medium, was carried out. Optimization of the reaction parameters using response surface methodology based on Box-Behnken model at three levels of pressure (120–180 bar), temperature (40–60 °C) and moisture content (40–80% of triglyceride content) for maximum hydrolysis of triglycerides was arrived by multilinear regression of the experimental results. The optimum conditions for maximum degree of triglyceride hydrolysis (94%) were found to be: pressure of 180 bar, temperature of 43 °C and moisture content of 40% to the triglyceride content. Maximum degree of hydrolysis was achieved with short incubation time of 1.5 h under SC-CO2. Whereas conventional method of hydrolysis in hexane under similar reaction conditions of temperature, moisture and enzyme concentration, needs 5 h to achieve 88% of triglyceride hydrolysis.  相似文献   

5.
Recovery of tryptophan from 25-minute acid hydrolysates of protein   总被引:1,自引:0,他引:1  
It was found that thioglycolic acid prevents destruction of tryptophan during rapid hydrolysis of protein with a trifluoroacetic acid/HCl mixture (1:2, v/v) at 166 degrees C for 25 or 50 min. The addition of 5% (v/v) thioglycolic acid gave the maximum tryptophan recovery (88.3%) for a 25-min hydrolysate of lysozyme. Tryptophan recoveries varied slightly among three different proteins; 88% for lysozyme, 73% for alpha-chymotrypsinogen A, and 85% for apomyoglobin. However, when extrapolated to zero time, the values were close to one another: 94, 87, and 88%, respectively. The addition of thioglycolic acid was also advantageous for recovering amino acids other than tryptophan. Particularly, yields of carboxymethylcysteine and methionine were greatly improved. This modified rapid hydrolysis method gave satisfactory results without the need for separate analyses of tryptophan and cysteine, provided proteins were reduced and carboxymethylated prior to hydrolysis.  相似文献   

6.
1. Viscosity and pH curves of casein dissolved in NaOH, KOH, LiOH, and NH4OH are shown and it is found that a maximum viscosity occurs at about the same pH point with each alkali; i.e., 9.1 to 9.25. The magnitude of the viscosity is largest in ammonia solutions. 2. The maximum viscosity occurs in 8 to 10 per cent solutions of casein in alkalies when about 98 x 10–5 gram equivalents of base are combined with 1 gram of casein. 3. A maximum viscosity occurs in the same region (pH 9.1 to 9.25) when casein is dissolved in Na2CO3, Na3AsO4, Na2SO3, NaF, and Na2PO3. 4. The maximum viscosity obtained with borax solutions of casein occurs at 8.15 to 8.2 pH. It is suggested that casein acts like mannitol, glycerol, etc., in increasing the dissociation of boric acid. 5. The flattening of the viscosity curves of casein solutions, following the decline from maximum, is shown to be due to alkaline hydrolysis whence casein no longer exists as such but is cleaved into a major protein containing no phosphorus or sulfur and less nitrogen. This cleavage commences at pH 10.0 to 10.5. 6. When casein is prepared from solutions that have been subjected to high temperatures (60°C. and above) or has otherwise been heated during its preparation, it yields solutions in alkalies of high viscosity.  相似文献   

7.

Background

The two-step dilute acid hydrolysis (DAH) of softwood is costly in energy demands and capital costs. However, it has the advantage that hydrolysis and subsequent removal of hemicellulose-derived sugars can be carried out under conditions of low severity, resulting in a reduction in the level of sugar degradation products during the more severe subsequent steps of cellulose hydrolysis. In this paper, we discuss a single-step DAH method that incorporates a temperature profile at two levels. This profile should simulate the two-step process while removing its major disadvantage, that is, the washing step between the runs, which leads to increased energy demand.

Results

The experiments were conducted in a reactor with a controlled temperature profile. The total dry matter content of the hydrolysate was up to 21.1% w/w, corresponding to a content of 15.5% w/w of water insoluble solids. The highest measured glucose yield, (18.3 g glucose per 100 g dry raw material), was obtained after DAH cycles of 3 min at 209°C and 6 min at 211°C with 1% H2SO4, which resulted in a total of 26.3 g solubilized C6 sugars per 100 g dry raw material. To estimate the remaining sugar potential, enzymatic hydrolysis (EH) of the solid fraction was also performed. EH of the solid residue increased the total level of solubilized C6 sugars to a maximum of 35.5 g per 100 g dry raw material when DAH was performed as described above (3 min at 210°C and 2 min at 211°C with 1% H2SO4).

Conclusion

The dual-temperature DAH method did not yield decisively better results than the single-temperature, one-step DAH. When we compared the results with those of earlier studies, the hydrolysis performance was better than with the one-step DAH but not as well as that of the two-step, single-temperature DAH. Additional enzymatic hydrolysis resulted in lower levels of solubilized sugars compared with other studies on one-step DAH and two-step DAH followed by enzymatic hydrolysis. A two-step steam pretreatment with EH gave rise to a considerably higher sugar yield in this study.  相似文献   

8.
Arylisocyanates are important intermediates in the chemical industry. Amongst the main damage after low levels of isocyanate exposure are lung sensitization and asthma. Protein adducts of isocyanates might be involved in the aetiology of sensitization reactions. Blood protein adducts are used as dosimeters for modifications of macromolecules in the target organs where the disease develops. To develop methods for the quantitation of protein adducts we reacted 4 methylphenyl isocyanate 4MPI with the tripeptide valyl glycyl glycine and with single amino acids yielding N 4 methylphenyl carbamoyl L valyl glycyl glycine 4MPI Val Gly Gly , N 4 methylphenyl carbamoyl L valine 4MPI Val , N 4 methylphenyl carbamoyl L aspartic acid 4MPI Asp , N acetyl S 4 methylphenyl carbamoyl L cysteine 4MPI AcCys , N acetyl N 4 methylphenyl carbamoyl lysine 4MPI AcLys , N acetyl O 4 methylphenyl carbamoyl tyrosine 4MPI AcTyr and N acetyl O 4 methylphenyl carbamoyl D,L serine 4MPI AcSer . The hydrolysis of the adducts was tested under acidic and basic conditions, to obtain the maximum yield of 4 methylaniline 4MA . The isocyanates were hydrolysed for 1 h, 3h and 24h at 100 C with 6 M HCl in and or 0.1 M NaOH at room temperature, following methods applied for the analyses of biological samples of arylisocyanate exposed workers. In addition, we applied a new protocol: the adducts were hydrolyzed for 1-24 h in 0.3 M NaOH at 100 C. The hydrolysates were analysed using HPLC with UV detection and quantified against the internal standard, 4 fluoroaniline or 4 chloroaniline. 4MA was obtained with the best yields using 0.3M NaOH; after 24 h all amino acid adducts were cleaved under these conditions. Acid hydrolysis of 4MPI Val and 4MPI Asp yielded the respective hydantoins 3 4 methylphenyl 5 isopropyl 1,3 imidazoline 2,4 dione and 2 1 4 methylphenyl 2,5 dioxoperhydro 4 imidazolyl acetic acid. For future studies, we propose to hydrolyse biological samples with 0.3 M NaOH at 100 C to release the maximum amount of 4MA from the adducts. However, in biological samples from workers, hydrolysable adducts can also result from arylamine exposure. Therefore, we propose to analyse the N terminal adducts of isocyanates with blood protein to distinguish between arylamine and arylisocyanate exposure.  相似文献   

9.
Arylisocyanates are important intermediates in the chemical industry. Amongst the main damage after low levels of isocyanate exposure are lung sensitization and asthma. Protein adducts of isocyanates might be involved in the aetiology of sensitization reactions. Blood protein adducts are used as dosimeters for modifications of macromolecules in the target organs where the disease develops. To develop methods for the quantitation of protein adducts we reacted 4 methylphenyl isocyanate 4MPI with the tripeptide valyl glycyl glycine and with single amino acids yielding N 4 methylphenyl carbamoyl L valyl glycyl glycine 4MPI Val Gly Gly, N 4 methylphenyl carbamoyl L valine 4MPI Val, N 4 methylphenyl carbamoyl L aspartic acid 4MPI Asp, N acetyl S 4 methylphenyl carbamoyl L cysteine 4MPI AcCys, N acetyl N 4 methylphenyl carbamoyl lysine 4MPI AcLys, N acetyl O 4 methylphenyl carbamoyl tyrosine 4MPI AcTyr and N acetyl O 4 methylphenyl carbamoyl D,L serine 4MPI AcSer. The hydrolysis of the adducts was tested under acidic and basic conditions, to obtain the maximum yield of 4 methylaniline 4MA. The isocyanates were hydrolysed for 1 h, 3h and 24h at 100 C with 6 M HCl in and or 0.1 M NaOH at room temperature, following methods applied for the analyses of biological samples of arylisocyanate exposed workers. In addition, we applied a new protocol: the adducts were hydrolyzed for 1-24 h in 0.3 M NaOH at 100 C. The hydrolysates were analysed using HPLC with UV detection and quantified against the internal standard, 4 fluoroaniline or 4 chloroaniline. 4MA was obtained with the best yields using 0.3M NaOH; after 24 h all amino acid adducts were cleaved under these conditions. Acid hydrolysis of 4MPI Val and 4MPI Asp yielded the respective hydantoins 3 4 methylphenyl 5 isopropyl 1,3 imidazoline 2,4 dione and 2 1 4 methylphenyl 2,5 dioxoperhydro 4 imidazolyl acetic acid. For future studies, we propose to hydrolyse biological samples with 0.3 M NaOH at 100 C to release the maximum amount of 4MA from the adducts. However, in biological samples from workers, hydrolysable adducts can also result from arylamine exposure. Therefore, we propose to analyse the N terminal adducts of isocyanates with blood protein to distinguish between arylamine and arylisocyanate exposure.  相似文献   

10.
The feed value of annual ryegrass straw was improved by treatment with various concentrations of NaOH or NH3 followed by fermentation of the treated straw with a mixed culture of Cellulomonas sp. and Alcaligenes faecalis. Laboratory feeding trials with voles showed that NaOH or NH3 treatment considerably increased the feed efficiency of straw, but apparently gave a poorly palatable product. Fermentation tended to decrease the in vitro rumen digestibility (IVRD) of alkali-treated straw. The fermentations were carried out aerobically on a semisolid straw matrix having 11–86% moisture. Treatment by both NaOH and NH3 increased the IVRD of straw. NH3 also increased the nitrogen content in straw. The optimum condition for alkaline treatment of the straw was 4–6% NaOH for 1 hr or with 3% NH3 for four weeks at room temperature. A minimum of 63% moisture was needed for significant fermentation of the straw. The combined effects of NaOH treatment and fermentation more than doubled crude protein, doubled crude fat, and increased IVRD by 75%. The NH3 plus fermentation treatment tripled crude protein, doubled crude fat, and increased IVRD by 60%. Acetic acid was the main volatile fatty acid in the fermented straw.  相似文献   

11.
Cationized agaroses with different degrees of substitution (0.04–0.77) were synthesized, employing 3-chloro-2-hydroxypropyltrimethylammonium chloride (CHPTAC). The influence of different reaction parameters on the substitution degree and molecular weight was evaluated. The investigated parameters were concentration of reagents, temperature, time, and addition of NaBH4. The products were characterized by means of scanning electronic microscopy, infrared spectroscopy, viscosimetry, and NMR spectroscopy. Methanolysis products were studied by electrospray ionization mass spectrometry. The higher the concentration of CHPTAC employed, a higher degree of substitution was obtained, if the optimum concentration of NaOH in each case was employed. Insufficient quantities of NaOH reduced epoxide formation and the reacting alkoxides of the polysaccharide, whereas an excess of NaOH favored degradation of the epoxide and decrease in the molecular weight of the product. A reaction time of 2 h was sufficient to obtain products with the maximum degree of substitution for each case. The addition of NaBH4 gave products with a slightly higher molecular weight, but the extra cost involved should not justify its use for large-scale application.  相似文献   

12.
Xu J  Cheng JJ 《Bioresource technology》2011,102(4):3861-3868
Sodium hydroxide (NaOH) and lime (Ca(OH)2) were innovatively used together in this study to improve the cost-effectiveness of alkaline pretreatment of switchgrass at ambient temperature. Based on the sugar production in enzymatic hydrolysis, the best pretreatment conditions were determined as: residence time of 6 h, NaOH loading of 0.10 g/g raw biomass, NaOH addition at the beginning, Ca(OH)2 loading of 0.02 g/g raw biomass, and biomass wash intensity of 100 ml water/g raw biomass, at which the glucose and xylose yields were respectively 59.4% and 57.3% of the theoretical yields. The sugar yield of the biomass pretreated using the combination of 0.10 g NaOH/g raw biomass and 0.02 g Ca(OH)2/g raw biomass was found comparable with that of the biomass pretreated using 0.20 g NaOH/g raw biomass at the same conditions, while the chemical expense was remarkably reduced due to the low cost of lime and the reduced loading of NaOH.  相似文献   

13.
Sequential extractions of 14-day-old Rosa glauca cell walls cultured in vitro showed that two different types of acidic polysaccharide were present. One was extracted with EDTA or ammonium oxalate solutions, and the other remained in close association with cellulose even after 4.3 N NaOH extractions or 2 N H2SO4 hydrolysis. The cell wall has a low content in structural protein. The behaviour of each constituent sugar was followed during the course of the various extraction steps, and a complete quantitative account of the protein, uronic acid and neutral sugar components is given at each stage.  相似文献   

14.
The effect of oxidative stress on the Ca2+-ATPase activity, lipid peroxidation and protein modification of cardiac sarcoplasmic reticulum (SR) membranes was investigated. Isolated SR vesicles were exposed to FeSO4/EDTA (0.2 mol Fe2+ per mg of protein) at 37°C for 1 h in the presence or absence of antioxidants. FeSO4/EDTA decreased the maximum velocity of Ca2+-ATPase reaction without a change of affinity for Ca2+ or Hill coefficient. Treatment with radical-generating system led also to conjugated diene formation, loss of sulfhydryl groups, changes in tryptophan and bityrosine fluorescences and to production of lysine conjugates with lipid peroxidation end-products. Lipid antioxidants butylated hydroxytoluene (BHT) and stobadine partially prevented inhibition of Ca2+-ATPase and decrease in tryptophan fluorescence, while the loss of –SH groups and formation of bityrosines or lysine conjugates were completely prevented. Glutathione also partially protected Ca2+-ATPase activity and decreased formation of bityrosine, but it was not able to prevent oxidative modification of tryptophan and lysine. These findings suggest that combination of amino acid modifications, rather than oxidation of amino acids of one kind, is responsible for inhibition of SR Ca2+-ATPase activity.  相似文献   

15.
The higher lipid productivity of Rhodotorula glutinis TISTR5159 was achieved by optimizing the pineapple pulp hydrolysis for releasing the high sugars content. The sequential simplex method operated by varied; solid-to-liquid ratio, sulfuric acid concentration, temperature, and hydrolysis time were successfully applied and the highest sugar content (83.2 g/L) evaluated at a solid-to-liquid ratio of 1:10.8, 3.2% sulfuric acid, 105 °C for 13.9 min. Moreover, the (NH4)2SO4 supplement enhanced the lipid productivity and gave the maximum yields of biomass and lipid of 15.2 g/L and 9.15 g/L (60.2%), respectively. The C16 and C18 fatty acids were found as main components included oleic acid (55.8%), palmitic acid (16.6%), linoleic acid (11.9%), and stearic acid (7.8%). These results present the possibility to convert the sugars in pineapple pulp hydrolysate to lipids. The fatty acid profile was also similar to vegetable oils. Thus, it could be used as potential feedstock for biodiesel production.  相似文献   

16.
Native wheat straw (WS) was pretreated with various concentrations of H2SO4 and NaOH followed by secondary treatments with ethylene diamine (EDA) and NH4OH prior to enzymatic saccharification. Conversion of the cellulosic component to sugar varied with the chemical modification steps. Treatment solely with alkali yield 51–75% conversion, depending on temperature. Acid treatment at elevated tempeatures showed a substantial decrease in the hemicellulose component, whereas EDA-treated WS (acid pretreated) showed a 69–75% decrease in the lignin component. Acid-pretreated EDA-treated straw yielded a 98% conversion rate, followed by 83% for alkali–NH4OH treated straws. In other experiments, WS was pretreated with varying concentration of H2SO4 or NaOh followed by NH4OH treatment prior to enzymatic hydrolysis. Pretreatment of straw with 2% NaOH for 4 h coupled to enzymatic hydrolysis yield a 76% conversion of the cellulosic component. Acid–base combination pretreatment yielded only 43% conversions. A reactor column was subsequently used to measure modification–saccharification–fermentation for wheat straw conversion on a larger scale. Thirty percent conversions of wheat straw cellulosics to sugar were observed with subsequent fermentation to alcohol. The crude cellulase preparation yielded considerable quantities of xylose in addition to the glucose. Saccharified materials were fermented directly with actively proliferating proliferating yeast cells without concentration of the sugars.  相似文献   

17.
Various levels of protection against x-irradiation damage in bacteriophage T1 may be obtained by the addition of inorganic salts to the aqueous virus suspensions during irradiation. The highest survival values are obtained with the nitrite salts, and their protective power is attributed primarily to their function as reducing agents. The nitrate ion shows greater protection than the corresponding sulfate or chloride ions. This may be due in part to the lower energy level of the nitrate ion, by reason of resonance. Since greater expenditure of incident energy is required to raise the ion from the ground state, the energy thus dissipated may be ineffective in the inactivation of virus particles. The ammonium salts exhibit protection of a different order of magnitude from that of the metallic salts. It is postulated that NH4+ protects in a threefold way: (a) dehydration, (b) reduction, in which the ammonia is oxidized to nitrite and the nitrite to nitrate, and (c) stabilization of the virus protein. Metallic salts likewise protect, but a point of maximum protection is reached in lower concentrations than in the case of the ammonium salts. After this maximum protection is reached, there is a rapid decline in survival with increased concentration. This prevents protection of the order of magnitude that can be obtained with the ammonium salts. It is postulated that a specific cationic interaction with the phage may be responsible for the decreased protection. Bacteriophage is protected during x-irradiation by an alkaline pH, in the case of NH4OH. This protection could not be produced with NaOH, presumably because of the greater hydrolysis of the protein components of the virus particle in solutions of NaOH, whereas NH4OH stabilizes the protein.  相似文献   

18.
Polyphenol oxidase plays a key role in plant defense systems. We report the first-time purification of polyphenol oxidase (PPO 1.14.18.1) from fresh leaves of tobacco (Nicotiana tabacum) using acetone powder, ammonium sulfate precipitation, and column chromatography with DEAE-Sephadex A-50, CM-Sephadex C-50, and Sephadex G-75. PPO I was purified approximately 71-fold (3200 U/mg). The MALDI-TOF-MS spectrum showed that the enzyme was purified to a pure protein with a molecular weight of 35700 Da. The optimum pH of PPO I was 7, the optimum temperature was 40°C, and the Km value was 6.8 mM using catechol as the substrate at pH 6.5 and with 0.05 M H3PO4−NaOH buffer. The maximum emission peak of PPO I was 339 nm with 16 nm of blue-shifted compared with 355 nm of free tryptophan. The UV/VIS spectra and the absence of an EPR signal are indicative of type-3 coppers, but not type-1 or type-2 coppers. PPO I and mushroom PPO have the same active center for a pair of coupled antiferromagnetic copper ions.  相似文献   

19.
Sugarcane bagasse is a by-product from the sugar and ethanol industry which contains approximately 70 % of its dry mass composed by polysaccharides. To convert these polysaccharides into fuel ethanol it is necessary a pretreatment step to increase the enzymatic digestibility of the recalcitrant raw material. In this work, sugarcane bagasse was pretreated by an alkaline-sulfite chemithermomechanical process for increasing its enzymatic digestibility. Na2SO3 and NaOH ratios were fixed at 2:1, and three increasing chemical loads, varying from 4 to 8 % m/m Na2SO3, were used to prepare the pretreated materials. The increase in the alkaline-sulfite load decreased the lignin content in the pretreated material up to 35.5 % at the highest chemical load. The pretreated samples presented enhanced glucose yields during enzymatic hydrolysis as a function of the pretreatment severity. The maximum glucose yield (64 %) was observed for the samples pretreated with the highest chemical load. The use of 2.5 g l?1 Tween 20 in the hydrolysis step further increased the glucose yield to 75 %. Semi-simultaneous hydrolysis and fermentation of the pretreated materials indicated that the ethanol yield was also enhanced as a function of the pretreatment severity. The maximum ethanol yield was 56 ± 2 % for the sample pretreated with the highest chemical load. For the sample pretreated with the lowest chemical load (2 % m/m NaOH and 4 % m/m Na2SO3), adding Tween 20 during the hydrolysis process increased the ethanol yield from 25 ± 3 to 39.5 ± 1 %.  相似文献   

20.
In the analysis of lipophilic plant metabolites by gas chromatography?Cmass spectrometry a step is required to release fatty acids and other analytes from complex molecules. Seven alternative methods were compared to the standard method of 1% H2SO4/50°C/16?h using Desirée and Phureja potato tubers as models. With two sodium methoxide alkali-catalysed methods (0.5?M NaOCH3/50°C/1 and 16?h) recoveries of ferulic acids increased, long chain fatty acids and sterols decreased, 2-hydroxy acids were negligible, solanidine was absent and ??5-avenasterol isomerisation was minimal. Using a harsh alkali hydrolysis (1.0?M KOH/120°C/24?h) followed by a mild methylation (1% H2SO4/50°C/1.5?h), recoveries of polyunsaturated fatty acids were poor, sterols decreased but ??5-avenasterol isomerisation was minimal. With a mild alkali hydrolysis (0.5?M NaOH/100°C/5?min) followed by methylation with boron trifluoride (14%BF3/100°C/30?min) recoveries of sterols and 2-hydroxy fatty acids were similar to the standard method and ??5-avenasterol isomerisation was high. Lower ferulic acid recoveries, absence of solanidine and overestimation of fatty alcohols were evident in both methods involving alkali hydrolysis. Three different methods using hydrochloric acid (1.00?M HCl/70°C/5?h, 0.63?M HCl/110°C/2?h and 2.00?M HCl/50°C/24?h) all gave increased recoveries of 2-hydroxy acids, ferulic acids, solanidine and sterols, although ??5-avenasterol isomerisation increased. Hydrochloric acid methods are recommended for studies requiring quantitative determinations (i.e. concentration of metabolite in sample). Either the hydrochloric acid methods or the standard sulphuric acid method are suggested for determining relative concentrations between samples, although there is a requirement for further studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号