首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enveloped viruses, which include many medically important viruses such as human immunodeficiency virus, influenza virus and hepatitis C virus, are intracellular parasites that acquire lipid envelopes from their host cells. Success of replication is intimately linked to their ability to hijack host cell mechanisms, particularly those related to membrane dynamics and lipid metabolism. Despite recent progress, our knowledge of lipid mediated virus–host interactions remains highly incomplete. In addition, diverse experimental systems are used to study different stages of virus replication thus complicating comparisons. This review aims to present a unifying view of the widely diverse strategies used by enveloped viruses at distinct stages of their replication cycles.  相似文献   

2.
Alphaviruses are small, enveloped positive-strand RNA viruses that have been successfully transformed into expression vectors in the case of Semliki Forest virus (SFV), Sindbis virus (SIN), and Venezuelan equine encephalitis virus. Compared to other viral vectors, their advantages are easy and fast generation of recombinant viral particles, rapid onset, and high-level transgene expression. When applied to neuronal tissue, SFV and SIN vectors possess the additional advantage of efficiently and preferentially transducing neurons rather than non-neuronal cells. This article gives an overview of the biology of SFV and SIN, their generation into expression vectors, and their application in neurobiology, with particular emphasis on the transduction of hippocampal neurons. In addition, it describes the more recent development of alphaviral vectors with decreased or absent cytotoxicity and lowered transgene expression, temperature-controllable gene expression, and altered host-cell specificity in the central nervous system (CNS). Finally, the review evaluates the use of SFV and SIN vectors in hippocampal tissue cultures vs recombinant lentivirus, adenovirus type 5, adeno-associated virus type 2, and measles virus.  相似文献   

3.
After co-infection of Sc-1 cells with N- and B-tropic murine leukemia viruses that differ in their XC plaque morphology, Hopkins et al. (1976) obtained viruses, designated XLP-N, that appeared to be recombinants, since they possess the N-tropism of one parent and the XC plaque morphology of the other (the B-tropic virus) parent. Here we present evidence, based on antigenicity and electrophoretic mobility, that some clonal isolates of XLP-N have inherited gp70 gene of their B-tropic virus parent. In addition to providing evidence that XLP-N viruses are recombinants, the fact that an N-tropic virus may apparently possess a gp70 derived from a B-tropic virus provides evidence, which is in agreement with the findings of others (Huang et al., 1973; Krontiris et al., 1973) that the N- or B-tropism of murine leukemia virus does not reside in gp70.  相似文献   

4.
Retroviruses are classified as exogenous or endogenous according to their mode of transmission. Generally, endogenous retroviruses (ERVs) are not pathogenic in their original hosts; however, some ERVs induce diseases. In humans, a novel gammaretrovirus was discovered in patients with prostate cancer or chronic fatigue syndrome. This virus was closely related to xenotropic murine leukemia virus (X-MLV) and designated as xenotropic murine leukemia virus-related virus (XMRV). The origin and transmission route of XMRV are still unknown at present; however, XMRV may be derived from ERVs of rodents because X-MLVs are ERVs of inbred and wild mice. Many live attenuated vaccines for animals are manufactured by using cell lines from animals, which are known to produce infectious ERVs; however, the risks of infection by ERVs from xenospecies through vaccination have been ignored. This brief review gives an overview of ERVs in cats, the potential risks of ERV infection by vaccination, the biological characteristics of RD-114 virus (a feline ERV), which possibly contaminates vaccines for companion animals, and the methods for detection of infectious RD-114 virus.  相似文献   

5.
We have studied interactions between nucleocapsids and glycoproteins required for budding of alphaviruses, using Ross River virus-Sindbis virus chimeras in which the nucleocapsid protein is derived from one virus and the envelope glycoproteins are derived from the second virus. A virus containing the Ross River virus genome in which the capsid protein had been replaced with that from Sindbis virus was almost nonviable. Nucleocapsids formed in normal numbers in the infected cell, but very little virus was released from the cell. There are 11 amino acid differences between Ross River virus and Sindbis virus in their 33-residue E2 cytoplasmic domains. Site-specific mutagenesis was used to change 9 of these 11 amino acids in the chimera from the Ross River virus to the Sindbis virus sequence in an attempt to adapt the E2 of the chimera to the nucleocapsid. The resulting mutant chimera grew 4 orders of magnitude better than the parental chimeric virus. This finding provides direct evidence for a sequence-specific interaction between the nucleocapsid and the E2 cytoplasmic domain during virus budding. The mutated chimeric virus readily gave rise to large-plaque variants that grew almost as well as Ross River virus, suggesting that additional single amino acid substitutions in the structural proteins can further enhance the interactions between the disparate capsid and the glycoproteins. Unexpectedly, change of E2 residue 394 from lysine (Ross River virus) to glutamic acid (Sindbis virus) was deleterious for the chimera, suggesting that in addition to its role in nucleocapsid-E2 interactions, the N-terminal part of the E2 cytoplasmic domain may be involved in glycoprotein-glycoprotein interactions required to assemble the glycoprotein spikes. The reciprocal chimera, Sindbis virus containing the Ross River virus capsid, also grew poorly. Suppressor mutations arose readily in this chimera, producing a virus that grew moderately well and that formed larger plaques.  相似文献   

6.
The accumulation of recent data concerning the reactivity of monoclonal antibodies with particular varicella-zoster virus (VZV) glycoproteins and the mapping of several of their respective genes on the VZV genome has led to a unified nomenclature for the glycoprotein genes of VZV and their mature glycosylated products. Homologs to herpes simplex virus glycoprotein genes are noted.  相似文献   

7.
Sun X  Whittaker GR 《Journal of virology》2003,77(23):12543-12551
Enveloped viruses are highly dependent on their lipid envelopes for entry into and infection of host cells. Here, we have examined the role of cholesterol in the virus envelope, using methyl-beta-cyclodextrin depletion. Pretreatment of virions with methyl-beta-cyclodextrin efficiently depleted envelope cholesterol from influenza virus and significantly reduced virus infectivity in a dose-dependent manner. A nonenveloped virus, simian virus 40, was not affected by methyl-beta-cyclodextrin treatment. In the case of influenza virus, infectivity could be partially rescued by the addition of exogenous cholesterol. Influenza virus morphology, binding, and internalization were not affected by methyl-beta-cyclodextrin depletion, whereas envelope cholesterol depletion markedly affected influenza virus fusion, as measured by a specific reduction in the infectivity of viruses induced to fuse at the cell surface and by fluorescence-dequenching assays. These data suggest that envelope cholesterol is a critical factor in the fusion process of influenza virus.  相似文献   

8.
New Mouse Model for Dengue Virus Vaccine Testing   总被引:21,自引:11,他引:10       下载免费PDF全文
Several dengue (DEN) virus vaccines are in development; however, the lack of a reliable small animal model in which to test them is a major obstacle. Because evidence suggests that interferon (IFN) is involved in the human anti-DEN virus response, we tested mice deficient in their IFN functions as potential models. Intraperitoneally administered mouse-adapted DEN 2 virus was uniformly lethal in AG129 mice (which lack alpha/beta IFN and gamma IFN receptor genes), regardless of age. Immunized mice were protected from virus challenge, and survival times increased following passive transfer of anti-DEN polyclonal antibody. These results demonstrate that AG129 mice are a promising small animal model for DEN virus vaccine trials.  相似文献   

9.
We have developed a rapid-turnover culture system where the life span of a human immunodeficiency virus type 1-infected cell is controlled by periodic addition of a cytotoxic agent, mitomycin C. These mitomycin C-exposed cells are cocultured with a constant number of uninfected cells as new targets for the virus. Passage of the virus-infected cells under these conditions led to the emergence of a viral variant that was able to replicate efficiently in this culture system. After biologic and molecular cloning, we were able to identify a single frameshift mutation in the vpu open reading frame that was sufficient for growth of the mutant virus in the rapid-turnover assay. This virus variant spread more efficiently by cell-to-cell transfer than the parental virus did. Electron micrographs of cells infected with the delta vpu virus revealed a large number of mature viral capsids attached to the plasma membrane. The presence of these mature virus particles on the cell surface led to enhanced fusion and formation of giant syncytia with uninfected cells. Enhanced cell-to-cell transfer of the delta vpu virus provides an explanation for the survival of this mutant virus in the rapid-turnover culture system. The in vitro rapid-turnover culture system is a good representation of the in vivo turnover kinetics of infected cells and their continual replacement by host lymphopoietic mechanisms.  相似文献   

10.
Nine monoclonal antibodies specific for glycoprotein D (gD) of herpes simplex virus type 1 were selected for their ability to neutralize virus in the presence of complement. Four of these antibodies exhibited significant neutralization titers in the absence of complement, suggesting that their epitope specificities are localized to site(s) which contribute to the role of gD in virus infectivity. Each of these antibodies was shown to effectively neutralize virus after virion adsorption to cell surfaces, indicating that neutralization did not involve inhibition of virus attachment. Although some of the monoclonal antibodies partially inhibited adsorption of radiolabeled virions, this effect was only observed at concentrations much higher than that required to neutralize virus and did not correlate with complement-independent virus-neutralizing activity. All of the monoclonal antibodies slowed the rate at which virus entered cells, further suggesting that antibody binding of gD inhibits virus penetration. Experiments were carried out to determine the number of different epitopes recognized by the panel of monoclonal antibodies and to identify epitopes involved in complement-independent virus neutralization. Monoclonal antibody-resistant (mar) mutants were selected by escape from neutralization with individual gD-specific monoclonal antibodies. The reactivity patterns of the mutants and antibodies were then used to construct an operational antigenic map for gD. This analysis identified a minimum of six epitopes on gD that could be grouped into four antigenic sites. Antibodies recognizing four distinct epitopes contained in three antigenic sites were found to neutralize virus in a complement-independent fashion. Moreover, mar mutations in these sites did not affect the processing of gD, rate of virus penetration, or the ability of the virus to replicate at high temperature (39 degrees C). Taken together, these results (i) confirm that gD is a major target antigen for neutralizing antibody, (ii) indicate that the mechanism of neutralization can involve inhibition of virus penetration of the cell surface membrane, and (iii) strongly suggest that gD plays a direct role in the virus entry process.  相似文献   

11.
A simple method with poliovirus as the model was developed for recovering human enteric viruses from aerosols. Filterite filters (pore size, 0.45 micron; Filterite Corp., Timonium, Md.) moistened with glycine buffer (pH 3.5) were used for adsorbing the aerosolized virus. No virus passed the filter, even with air flow rates of 100 liters/min. Virus recovery from the filter was achieved by rapid elution with 800 ml of glycine buffer, pH 10. The virus in the primary eluate was reconcentrated by adjusting the pH to 3.5, adding AlCl3 to 0.0005 M, collecting the virus on a 0.25-micron-pore Filerite disk (diameter, 25 mm) and and eluting with 6 ml of buffer, pH 10. With this method, virus could be detected regularly in aerosols produced by flushing when 3 X 10(8) PFU of poliovirus were present in the toilet bowl. Poliovirus-containing fecal material from two of four infants who had recently received oral polio vaccine also yielded virus in the aerosols when feces containing 2.4 X 10(7) to 4.5 X 10(7) PFU of virus had been added to the toilet bowl. Persons infected with a variety of natural enteric viruses are known to excrete this amount of virus in their daily stools.  相似文献   

12.
Influenza A virus has evolved and thrived in human populations. Since the 1918 influenza A pandemic, human H1N1 viruses had acquired additional N-linked glycosylation (NLG) sites within the globular head region of hemagglutinin (HA) until the NLG-free HA head pattern of the 1918 H1N1 virus was renewed with the swine-derived 2009 pandemic H1N1 virus. Moreover, the HA of the 2009 H1N1 virus appeared to be antigenically related to that of the 1918 H1N1 virus. Hence, it is possible that descendants of the 2009 H1N1 virus might recapitulate the acquisition of HA head glycosylation sites through their evolutionary drift as a means to evade preexisting immunity. We evaluate here the evolution signature of glycosylations found in the globular head region of H1 HA in order to determine their impact in the virulence and transmission of H1N1 viruses. We identified a polymorphism at HA residue 147 associated with the acquisition of glycosylation at residues 144 and 172. By in vitro and in vivo analyses using mutant viruses, we also found that the polymorphism at HA residue 147 compensated for the loss of replication, virulence, and transmissibility associated with the presence of the N-linked glycans. Our findings suggest that the polymorphism in H1 HA at position 147 modulates viral fitness by buffering the constraints caused by N-linked glycans and provide insights into the evolution dynamics of influenza viruses with implications in vaccine immunogenicity.  相似文献   

13.
2014年在非洲爆发流行的埃博拉病毒严重威胁人类健康和生命安全,迄今尚未有治疗药物,目前国内外许多医药机构尝试从不同视角发现抗埃博拉病毒的有效药物.本文在对抗流感病毒中药及活性成分进行回顾的基础上提出了抗埃博拉病毒活性化合物的发现策略,为从中药中发现抗埃博拉病毒有效物质提供借鉴和参考.  相似文献   

14.
Method for detecting viruses in aerosols.   总被引:2,自引:1,他引:1       下载免费PDF全文
A simple method with poliovirus as the model was developed for recovering human enteric viruses from aerosols. Filterite filters (pore size, 0.45 micron; Filterite Corp., Timonium, Md.) moistened with glycine buffer (pH 3.5) were used for adsorbing the aerosolized virus. No virus passed the filter, even with air flow rates of 100 liters/min. Virus recovery from the filter was achieved by rapid elution with 800 ml of glycine buffer, pH 10. The virus in the primary eluate was reconcentrated by adjusting the pH to 3.5, adding AlCl3 to 0.0005 M, collecting the virus on a 0.25-micron-pore Filerite disk (diameter, 25 mm) and and eluting with 6 ml of buffer, pH 10. With this method, virus could be detected regularly in aerosols produced by flushing when 3 X 10(8) PFU of poliovirus were present in the toilet bowl. Poliovirus-containing fecal material from two of four infants who had recently received oral polio vaccine also yielded virus in the aerosols when feces containing 2.4 X 10(7) to 4.5 X 10(7) PFU of virus had been added to the toilet bowl. Persons infected with a variety of natural enteric viruses are known to excrete this amount of virus in their daily stools.  相似文献   

15.
Cassava mosaic disease, caused by cassava mosaic geminiviruses are transmitted by Bemisia tabaci. The B. tabaci adults from colonies reared on virus free cassava plant produced from apical meristem culture was studied to determine their ability to transmit Indian cassava mosaic virus (ICMV) and Sri Lankan cassava mosaic virus (SLCMV) from cassava to cassava. Virus free plants were confirmed by polymerase chain reaction (PCR) using geminivirus degenerate primers. The virus acquisition access period (AAP) of 48 h on virus infected cassava leaves and 48 h virus inoculation access periods on virus free healthy leaves were investigated. Both ICMV and SLCMV were absolutely transmitted by whiteflies reared on cassava. Virus specific primers were designed in the replicase region and used to detect virus in B. tabaci after different AAP. The PCR amplified replicase genes from virus transmitted cassava leaves were cloned the plasmid DNA was isolated from a recombinant colony of E. coli DH5α after their confirmation by colony PCR and sequenced them. The nucleotide sequences obtained from automated DNA sequencing were confirmed as ICMV and SLCMV replicase gene after homology searching by BLAST and found to be a new isolates. The nucleotide sequences of new isolates were submitted in GenBank (accession number JN652126 and JN595785).  相似文献   

16.
Genetic elements of plant viruses as tools for genetic engineering.   总被引:3,自引:0,他引:3       下载免费PDF全文
Viruses have developed successful strategies for propagation at the expense of their host cells. Efficient gene expression, genome multiplication, and invasion of the host are enabled by virus-encoded genetic elements, many of which are well characterized. Sequences derived from plant DNA and RNA viruses can be used to control expression of other genes in vivo. The main groups of plant virus genetic elements useful in genetic engineering are reviewed, including the signals for DNA-dependent and RNA-dependent RNA synthesis, sequences on the virus mRNAs that enable translational control, and sequences that control processing and intracellular sorting of virus proteins. Use of plant viruses as extrachromosomal expression vectors is also discussed, along with the issue of their stability.  相似文献   

17.
We have sodium dodecyl sulfate-polyacrylamide gel electrophoresis to analyze the virion proteins of an N- and a B-tropic C-type virus derived from the BALB/c mouse and 21 putative recombinants, designated XLP-N viruses, obtained from seven crosses between these N- and B-tropic viruses. All the XLP-N viruses are N-tropic but posses the XC plaque morphology of their B-tropic virus parent. Three virion proteins, p15, p30, and gp70, of the parental viruses each differ in electrophoretic mobility. Two recombinants were found that possess a p15 that comigrates with p15 of the B virus; 19 possess a p15 that comigrates with N virus p15. Sixteen recombinants possess a gp70 that migrates like the gp70 of the B virus: four have gp70 with an electrophoretic mobility like that of the N virus gp70. All 21 recombinants possess a p30 that comigrates with p30 of their N virus parent. Given the origin and phenotype of XLP-N viruses, these results would seem to provide good evidence that these viruses are recombinants.  相似文献   

18.
C-and N-polyhedrins from a cytoplasmic polyhedrosis virus (a double-stranded RNA virus) and a nuclear polyhedrosis virus (a DNA virus), respectively, of Orgyia pseudotsugata were compared. Although both polyhedrins appear to stabilize their respective virions and have similar molecular weights, they differed in amino acid composition, tryptic peptide elution profiles from a cation-exchange resin, and N-terminal amino acid sequence and showed no antigenic relatedness. This suggests that these two proteins originated independently of one another.  相似文献   

19.
Young adult ferrets were used as experimental animals to study subacute sclerosing panencephalitis (SSPE). When cells infected with cell-associated measles virus strains isolated from SSPE patients were inoculated intracerebrally (i.c.) into ferrets, they developed an acute encephalitis and died within 1 to 3 weeks without detectable antibody formation. Immunization with live measles vaccine 5 weeks before i.c. inoculation changed the course of the infection in about 50% of the ferrets. These animals developed a subacute encephalitis within weeks or months after inoculation. Cell-associated measles virus was isolated from their brains and high measles antibody titers were found in their sera, comparable to those in sera of SSPE patients. Measles virus specific immunoglobulins (IgG) were present in their brains and determination of IgG/albumin ratios indicated that antibodies were synthesized in the brain in response to the persistent measles virus infection. Measles specific oligoclonal IgG bands were found in the sera and spinal fluids of these animals. Therefore, subacute ferret encephalitis has virological and immunological characteristics in common with SSPE, indicating that it may serve as a model for the human disease. Other animal models of SSPE are described briefly.  相似文献   

20.
A new method is described for the quantitative measurement of virus concentration in crude preparations by density gradient centrifugation and electron microscopy. The centrifugation is carried out in a specially designed centrifuge tube which permits separation and sedimentation of virus particles at different levels according to their sedimentation velocity. The gradient of a mixture of heavy and normal water (D(2)O-H(2)O) is designed to sediment the virus particles with constant velocity so that the optimal time of centrifugation can easily be calculated. The virus particles are collected on carbon-coated nickel grids floating on mercury at the bottom of the centrifuge tube and are counted by means of electron microscopy. The efficiency of the method is demonstrated with a crude plant extract of tobacco mosaic virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号