首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Active subfragment of the inhibitory component of troponin   总被引:2,自引:0,他引:2  
  相似文献   

3.
The structure prediction of the calcium binding component of troponin (TN-C) incorporates the following assumptions: (1) TN-C contains four regions homologous to the calcium binding "EF hand" of parvalbumin. (2) The four EF hands are arranged in two pairs with overall symmetry, 222. (3) The regions of the calcium binding component of troponin which are not in the four EF hands connect the hands within each pair, one to two and three to four, and connect the pairs, region two to region three. In the resulting model there is a well-defined hydrophobic core made from side chains of all eight helical regions and of the four calcium binding loops. The Ca2+ within pairs are separated by 11 A; while the pairs of Ca2+ are separated from one another by over 30 A. Cys-98 and Tyr-109 are suggested to be sensitive spectroscopic probes. Calcium(1) is suggested to be solvent accessible and most readily replaced by a lanthanide. Because of the overall symmetry of the calcium binding component of troponin, one can anticipate that the inhibitory- and the tropomyosin binding components of troponin are similar to one another.  相似文献   

4.
5.
6.
Some biochemical properties of the Mr 52,000 component of Akazara scallop striated adductor troponin, which had been tentatively identified as troponin-I, were compared with those of rabbit troponin-I. Both the Mr 52,000 component and rabbit troponin-I together with rabbit tropomyosin inhibited the Mg-ATPase activity of rabbit reconstituted actomyosin to 1/10 of the original activity. The inhibition was neutralized by the addition of Akazara scallop and rabbit troponin-C or Patinopecten scallop calmodulin. The Mr 52,000 component and rabbit troponin-I were insoluble below 0.15 M KCl, but were solubilized by complexing with an equimolar amount of troponin-C or calmodulin. On alkaline urea-polyacrylamide gel electrophoresis, the Mr 52,000 component as well as rabbit troponin-I was found to form a stable complex with troponin-C or calmodulin in the presence of Ca2+.  相似文献   

7.
We have investigated the structure of the cTnC-cTnI-cTnT(198-298) calcium-saturated, ternary cardiac troponin complex by small-angle scattering with contrast variation. Shape restoration was also applied to the scattering information resulting from the deuterated cTnC subunit, the unlabeled cTnI-cTnT(198-298) subunits, and the entire complex. The experimental results and modeling indicate that cTnC adopts a partially collapsed conformation, while the cTnI-cTnT(198-298) components have an extended, rod-like structure. Shape restoration applied to the X-ray scattering data and the entire contrast variation series suggest that cTnC and the cTnI-cTnT(198-298) component lie with their long axes roughly parallel to one another with a relatively small surface area for interaction. Our findings indicate that the nature of the interactions between TnC and the TnI-TnT component differs significantly between the cardiac and skeletal isoforms as evidenced by the different degrees of compactness between the cardiac TnC and skeletal TnC in their respective ternary complexes and the fact that the cTnC subunit is not highly intertwined with the other subunits, as observed in the binary complex of the skeletal isoforms [Olah, G. A., and Trewhella, J. (1994) Biochemistry 33, 12800-12806].  相似文献   

8.
9.
10.
The interaction of the inhibitory component (TN I) of troponin and F-actin in the presence and absence of tropomyosin was studied by a number of physico-chemical techniques: i.e., gel filtration, ultracentrifugation, flow birefringence, viscosity and dynamic viscoelasticity measurements, and electron microscopy. The results indicated that TN I and F-actin interact with each other more strongly in the presence of tropomyosin than in its absence. The physiological implication of this finding is discussed.  相似文献   

11.
12.
13.
Mg++ like Ca++ induces a conformational change in the Ca++-binding component of troponin. However, this change is only 36 % of the change in fluorescence intensity and 80 % of the change in optical rotation induced by Ca++. The apparent binding constant of Mg++ to the Ca++-binding component is 5 × 103 M−1, much smaller than that of Ca++. Circular dichroism measurements show that these changes are simple helix-coil transitions. Unlike the Ca++-induced conformational change, the Mg++-induced change cannot be propagated to other muscle proteins, and therefore has no physiological meaning.  相似文献   

14.
15.
A 40% increase of the α-helicity of calcium binding component of troponin was observed upon addition of micromolar concentrations of calcium ions. Magnesium ions cause also a significan increase of the helical content of this protein but at much higher concentrations than calcium. In the presence of 1mM MgCl2 micromolar concentrations of calcium ions do not affect the secondary structure of the troponin calcium binding component.  相似文献   

16.
The tropomyosin binding component (TN-T) of troponin was purified from bovine cardiac muscle using a combination of ion exchange chromatographies in the presence of urea. Sedimentation equilibrium experiments suggest a molecular weight for cardiac TN-T of 36 300 +/- 2 000, consistent with a value of 37 000 +/- 1 000 determining by polyacrylamide gel electrophoresis. Calculations based upon circular dichroism spectra indicate an apparent alpha-helical content of 43 +/- 3% for TN-T. Polyacrylamide gel electrophoresis and the effects of the calcium binding component (TN-C) upon the solubility of TN-T suggest that the two cardiac troponin components can interact with each other. Cosedimentation analysis of solutions containing cardiac tropomyosin and TN-T provide evidence for complex formation involving these two proteins. The data presented on the physical and chemical properties of TN-T, as well as the interaction studies indicate that the cardiac muscle regulatory system operates in a manner similar to that proposed for skeletal muscle.  相似文献   

17.
We have quantitated the interactions of two rabbit skeletal troponin C fragments with troponin I and the troponin I inhibitory peptide. The calcium binding properties of the fragments and the ability of the fragments to exert control in the regulated actomyosin ATPase assay have also been studied. The N- and C-terminal divalent metal binding domains of rabbit skeletal troponin C, residues 1-97 and residues 98-159, respectively, were prepared by specific cleavage at cysteine-98 and separation by gel exclusion chromatography. Both of the troponin C fragments bind calcium. The calcium affinity of the weak sites within the N-terminal fragment is about an order of magnitude greater than is reported for these sites in troponin C, suggesting interaction between the calcium-saturated strong sites and the weak sites. Stoichiometric binding (1:1) of the troponin I inhibitory peptide to each fragment and to troponin C increased the calcium affinities of the fragments and troponin C. Complex formation was detected by fluorescence quenching or enhancement using dansyl-labeled troponin C (and fragments) or tryptophan-labeled troponin I inhibitory peptide. The troponin C fragments bind to troponin I with 1:1 stoichiometry and approximately equal affinities (1.6 x 10(6) M-1) which are decreased 4-fold in the presence of magnesium versus calcium. These calcium effects are much smaller than is observed for troponin C. The summed free energies for the binding of the troponin C fragments to troponin I are much larger than the free energy of binding troponin C. This suggests a large positive interaction free energy for troponin C binding to troponin I relative to the fragments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Multidimensional heteronuclear magnetic resonance studies of the cardiac troponin C/troponin I(1-80)/troponin I(129-166) complex demonstrated that cardiac troponin I(129-166), corresponding to the adjacent inhibitory and regulatory regions, interacts with and induces an opening of the cardiac troponin C regulatory domain. Chemical shift perturbation mapping and (15)N transverse relaxation rates for intact cardiac troponin C bound to either cardiac troponin I(1-80)/troponin I(129-166) or troponin I(1-167) suggested that troponin I residues 81-128 do not interact strongly with troponin C but likely serve to modulate the interaction of troponin I(129-166) with the cardiac troponin C regulatory domain. Chemical shift perturbations due to troponin I(129-166) binding the cardiac troponin C/troponin I(1-80) complex correlate with partial opening of the cardiac troponin C regulatory domain previously demonstrated by distance measurements using fluorescence methodologies. Fluorescence emission from cardiac troponin C(F20W/N51C)(AEDANS) complexed to cardiac troponin I(1-80) was used to monitor binding of cardiac troponin I(129-166) to the regulatory domain of cardiac troponin C. The apparent K(d) for cardiac troponin I(129-166) binding to cardiac troponin C/troponin I(1-80) was 43.3 +/- 3.2 microM. After bisphosphorylation of cardiac troponin I(1-80) the apparent K(d) increased to 59.1 +/- 1.3 microM. Thus, phosphorylation of the cardiac-specific N-terminus of troponin I reduces the apparent binding affinity of the regulatory domain of cardiac troponin C for cardiac troponin I(129-166) and provides further evidence for beta-adrenergic modulation of troponin Ca(2+) sensitivity through a direct interaction between the cardiac-specific amino-terminus of troponin I and the cardiac troponin C regulatory domain.  相似文献   

19.
20.
Cardiac troponin   总被引:11,自引:0,他引:11  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号