首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In previous studies, sodium pivalate has been administered to rats in their drinking water (20 mmoles/L; equivalent to 0.3% of the diet) as a way to lower the concentration of carnitine in tissues and to produce a model of secondary carnitine deficiency. Although this level of supplementation results in a marked decrease in carnitine concentration in a variety of tissues, it does not produce the classical signs of carnitine deficiency (i.e., decreased fatty acid oxidation and ketogenesis). The present study was designed (1) to determine if increasing the level of pivalate supplementation (0.6, 1.0% of the diet) would further reduce the concentrations of total and free carnitine in rat tissues without altering growth or food intake, and (2) to examine the effect of length of feeding (4 vs. 8 weeks) on these variables. Male, Sprague-Dawley rats were randomly assigned to either a control (0.2% sodium bicarbonate) or experimental diet (0.3, 0.6, 1.0% sodium pivalate) for either four or eight weeks. Animals (n = 6/group) were housed in metabolic cages; food and water were provided ad libitum throughout the study. Supplementation with sodium pivalate did not alter water intake or urine output. Ingestion of a diet containing 1.0% pivalic acid decreased food intake (g/day; P < 0.05), final body weight (P < 0.007), and growth rate (P < 0.001) after four weeks. The concentration of total carnitine in plasma, heart, liver, muscle, and kidney was reduced in all experimental groups (P < 0.001), regardless of level of supplementation or length of feeding. The concentration of free carnitine in heart, muscle, and kidney was also reduced (P < 0.001) in rats treated with pivalate for either four or eight weeks. The concentration of free carnitine in liver was reduced in animals supplemented with pivalate for eight weeks (P < 0.05), but no effect was observed in livers from rats treated for four weeks. Excretion of total carnitine and short chain acylcarnitine in urine was increased in pivalate supplemented rats throughout the entire feeding period (P < 0.001). Free carnitine excretion was increased during Weeks 1 and 2 (P < 0.01), but began to decline during Week 3 in experimental groups. During Weeks 6 and 8, free carnitine excretion in pivalate supplemented rats was less than that of control animals (P < 0.01). In summary, no further reduction in tissue carnitine concentration was observed when rats were supplemented with sodium pivalate at levels greater than 0.3% of the diet. Food intake (g/day) and growth were decreased in rats fed a diet containing 1.0% sodium pivalate. These data indicate that maximal lowering of tissue carnitine concentrations is achieved by feeding diets containing 0.3% sodium pivalate or less.  相似文献   

2.
Because of the well established function of carnitine possible effects of carnitine were studied in poultry. In trial I it was investigated if carnitine and its precursors (lysine, methionine) reduce the formation of abdominal fat in broilers. Chickens (10 groups of 10 chickens each) were fed different diets (control, lysine and methionine in excess and deficient, respectively, with or without 5% fat supplement, L‐carnitine and DL‐carnitine supplement, respectively).Performance (body weight gain, feed conversion), amount of abdominal fat and carnitine concentration in blood, muscles (M. sartorius, M.pectoralis superficialis, cardiac), liver and kidney were determined. Performance and abdominal fat were influenced by dietary fat, lysine and methionine as expected and were not altered by carnitine. Excess and deficiency of lysine and methionine did not influence, fat supplement reduced and carnitine supplementation significantly increased tissue concentration of carnitine.

In trial II it was studied if supplementation of a commercial layers’ ration with either 500 mg L‐carnitine or 500 mg nicotinic acid or both per kg reduces the cholesterol concentration in yolk. Influence on body weight, feed intake, laying performance, serum and yolk cholesterol concentration could not be observed, but yolk concentration of carnitine was significantly increased in supplemented groups.

Trial III should clarify if the L‐carnitine content in broiler parentstock ration influences hatchability. Four groups of 1350 hens each were fed a commercial all‐mash supplemented with 0, 20, 50 and 100 mg L‐carnitine, respectively. Hatching rate was increased from 83% to 87% and from 82.4% to 85.3% in groups supplemented with 50 and 100 mg L‐carnitine, respectively, and in randomly sampled eggs of these groups carnitine concentration in yolk was higher.  相似文献   

3.
A study was undertaken to examine the effect of different amounts of dietary lysine (13 and 21 g kg?1 diet), lipid (80 and 160 g kg?1 diet) and L ‐carnitine (0.2 and 1.0 g kg?1 diet) on growth performance, proximate composition and amino acid metabolism of the African catfish (Clarias gariepinus). Juvenile African catfish (23 ± 1.5 g/fish) were stocked into 70‐L aquaria (16 aquaria, 28 fish/aquarium) connected to a recirculation system during a maximum period of 74 days. All groups were fed at a level of 24 g kg?0.8 day?1 in an experiment run at pair feeding. Animals receiving 1.0 g carnitine accumulated up to six times more carnitine in their tissues than animals receiving 0.2 g (P < 0.05). Acyl‐carnitine and free L ‐carnitine levels increased in the whole body and in tissues. Dietary L ‐carnitine supplements increased protein‐to‐fat ratios in the body, but did not affect growth rate. Protein‐to‐fat ratios were only affected when the biosynthesis capacity of L ‐carnitine was restricted due to low lysine levels and when there was a shortage of dietary fat. When lysine was offered at 21 g kg?1 feed, dietary L ‐carnitine supplements did not affect the amino acid concentrations of body tissues. Dietary L ‐carnitine supplements raised the concentration of glutamic acid > aspartic acid > glycine > alanine > arginine > serine > threonine in skeletal muscle tissue (P < 0.05). Total amino acid concentration in muscle and liver tissues (dry‐matter basis) increased from 506 to 564 and from 138 to 166 mg g?1, respectively, when diets were offered with high L ‐carnitine, low lysine and low fat levels. These data suggest that dietary L ‐carnitine supplementation may increase fatty acid oxidation and possibly decrease amino acid combustion for energy.  相似文献   

4.
5.
6.
1. The importance of carnitine status in energy metabolism during exercise was studied in experimentally carnitine-depleted or supplemented rats. 2. Muscle carnitine concentration can be decreased by 40% with D-carnitine and increased by 40% with L-carnitine supplementation. 3. In spite of large variation of carnitine content, neither the exercising capacity nor the rate of muscle or liver glycogenolysis were modified during submaximal exercise. 4. The increased lipid metabolism induced by exercise can be adequately supported by endogenous levels of tissue carnitine. 5. Before any impairment in energy metabolism during exercise can be demonstrated, carnitine concentration has to be reduced to a level close to that measured with primary carnitine deficiency, i.e. less than 20 mumol/l of plasma.  相似文献   

7.
Weanling rats were offered a choice of two diets, varying only in lysine content. The preference test was performed between a 20% gluten diet supplemented with 0.5% lysine HCl and a lysine-deficient amino acid mixture, 20% gluten or 20% gluten plus 0.2% lysine HCl diet, and was done between a 20% gluten diet and a 20% gluten diet containing 3, 5 or 7% lysine · HCl. Weight gain and food intake were not significantly different among all the self-selecting groups, and these values were almost the same as those in rats fed only the 20% gluten supplemented 0.5% lysine · HCl diet which obtained maximal growth. The lysine intake of the combination groups ranged from 67 to 240 mg per day (0.62-2.35% of consumed food). It was demonstrated that rats exhibit a definite ability to regulate lysine intake, and they select sufficient lysine to meet their requirements for this amino acid. The self-selection technique may be useful as a method to determine the requirements for amino acids.  相似文献   

8.
This experiment was conducted to study growth performance, carcass characteristics, meat quality and plasma constituents of Campbell drakes fed diets containing different levels of lysine with or without a microbial phytase. Basal vegetable duck all-mash diets were fed during the growing (1- 35 d of age), and finishing period (36 - 56 d of age) and were formulated to contain 0.90% and 0.73% lysine (negative control), respectively. These diets were supplemented or not with L-lysine HCl, which resulted in a dietary lysine level of 0.90, 0.95, 1.01 and 1.06% and 0.73, 0.80, 0.87 and 0.94%, during the growing and finishing period, respectively. Furthermore, the diets were fed with or without 600 FTU phytase (Natuphos®) except for those containing 1.06 and 0.94% lysine during the growing and finishing period, respectively (positive control). A lysine level of 1.01/0.87% in the growing/finishing diet significantly increased BWG and improved FCR of drakes by 2.1 and 1.8%, respectively. Phytase significantly increased BWG by 2.1% and 3.5% after feeding the basal diet and 1.01/0.87% lysine, respectively. Also, FCR was significantly improved by 2.2 and 1.8% of groups fed 0.95/0.80, and 1.01/0.87% lysine, respectively. Phytase as an independent variable increased BWG by 1.8, and improved FCR by 1.0%. Lysine and/or phytase did not affect carcass yield, and meat quality treats as well as plasma constituents of drakes. However, lysine level at 0.95/0.80% and 1.01/0.87% significantly decreased abdominal fat deposition compared to either the negative or the positive control. In conclusion, a lysine level of 1.01/0.87% in the growing/finishing diets for drakes is adequate. After phytase supplementation of the basal diet the BWG at a lysine level of 0.90/0.73% were similar to the positive control (1.06/0.94% lysine). However, the best FCR was obtained after feeding diets containing 1.01/0.87% lysine supplemented with phytase.  相似文献   

9.
Feeding high-protein diets in animals can lead to a decrease of nitrogen utilization efficiency, and then promote the environmental pollution. Recently, more reports have demonstrated that lowering protein level in diets supplemented with specific amino acids can address these problems. However, the whole proteome alteration in the skeletal muscle of weaned piglets fed low-protein diets is poorly understood. Here, we applied the isobaric tags for relative and absolute quantification approach to investigate this alteration. We fed weaned piglets with normal protein diet (20% crude protein) and low-protein diet supplemented with lysine, methionine, threonine, and tryptophan (17% crude protein) for 25 days. Then proteomic profiling of skeletal muscles was performed. In total, 1354 proteins were quantified in the porcine skeletal muscle proteome. 132 proteins were identified as differentially expressed proteins between the two groups. Differentially expressed proteins were significantly enriched in various nutrient metabolism including lipid, carbohydrate, and amino acid metabolism. Interestingly, a total of 20 differentially expressed proteins, which are involved in the oxidative phosphorylation pathway, were all down-regulated by the low-protein diet feeding. Further immunoblotting confirmed the down-regulations of MT-ATP8, COX2, NDUFA6, and SDHB, four selected proteins among these 20 proteins. Meanwhile, the ATP level in the low-protein diet group was also reduced. These findings for the first time reveal that oxidative phosphorylation pathway is suppressed in longissimus dorsi muscle of weaned piglets fed low-protein diet supplemented with limiting amino acids, which may provide new insights into further formula design and the choice of limiting amino acids in diets.  相似文献   

10.
Plasma carnitine levels were measured in two alternative nutrition groups--strict vegetarians (vegans) and lactoovovegetarians (vegetarians consuming limited amounts of animal products such as milk products and eggs). The results were compared to an average sample of probands on mixed nutrition (omnivores). Carnitine levels were correlated with the intake of essential amino acids, methionine and lysine (as substrates of its endogenous synthesis), since the intake of carnitine in food is negligible in the alternative nutrition groups (the highest carnitine content is in meat, lower is in milk products, while fruit, cereals and vegetables contain low or no carnitine at all). An average carnitine level in vegans was significantly reduced with hypocarnitinemia present in 52.9% of probands. Similarly, the intake of methionine and lysine was significantly lower in this group due to the exclusive consumption of plant proteins with reduced content of these amino acids. Carnitine level in lactoovovegetarians was also significantly reduced, but the incidence of values below 30 micromol/l was lower than in vegans representing 17.8% vs. 3.3% in omnivores. Intake of methionine and lysine was also significantly reduced in this group, but still higher compared to vegans (73% of protein intake covered by plant proteins). Significant positive correlation of carnitine levels with methionine and lysine intake in alternative nutrition groups indicates that a significant portion of carnitine requirement is covered by endogenous synthesis. Approximately two thirds of carnitine requirement in omnivores comes from exogenous sources. The results demonstrate the risks of alternative nutrition with respect to the intake of essential amino acids, methionine and lysine, and with respect to the intake and biosynthesis of carnitine.  相似文献   

11.
The effects of dietary l ‐carnitine on growth performance, whole body composition and feed utilization were studied in beluga, Huso huso. Fish were randomly allocated in 15 tanks (30 fish per tank) and triplicate groups were fed to satiety during 84 days one of five isonitrogenous (41% CP) and isoenergetic (20 MJ kg?1) diets, each differing in l ‐carnitine content [0 (control), 300, 600, 900 and 1200 mg kg?1 diet]. At the end of the trial, fish grew from 19‐ to 23‐fold in weight, from 8.4 g to a maximum of 191 g. Fish fed 300–600 mg l ‐carnitine had the highest specific growth rate (SGR, 3.69 and 3.72% day?1) and protein efficiency ratio (PER, 0.95 and 0.99), and the lowest feed conversion ratio (FCR, 1.4 and 1.3) than the other groups (P < 0.0001). SGR, PER and FCR were the poorest for fish fed 1200 mg l ‐carnitine, while fish fed the unsupplemented and 900 mg l ‐carnitine supplemented diet showed intermediate performance. Body lipid concentration decreased significantly from 5.8 to 5.1% (P < 0.0001) with dietary l ‐carnitine supplementation increasing from 0 to 300 mg. Energy content was significantly lower in fish fed the 900 and 1200 mg l ‐carnitine diet (5.8 MJ kg?1), when compared with the other treatment groups (6.4–6.6 MJ kg?1). The results indicated that feeding sturgeon on diets supplemented with 300 mg l ‐carnitine kg?1 diet improved growth performance, and stimulated protein‐sparing effects from lipids.  相似文献   

12.
Changes in the proteasome system, a dominant actor in protein degradation in eukaryotic cells, have been documented in a large number of physiological and pathological conditions. We investigated the influence of monounsaturated or polyunsaturated fatty acids (PUFAs) supplemented diets on the proteasome system, in rat skeletal muscles. Thirty rats were randomly assigned to three groups. The control group received only a standard diet. The monounsaturated fatty acid (MUFA) enriched diet group was fed with 3% sunflower oil in addition to standard food, and the polyunsaturated fatty acid supplemented diet group received 9% Maxepa) in addition to the standard diet. We analyzed muscle proteasome activities and content. Monounsaturated or PUFAs supplemented diets given for 8 weeks induced a significant increase in proteasome activities. With the polyunsaturated fatty acid enriched diet, the chymotrypsin-like and peptidylglutamylpeptide hydrolase activities increased by 45% in soleus and extensor digitorum longus (EDL), and by 90% in the gastrocnemius medialis (GM) muscle. Trypsin-like activity of the proteasome increased by 250% in soleus, EDL and GM. This increase in proteasome activities was associated with a concomitant enhancement in the muscle content of proteasome. Proteasome activities and level were less stimulated with a monounsaturated fatty acid supplemented diet. This study provides evidence that a monounsaturated or polyunsaturated fatty acid supplemented diet may regulate muscle proteasomes. Unsaturated fatty acids are particularly prone to free radical attack. Thus, we suggest that alterations in muscle proteasome may result from monounsaturated and polyunsaturated fatty acid-induced peroxidation, in order to eliminate damaged proteins.  相似文献   

13.
Effects of a supplementation of 80mg L-carnitine perkg diet were studied in broiler chicken at two dietary levels of fat (4 and 8 %) and different feeding levels (ad libitum in a growth trial, 95 and 85 % of ad libitum in a balance trial). A low-carnitine basal diet adequate in amino acid concentration was used. In the growth trial, each diet was fed to 9 groups of 10 birds each for 16 days from day 5 of live onwards. Growth and feed intake were determined. At the end of the trial, birds were killed and homogenised for subsequent empty body analysis. Accretion of protein and energy was determined using a representative blank group killed at the beginning of the trial. In the balance trial, 8 individual birds were used per treatment. Birds were offered the feed at approximately 85 and 95% of ad libitum intake, which was determined with separate birds for both fat levels. Excreta were quantitatively collected three times daily for 8 consecutive days beginning on day 17 individually for each bird. Supplemented L-carnitine did not significantly affect any response criterion. However, growth and feed conversion tended to be improved by about 5% in the carnitine supplemented diets when fed ad libitum. An interaction between carnitine and fat level occurred with regard to feed conversion, indicating that carnitine had a positive effect at the high fat level, but not at the low fat level. L-carnitine did not positively affect the metabolisability of energy (ME/GE) and the efficiency of energy utilisation (RE/GE or RE/ME). Similarly, no significant carnitine effect was determined with regard to N accretion and the efficiency of utilisation of dietary protein in both trials. It is concluded that endogenous carnitine synthesis is not the limiting factor for energy utilisation in broiler chicken, even at high dietary fat concentration. Occasionally reported positive effects of supplemental carnitine were likewise caused by reasons other than improved energy or protein utilisation. Further studies on amino acid utilisation and catabolism should consider marginal amino acid supply.  相似文献   

14.
Carnitine synthesis in rat tissue slices   总被引:2,自引:0,他引:2  
The ability of rat liver, kidney, muscle, heart and testis tissue to carry out the in vitro synthesis of carnitine via ε-N-trimethyllysine and γ-butyrobetaine was studied. All tissues formed γ-butyrobetaine from trimethyllysine, but liver and testis also formed carnitine in about 7% and 1% yield respectively. Liver slices formed trimethyllysine from lysine in about 6% yield. These in vitro studies thus establish that liver has all the enzymes of the carnitine biosynthetic pathway. This tissue appears to be the primary site of carnitine synthesis in the rat as implied from whole animal studies in this and other laboratories.  相似文献   

15.
The influence of dietary protein, methionine, and lysine on leather quality in blue fox pelts was studied. The pelt material originated from animals in two consecutive feeding trials (Exp. 1 and Exp. 2) with three protein levels: conventional, slightly lowered, and very low. The two lowest protein diets were fed as such or as supplemented with methionine or with lysine (lysine only in Exp. 2). The following physical leather properties were measured: breaking load (BRL), tensile strength (TEN), relative elongation at break (PEB), straining of skins at pelting, and shrinkage at dressing. A decline in the dietary protein content reduced BRL and, hence, leather firmness, and increased straining and the corresponding shrinking in Exp. 1. The supplemented methionine tended to improve leather strength and elasticity by increasing TEN and PEB in Exp. 1, whereas lysine elicited no response. Methionine supplementation at the slightly lowered protein level increased BRL in both experiments by almost 10% as compared with the respective non-supplemented diet. We conclude that with high protein quality diets, a level of 200g/kg DM (as digestible protein) appears to be adequate for producing pelts with firm, elastic leather, provided that an adequate amount of methionine is included in the diet.  相似文献   

16.
The biosynthesis of carnitine requires vitamin C as a cofactor for two separate hydroxylation steps. The majority of body carnitine (approximately 98%) is located in muscle and less than 0.5% is present in plasma. We examined the physiologic dynamics of plasma free carnitine and muscle total acid-soluble carnitine in vitamin C-depleted guinea pigs repleted with increasing amounts of vitamin C. Animals were fed a vitamin C-deficient diet for 3 weeks at which time symptoms of scurvy were evident. Animals were repleted with increasing doses of vitamin C, from 0.5 to 10.0 mg vitamin C/100 g body weight daily. Muscle total acid-soluble carnitine concentrations tended to correlate directly with plasma vitamin C (r = 0.41, P = 0.087) during the repletion phase of the study. Conversely, plasma free carnitine was inversely related to liver vitamin C (r = −0.54, P = 0.020) and to muscle total acid-soluble carnitine (r = −0.56, P = 0.015). Mean plasma free carnitine values fell 30% over the course of vitamin C repletion (P > 0.05) and mean muscle total acid-soluble carnitine rose by 30% (P > 0.05). These data suggest that elevated plasma free carnitine may indicate a low to marginal vitamin C status.  相似文献   

17.
We have previously shown that the combination of caffeine, carnitine, and choline supplementation decreased body fat and serum leptin concentration in rats and was attributed to increased fat utilization for energy. As a result, it was hypothesized that the supplements may augment exercise performance including physiological and biochemical indexes. Twenty 7-week-old male Sprague-Dawley rats were given free access to a nonpurified diet with or without supplementation of caffeine, carnitine, and choline at concentrations of 0.1, 5, and 11.5 g/kg diet, respectively. One half of each dietary group was exercised on a motor-driven treadmill for 3 weeks and maximal aerobic power (VO(2)max) was determined on the 18th day of exercise. Rats were killed 24-hr postexercise, and blood, regional fat pads, and skeletal muscle were collected. The VO(2)max was increased (P < 0.05) in the supplemented/exercised group; however, the respiratory quotient (RQ) was not affected. Postexercised concentrations of serum triglycerides were decreased but beta-hydroxybutyrate, acylcarnitine, and acetylcarnitine were increased in the supplemented animals. The changes in serum metabolites were complemented by the changes in the muscle and urinary metabolites. The magnitude of increase in urinary acylcarnitines (34-45-fold) is a unique effect of this combination of supplements. Cumulative evidence indicates enhanced beta-oxidation of fatty acids without a change in the RQ because acetyl units were excreted in urine as acetylcarnitine and not oxidized to carbon dioxide. For this phenomenon, we propose the term "fatty acid dumping." We conclude that supplementation with caffeine, carnitine, and choline augments exercise performance and promotes fatty acid oxidation as well as disposal in urine.  相似文献   

18.
One hundred and twenty pigs, initially 4–5 kg liveweight, were fed on wheat-based diets supplemented with meat meal and amino acids in two experiments, each of 4 weeks duration.In the first experiment, the supplementation of a normal meat meal diet with lysine and methionine increased the feed intake and weight gains of the pigs by 15 and 18%, respectively. Nitrogen retention was increased by 30%. Tryptophane gave a similar response to lysine and methionine.In the second experiment, a 21% crude protein basal diet was similar to the basal diet of the first experiment but it contained 1.02% lysine and 0.50% methionine plus cystine, compared to 0.90 and 0.51%, respectively, in the first experiment. Lysine and methionine supplementation of the diet did not significantly improve the performance of the pigs in the second experiment, but the supplementation of the diets with 0.08% tryptophane and lysine and methionine increased weight gains and feed intakes and decreased urea content of the blood plasma. The 21% crude protein diet contained 0.15% tryptophane.Increasing the crude protein content of diets from 18 to 24% by increasing their meat meal content increased the daily weight gains from 190 to 276 g.  相似文献   

19.
Doctor VM  Kerur L 《Applied microbiology》1968,16(11):1723-1726
Dried Penicillium mycelium served as a protein source in animal diet when it was supplemented at 7.5% protein level along with 7.5% protein level from peanut meal. Under these conditions, the food consumption was optimal, and the rat growth response was comparable with 15% casein diet. The role of peanut meal appears to be twofold; it makes the mycelium diet more palatable and it supplies protein. The amino acids, lysine and threonine, which are found to be limiting in peanut meal, are reported to be present in the Penicillium mycelium. This type of formulation affords considerable economic advantage because both the peanut meal and the Penicillium mycelium are by-products and, therefore, are inexpensive sources of protein.  相似文献   

20.
The conversion of 6-N-[Me-(14)C]trimethyl-lysine into carnitine and 4-N-trimethylaminobutyrate (butyrobetaine) was demonstrated in rats kept on a lysine-deficient diet. After the rats were given [(14)C]trimethyl-lysine for 4 days, a total of 17% of the injected label was recovered as carnitine from carcass and urine extracts. Another 8% of the trimethyl-lysine label was converted into 4-N-trimethylaminobutyrate, most of which was recovered from the urine. The conversion of trimethyl-lysine into the above two metabolites supports the pathway of carnitine biosynthesis as lysine+methionine --> 6-N-trimethyl-lysine --> 4-N-trimethylaminobutyrate --> carnitine. In addition, three other metabolites representing 2% of the injected dose were recovered. Only an insignificant portion of the label was recovered as free trimethyl-lysine from the carcass, whereas 22% of the injected label was recovered in the urine. A relatively low specific radioactivity in carnitine was found when 5-N-[Me-(14)C]trimethylaminopentanoate and 6-N-[Me-(14)C]trimethylaminohexanoate were administered to rats in amounts similar to the [(14)C]trimethyl-lysine, suggesting that they were not free intermediates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号