首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A population of Tn5 mutagenised Rhizobium leguminosarum cells was screened for mutants affected in protein secretion by introducing a plasmid carrying the Erwinia chrysanthemi prtB gene and screening for mutants defective in secretion of the protease PrtB. One such mutant (A301) also appeared to be defective in secretion of the R. leguminosarum nodulation protein NodO. Genetic analysis showed that the defect in A301 was caused by the Tn5 insertion. However the DNA sequence adjacent to the site of Tn5 insertion had significant homology to the Escherichia coli polA gene, which encodes DNA polymerase I. The mutant A301 showed increased sensitivity to ultraviolet light, a characteristic of polA mutants of E. coli. The apparent defect in secretion by A301 was due to a large decrease in the copy number of the IncQ group replicon on which prtB and nodO were cloned and this decreased the total amounts of PrtB or NodO protein synthesised and secreted by the polA mutant. The polA mutant had a lower growth rate than the parent strain on both rich and minimal media, but there was no obvious effect of the polA mutation on the symbiosis of R. leguminosarum bv. viciae with pea.  相似文献   

2.
The polymerase activity of DNA polymerase I is important for the establishment of the pLS1 replicon by reconstitutive assembly in Streptococcus pneumoniae after uptake of exogenous pLS1 plasmid DNA. In polA mutants lacking the polymerase domain, such establishment was reduced at least 10-fold in frequency. Chromosomally facilitated establishment of pLS1-based plasmids carrying DNA homologous to the host chromosome was not so affected. However, both types of plasmid transfer gave mostly small colonies on initial selection, which was indicative of a defect in replication and filling of the plasmid pool. Once established, the pLS1-based plasmids replicated in polA mutants, but they showed segregational instability. This defect was not observed in strains with the wild-type enzyme or in an S. pneumoniae strain that encodes the polymerase and exonuclease domains of the enzyme on separate fragments. The role of DNA polymerase I in stably maintaining the plasmids depends on its polymerizing function in three separate steps of rolling-circle replication, as indicated by the accumulation of different replication intermediate forms in polA mutants. Furthermore, examination of the segregational stability of the pLS1 replicon in an Escherichia coli mutant system indicated that both the polymerase and the 5′-to-3′ exonuclease activities of DNA polymerase I function in plasmid replication.  相似文献   

3.
A derivative of Tn5 with direct terminal repeats can transpose   总被引:9,自引:0,他引:9  
The 5.7 kb4 transposable kanamycin resistance determinant Tn5 contains 1.5 kb terminal inverted repeats which we here call arms. Tn5's arms contain the genes and sites necessary for Tn5 transposition, and are not homologous to previously described transposable elements. To determine whether one or both arms is a transposable (IS) element, we transposed Tn5 to pBR322 and used restriction endonuclease digestion and ligation in vitro to generate plasmid derivatives designated pTn5-DR1 and pTn5-DR2 in which Tn5's arms were present in direct rather than in inverted orientation. Analysis of transposition products from dimeric forms of the pTn5-DR1 plasmid to phage λ showed that the outside and inside termini of right and of left arms could function in transposition. We conclude that both of Tn5's arms are transposable elements and name them IS50L (left) and IS50R (right). IS50R, which encodes transposase, was used several-fold more frequently than IS50L, which contain an ochre mutant allele of transposase: this implies that Tn5's transposase acts preferentially on the DNA segment which encodes it. Analysis of transpositions of the amprkanr element Tn5-DR2 to the lac operon showed that Tn5-DR2, like Tn5 wild-type, exhibits regional preference without strict site specificity in the choice of insertion sites.  相似文献   

4.
A population of Tn5 mutagenised Rhizobium leguminosarum cells was screened for mutants affected in protein secretion by introducing a plasmid carrying the Erwinia chrysanthemi prtB gene and screening for mutants defective in secretion of the protease PrtB. One such mutant (A301) also appeared to be defective in secretion of the R. leguminosarum nodulation protein NodO. Genetic analysis showed that the defect in A301 was caused by the Tn5 insertion. However the DNA sequence adjacent to the site of Tn5 insertion had significant homology to the Escherichia coli polA gene, which encodes DNA polymerase I. The mutant A301 showed increased sensitivity to ultraviolet light, a characteristic of polA mutants of E. coli. The apparent defect in secretion by A301 was due to a large decrease in the copy number of the IncQ group replicon on which prtB and nodO were cloned and this decreased the total amounts of PrtB or NodO protein synthesised and secreted by the polA mutant. The polA mutant had a lower growth rate than the parent strain on both rich and minimal media, but there was no obvious effect of the polA mutation on the symbiosis of R. leguminosarum bv. viciae with pea.  相似文献   

5.
Structure and stability of transposon 5-mediated cointegrates   总被引:5,自引:0,他引:5  
We have determined the structure of a set of independently derived, Tn5-mediated cointegrates and examined the stability of several examples. A variety of cointegrate structures was found, including those mediated by the entire compound transposon, and those mediated by a single flanking IS50 element, which was always IS50-R, and never IS50-L. IS50-R but not IS50-L is reported to code for a protein(s) required for transposition. This finding confirms that IS50-L is relatively inactive and suggests that the active transposition protein(s) acts largely in cis on IS50-R. Another class of cointegrate was created by inverse transposition of Tn5 (using the inside ends of the flanking elements). In addition, we found an unexpectedly large set of cointegrates, in which the joint between the two plasmids was not adjacent to the transposon. All cointegrates analysed were found to be stable. This suggests that Tn5, unlike the transposon Tn3, does not transpose via an obligate cointegrate intermediate. This finding is compared to previous results with Tn5 and Tn9, and is discussed in terms of current models of transposition.  相似文献   

6.
We have cloned and sequenced the polA gene from Chloroflexus aurantiacus, a green nonsulfur eubacterium, and expressed the recombinant protein in Escherichia coli. One open reading frame encodes a protein with 942 amino acids showing 38% identity with DNA polymerase I from E. coli. Sequence alignments with other members of DNA polymerase family A and analysis of the separate domains show that the central 3′-5′ exonuclease domain is 30% identical to the corresponding E. coli domain and that three sequence motifs associated with 3′-5′ exonuclease activity are conserved. Also, a protein fraction from E. coli expressing the Chloroflexus polymerase contains a thermostable 3′-5′ exonucleolytic activity, indicating that this activity is present in the enzyme, in agreement with the sequence analysis. The N-terminal 5′-3′ exonuclease domain and the C-terminal polymerase domain show 31 and 46% identity, respectively, with the corresponding E. coli domains and all sequence motifs associated with these two enzymatic activities also are conserved. Since several DNA polymerase I enzymes lack the proofreading activity associated with the central domain it has been suggested that the ancestral polA gene contained only the two more conserved N- and C-terminal domains and that the proofreading 3′-5′ exonuclease domain was introduced later in those eubacterial branches that have this activity. Our data indicate a different scenario where the ancestral polA gene contained both the exonucleolytic activities in addition to the polymerase activity and where several eubacterial branches lost the polymerase-associated proofreading activity during evolution.  相似文献   

7.
Summary By assaying transposition of Tn5 from b221 cI857 rex::Tn5 (Berg 1977) in PolA-proficient and deficient cells, both the polymerase activity and 5 to 3 exonuclease acivity of DNA polymerase I have been shown to be required for transposition. This requirement could not be observed in three other systems in which the transposon donor replicon had existed in the PolA-proficient and deficient cells before the transposition event to be assayed occurred. By analogy to Tn3, this may indicate that the repressor encoded by Tn5 has already been expressed and hence become rate-limiting in the overall transposition process, even in PolA-deficient cells still possessing a residual activity. One polA mutant was found among more than 50 transposition-deficient (tnp) mutants isolated by the use of b221 cI857 rex::Tn5.  相似文献   

8.
DNA polymerase I (DNApolI) catalyzes DNA synthesis during Okazaki fragment maturation, base excision repair, and nucleotide excision repair. Some bacterial DNApolIs are deficient in 3′–5′ exonuclease, which is required for removing an incorrectly incorporated 3′-terminal nucleotide during DNA elongation by DNA polymerase activity. The key amino acid residues in the exonuclease center of Chlamydophila pneumoniae DNApolI (CpDNApolI) are naturally mutated, resulting in the loss of 3′–5′ exonuclease. Hence, the manner by which CpDNApolI proofreads the incorrectly incorporated nucleotide during DNA synthesis warrants clarification. C. pneumoniae encodes three 3′–5′ exonuclease activities: one endonuclease IV and two homologs of the epsilon subunit of replicative DNA polymerase III. The three proteins were biochemically characterized using single- and double-stranded DNA substrate. Among them, C. pneumoniae endonuclease IV (CpendoIV) possesses 3′–5′ exonuclease activity that prefers to remove mismatched 3′-terminal nucleotides in the nick, gap, and 3′ recess of a double-stranded DNA (dsDNA). Finally, we reconstituted the proofreading reaction of the mismatched 3′-terminal nucleotide using the dsDNA with a nick or 3′ recess as substrate. Upon proofreading of the mismatched 3′-terminal nucleotide by CpendoIV, CpDNApolI can correctly reincorporate the matched nucleotide and the nick is further sealed by DNA ligase. Based on our biochemical results, we proposed that CpendoIV was responsible for proofreading the replication errors of CpDNApolI.  相似文献   

9.
We have measured the frequency of Tn9 transposition and cointegrate formation in several different ways and have examined the stability of the cointegrates. We have also physically analyzed the structure of 40 independently derived cointegrate molecules. We present evidence here that Tn9, unlike the transposable element Tn3, does not transpose via an obligate cointegrate intermediate. We suggest that transposition of Tn9 leads to two, mutually exclusive, end-products: either direct insertion of the element into a recipient replicon (transposition), or fusion between donor and recipient replicons (cointegrate formation). This conclusion is based on our observations that, while Tn9-mediated cointegrates are very stable, they are formed at a rate lower than the transposition frequency. This finding is discussed in terms of current models for transposition.We also present evidence that clearly demonstrates the compound nature of Tn9. We find that the individual flanking IS1 elements are more active than the entire Tn9 transposon in cointegrate formation. In addition, we find that one IS1 element that is proximal to the cam gene promoter, is more active than the other, and suggest that the difference in activity might be due to differences in nucleotide sequence at their extremities.  相似文献   

10.
The close linkage of the glnA gene with polA was exploited to construct a fine structure map of polA by means of generalized transduction with phage P1. Nine different polA- alleles were mapped by recombinational crosses. The results indicate a gene order consistent with previous observations (Kelley and Grindley 1976a; Murray and Kelley 1979). Three mutations, polA5, polA6 and polA12 map within the "carboxy-terminal" or "large-fragment" portion of the gene in unambiguous order. Four alleles, known to affect the "aminoterminal" portion of the gene, polA107, polA214, polA480ex and polA4113, appear to be closely linked with certain ambiguities in their exact order. All four of these mutations are known to alter the 5''→3'' exonuclease activity of DNA polymerase I and three of them result in the conditional lethal polA- phenotype. The polA1 nonsense mutation maps between these two groups in a position consistent with its known effect, production of an amber fragment that includes the 5''→3'' exonuclease. The final allele, resA1, is another nonsense mutation that maps at the extreme "amino-terminus" of the cistron.——A number of control experiments were conducted to determine the effects of polA- mutations on the P1-mediated recombinational event. These experiments indicated that abortive transduction occurs quite frequently, but the formation of abortive transductants and segregation of unselected transduced markers among daughter progeny is like that observed by other investigators. There was no evidence that any individual polA- allele behaved in an exceptional fashion during recombination.  相似文献   

11.
The effects of substituting specific amino acids at specified loci in the bacterio-phage T4 DNA polymerase molecule have been studied. Gene 43 (DNA polymerase) amber mutants grown on suppressor strains which substitute serine, glutamine, or tyrosine at specific sites in the polymerase molecule, produce enzymes with substantially different physical, enzymatic and biological properties when compared to wild type. When amB22, a gene 43 mutant which makes a DNA polymerase fragment with only 3′-exonuclease activity, was grown in Escherichia coli B40(sup+1), -(sup+ 2) or -(sup+3), enzymes with different temperature sensitivities and nuclease to polymerase ratios were produced. Measurements of spontaneous mutation rates in these suppressed strains indicated that the two with higher than normal exonuclease activity were antimutators, and the one with a slightly lower exonuclease activity was a mutator. The substituted amino acids at the amB22 site perturbed the 3′-exonuclease activity creating either antimutator or mutator phenotypes. Thus, the B22 enzymes provide additional biochemical evidence to support the hypothesis that the exonuclease to polymerase ratio may influence the spontaneous mutation rate in phage T4.  相似文献   

12.
DNA polymerases II (ε) and III(δ) are the only nuclear DNA polymerases known to possess an intrinsic 3′ → 5′ exonuclease in Saccharomyces cerevisiae. We have investigated the spontaneous mutator phenotypes of DNA polymerase δ and ε 3′ → 5′ exonuclease-deficient mutants, pol3-01 and pol2-4, respectively. pol3-01 and pol2-4 increased spontaneous mutation rates by factors of the order of 102 and 101, respectively, measured as URA3 forward mutation and his7-2 reversion. Surprisingly, a double mutant pol2-4 pol3-01 haploid was inviable. This was probably due to accumulation of unedited errors, since a pol2-4/pol2-4 pol3-01/pol3-01 diploid was viable, with the spontaneous his7-2 reversion rate increased by about 2 × 103-fold. Analysis of mutation rates of double mutants indicated that the 3′ → 5′ exonucleases of DNA polymerases δ and ε can act competitively and that, like the 3′ → 5′ exonuclease of DNA polymerase δ the 3′ → 5′ exonuclease of DNA polymerase ε acts in series with the PMS1 mismatch correction system. Mutational spectra at a URA3 gene placed in both orientations near to a defined replication origin provided evidence that the 3′ → 5′ exonucleases of DNA polymerases δ and ε act on opposite DNA strands, but were in sufficient to distinguish conclusively between different models of DNA replication.  相似文献   

13.
14.
The 3′→5′ exonuclease activity of highly purified large form of human DNA polymerase epsilon was studied. The activity removes mononucleotides from the 3′ end of an oligonucleotide with a non-processive mechanism and leaves 5′-terminal trinucleotide non-hydrolyzed. This is the case both with single-stranded oligonucleotides and with oligonucleotides annealed to complementary regions of M13DNA. However, the reaction rates with single-stranded oligonucleotides are at least ten-fold when compared to those with completely base-paired oligonucleotides. Conceivably, mismatched 3′ end of an oligonucleotide annealed to M13DNA is rapidly removed and the hydrolysis is slown down when double-stranded region is reached. The preferential removal of a non-complementary 3′ end and the non-processive mechanism are consistent with anticipated proofreading function. In addition to the 3′→5′ exonuclease activity, an 5′→3′ exonuclease activity is often present even in relatively highly purified DNA polymerase epsilon preparates suggesting that such an activity may be an essential com-ponent for the action of this enzymein vivo. Contrary to the 3′→5′ exonuclease activity, the 5′→3′ exonuclease is separable from the polymerase activity.  相似文献   

15.
The WRN gene defective in the premature aging disorder Werner syndrome encodes a helicase/exonuclease. We examined the ability of WRN to rescue DNA damage sensitivity of a yeast mutant defective in the Rad50 subunit of Mre11-Rad50-Xrs2 nuclease complex implicated in homologous recombination repair. Genetic studies revealed WRN operates in a yEXO1-dependent pathway to rescue rad50 sensitivity to methylmethane sulfonate (MMS). WRN helicase, but not exonuclease, is required for MMS resistance. WRN missense mutations in helicase or RecQ C-terminal domains interfered with the ability of WRN to rescue rad50 MMS sensitivity. WRN does not rescue rad50 ionizing radiation (IR) sensitivity, suggesting that WRN, in collaboration with yEXO1, is tailored to relieve replicational stress imposed by alkylated base damage. WRN and yEXO1 are associated with each other in vivo. Purified WRN stimulates hEXO1 nuclease activity on DNA substrates associated with a stalled or regressed replication fork. We propose WRN helicase operates in an EXO1-dependent pathway to help cells survive replicational stress. In contrast to WRN, BLM helicase defective in Bloom's syndrome failed to rescue rad50 MMS sensitivity, but partially restored IR resistance, suggesting a delineation of function by the human RecQ helicases.  相似文献   

16.
Integration host factor plays a role in IS50 and Tn5 transposition.   总被引:3,自引:3,他引:0       下载免费PDF全文
In Escherichia coli, the frequencies of IS50 and Tn5 transposition are greater in Dam- cells than in isogenic Dam+ cells. IS50 transposition is increased approximately 1,000-fold and Tn5 transposition frequencies are increased about 5- to 10-fold in the absence of Dam methylation. However, in cells that are deficient for both integration host factor (IHF) and Dam methylase, the transposition frequencies of IS50 and Tn5 approximate those found in wild-type cells. The absence of IHF alone has no effect on either IS50 or Tn5 transposition. These results suggest that IHF is required for the increased transposition frequencies of IS50 and Tn5 that are observed in Dam- cells. It is also shown that the level of expression of IS50-encoded proteins, P1 and P2, required for IS50 and Tn5 transposition and its regulation does not decrease in IHF- or in IHF- Dam- cells. This result suggests that the effects of IHF on IS50 and Tn5 transposition are not at the level of IS50 gene expression. Finally, IHF is demonstrated to significantly retard the electrophoretic mobility of a 289-base-pair segment of IS50 DNA that contains a putative IHF protein-binding site. The physiological role of this IHF binding site remains to be determined.  相似文献   

17.
To elucidate the role of the insA reading frame in transposition of the IS1 element of the Tn9' transposon, the derivatives of plasmids pUC19::Tn9' and pUC19::IS1 have been obtained using oligonucleotide inserts of the length equal or exceeding 9 bp and equal to 10 bp. The ability of mutant variants of the Tn9' transposon and the IS1 element to form simple insertions and plasmid cointegrates was studied. To this end, experiments were performed on mobilization of the derivatives of pUC19 containing mutant variants of the IS1 element and Tn9' as well as of the plasmids pUC19::Tn9' by the conjugative plasmid pRP3.1. According to the data obtained, mutations (inserts) in the insA gene have no influence on the frequency of transposition of the IS1 element and Tn9' from the plasmid pUC19 to pRP3.1. At the same time, the frequency of transposition events of mutant variants of Tn9' from the plasmid pRP3.1 to pBR322 is more than 10 times lower in comparison with the wild type transposon. The data obtained are in accordance with the assumption that the insA gene is not essential for transposition. A hypothesis is put forward explaining the role of the insA gene product in the process of bringing together short inverted repeats of the IS1, which are the sites for the transposase to be recognized at first stages of transposition.  相似文献   

18.
The Fis (factor for inversion stimulation) protein of Escherichia coli was found to influence the frequency of transposon Tn5 and insertion sequence IS50 transposition. Fis stimulated both Tn5 and IS50 transposition events and also inhibited IS50 transposition in Dam-bacteria. This influence was not due to regulation by Fis of the expression of the Tn5 transposition proteins. We localized, by DNase I footprinting, one Fis site overlapping the inside end of IS50 and give evidence to strongly suggest that when Fis binds to this site, IS50 transposition is inhibited. The Fis site at the inside end overlaps three Dam GATC sites, and Fis bound efficiently only to the unmethylated substrate. Using a mobility shift assay, we also identified another potential Fis site within IS50. Given the growth phase-dependent expression of Fis and its differential effect on Tn5 versus IS50 transposition in Dam-bacteria, we propose that the high levels of Fis present during exponential growth stimulate transposition events and might bias those events toward Tn5 and away from IS50 transposition.  相似文献   

19.
Role of the IS50 R proteins in the promotion and control of Tn5 transposition   总被引:19,自引:0,他引:19  
IS50R, the inverted repeat sequence of Tn5 which is responsible for supplying functions that promote and control Tn5 transposition, encodes two polypeptides that differ at their N terminus. Frameshift, in-frame deletion, nonsense, and missense mutations within the N terminus of protein 1 (which is not present in protein 2) were isolated and characterized. The properties of these mutations demonstrate that protein 1 is absolutely required for Tn5 transposition. None of these mutations affected the inhibitory activity of IS50, confirming that protein 2 is sufficient to mediate inhibition of Tn5 transposition. The effects on transposition of increasing the amount of protein 2 (the inhibitor) relative to protein 1 (the transposase) were also analyzed. Relatively large amounts of protein 2 were required to see a significant decrease in the transposition frequency of an element. In addition, varying the co-ordinate synthesis of the IS50 R proteins over a 30-fold range had little effect on the transposition frequency. These studies suggest that neither the wild-type synthesis rate of protein 2 relative to protein 1 nor the amount of synthesis of both IS50 R proteins is the only factor responsible for controlling the transposition frequency of a wild-type Tn5 element in Escherichia coli.  相似文献   

20.
Both polA (encoding DNA polymerase I; Pol I) and a paralog were deleted from Streptomyces strains. Despite the UV sensitivity and slow growth caused by the ΔpolA mutation, the double mutant was viable. Thus, in contrast to a previous postulate, Pol I and its paralog are not essential for replication of Streptomyces chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号