首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Septins are filament-forming GTPases involved in cytokinesis and cortical organization. In the yeast Saccharomyces cerevisiae, the septins encoded by CDC3, CDC10, CDC11, and CDC12 form a high-molecular-weight complex, localized at the cytoplasmic face of the plasma membrane in the mother-bud neck. While septin function at the cellular level is fairly well understood, progress on structure-function analysis of these proteins has been slow and limited by the lack of large amounts of pure complex. While monomeric septins form apparently non-native aggregates, stable recombinant complexes of two, three, or four yeast septins can be produced by co-expression from bi-cistronic vectors in E. coli. The septin polypeptides show various degrees of saturation with guanine nucleotides in different complexes. The binary core Cdc3p-Cdc12p complex contains no bound nucleotide. While ternary complexes are partially saturated and can bind extraneously added nucleotide with micromolar affinity, only the complete four-component septin complex is fully coordinated with tightly bound GDP/GTP after chromatographic purification. We show here that the nucleotide-binding sites of the septins show drastic changes on formation of higher oligomers. Although the binary core Cdc3p-Cdc12p complex does not form filaments, the ternary and quaternary complexes form bundles of paired filaments. In the case of ternary complexes, filament formation is stimulated by guanine nucleotide, but is not dependent on the presence or absence of the gamma-phosphate.  相似文献   

2.
Septins are a family of conserved proteins that are essential for cytokinesis in a wide range of organisms including fungi, Drosophila and mammals. In budding yeast, where they were first discovered, they are thought to form a filamentous ring at the bridge between the mother and bud cells. What regulates the assembly and function of septins, however, has remained obscure. All septins share a highly conserved domain related to those found in small GTPases, and septins have been shown to bind and hydrolyze GTP, although the properties of this domain and the relationship between polymerization and GTP binding/hydrolysis is unclear. Here we show that human septin 2 is phosphorylated in vivo at Ser218 by casein kinase II. In addition, we show that recombinant septin 2 binds guanine nucleotides with a Kd of 0.28 microm for GTPgammaS and 1.75 microm for GDP. It has a slow exchange rate of 7 x 10(-5) s(-1) for GTPgammaS and 5 x 10(-4) s(-1) for GDP, and an apparent kcat value of 2.7 x 10(-4) s(-1), similar to those of the Ras superfamily of GTPases. Interestingly, the nucleotide binding affinity appears to be altered by phosphorylation at Ser218. Finally, we show that a single septin protein can form homotypic filaments in vitro, whether bound to GDP or GTP.  相似文献   

3.
The septins are a family of GTPases involved in cytokinesis in budding yeast, Drosophila, and vertebrates (see for review). Septins are associated with a system of 10 nm filaments at the S. cerevisiae bud neck, and heteromultimeric septin complexes have been isolated from cell extracts in a filamentous state. A number of septins have been shown to bind and hydrolyze guanine nucleotide. However, the role of GTP binding and hydrolysis in filament formation has not been elucidated. Furthermore, several lines of evidence suggest that not all the subunits of the septin complex are required for all aspects of septin function. To address these questions, we have reconstituted filament assembly in vitro by using a recombinant Xenopus septin, Xl Sept2. Filament assembly is GTP dependent; moreover, the coiled-coil domain common to most septins is not essential for filament formation. Septin polymerization is preceded by a lag phase, suggesting a cooperative assembly mechanism. The slowly hydrolyzable GTP analog, GTP-gamma-S, also induces polymerization, indicating that polymerization does not require GTP hydrolysis. If the properties of Xl Sept2 filaments reflect those of native septin complexes, these results imply that the growth or stability of septin filaments, or both, is regulated by the state of bound nucleotide.  相似文献   

4.
We have analyzed the guanine nucleotides bound to mammalian ras and yeast RAS proteins overexpressed in [32P]orthophosphate-labeled cultures of exponentially growing Saccharomyces cerevisiae cells. Whereas S. cerevisiae RAS1 and RAS2 proteins were immunoprecipitated bound entirely to GDP, mammalian Harvey ras was isolated with GTP and GDP bound in near-equimolar proportions. In a strain overexpressing a RAS2 variant where the RAS unique C-terminal domain was deleted, both GTP and GDP were detected in a ratio of 3:97. Increased amounts of GTP (16-75% of total guanine nucleotide) were observed bound to all ras proteins containing mutations that inhibit GTP hydrolytic activity. Increasing proportions of GTP bound to the various ras proteins correlated with increasing biological potency to bypass cdc25 lethality in yeast.  相似文献   

5.
Assembly at the mother-bud neck of a filamentous collar containing five septins (Cdc3, Cdc10, Cdc11, Cdc12, and Shs1) is necessary for proper morphogenesis and cytokinesis. We show that Cdc10 and Cdc12 possess GTPase activity and appropriate mutations in conserved nucleotide-binding residues abrogate GTP binding and/or hydrolysis in vitro. In vivo, mutants unable to bind GTP prevent septin collar formation, whereas mutants that block GTP hydrolysis do not. GTP binding-defective Cdc10 and Cdc12 form soluble heteromeric complexes with other septins both in yeast and in bacteria; yet, unlike wild-type, mutant complexes do not bind GTP and do not assemble into filaments in vitro. Absence of a p21-activated protein kinase (Cla4) perturbs septin collar formation. This defect is greatly exacerbated when combined with GTP binding-defective septins; conversely, the septin collar assembly defect of such mutants is suppressed efficiently by CLA4 overexpression. Cla4 interacts directly with and phosphorylates certain septins in vitro and in vivo. Thus, septin collar formation may correspond to septin filament assembly, and requires both GTP binding and Cla4-mediated phosphorylation of septins.  相似文献   

6.
Septins are a conserved family of eukaryotic GTP-binding, filament-forming proteins. In Saccharomyces cerevisiae, five septins (Cdc3p, Cdc10p, Cdc11p, Cdc12p, and Shs1p) form a complex and colocalize to the incipient bud site and as a collar of filaments at the neck of budded cells. Septins serve as a scaffold to localize septin-associated proteins involved in diverse processes and as a barrier to diffusion of membrane-associated proteins. Little is known about the role of nucleotide binding in septin function. Here, we show that Cdc3p, Cdc10p, Cdc11p, and Cdc12p all bind GTP and that P-loop and G4 motif mutations affect nucleotide binding and result in temperature-sensitive defects in septin localization and function. Two-hybrid, in vitro, and in vivo analyses show that for all four septins nucleotide binding is important in septin-septin interactions and complex formation. In the absence of complete complexes, septins do not localize to the cortex, suggesting septin localization factors interact only with complete complexes. When both complete and partial complexes are present, septins localize to the cortex but do not form a collar, perhaps because of an inability to form filaments. We find no evidence that nucleotide binding is specifically involved in the interaction of septins with septin-associated proteins.  相似文献   

7.
Nurten R  Albeniz I  Bermek E 《IUBMB life》1999,48(5):557-562
The exchange of free guanine nucleotides with guanine nucleotides bound to elongation factor 2 (EF-2) and to the EF-2-ribosome complex, and the effect of ADP-ribosylation of the EF-2 thereon, were investigated by nitrocellulose filter assay. Under the experimental conditions, stoichiometric amounts of guanine nucleotides were bound, in particular, to ternary complexes of EF-2 with biphasic kinetics. The exchange kinetics were similarly biphasic in all cases. Ribosomes appeared to have variable effects on the exchange kinetics, depending on the type of nucleotide bound. Thus, in their presence, the rate and magnitude of the fast exchange of nucleotides revealed increasing values in the order GTP (GXP) > GTP gamma S > GDP. ADP-ribosylation had no inhibitory effect on the binding of guanine nucleotides to EF-2 or to the EF-2-ribosome complex but reduced significantly the fast exchange of GTP (GXP) and GTP gamma S bound to the EF-2-ribosome complex. The effect of ADP-ribosylation on the fast exchange of GDP in binary and ternary complexes was less pronounced. The mechanism of inhibition of protein synthesis by ADP-ribosylation of EF-2 is discussed in view of these data.  相似文献   

8.
Septins are guanine nucleotide-binding proteins that form hetero-oligomeric complexes, which assemble into filaments and higher-order structures at sites of cell division and morphogenesis in eukaryotes. Dynamic changes in the organization of septin-containing structures occur concomitantly with progression through the mitotic cell cycle and during cell differentiation. Septins also undergo stage-specific post-translational modifications, which have been implicated in regulating their dynamics, in some cases via purported effects on septin turnover. In our recent study, the fate of two of the five septins expressed in mitotic cells of budding yeast (Saccharomyces cerevisiae) was tracked using two complementary fluorescence-based methods for pulse-chase analysis. During mitotic growth, previously-made molecules of both septins (Cdc10 and Cdc12) persisted through multiple successive divisions and were incorporated equivalently with newly synthesized molecules into hetero-oligomers and higher-order structures. Similarly, in cells undergoing meiosis and the developmental program of sporulation, pre-existing copies of Cdc10 were incorporated into new structures. In marked contrast, Cdc12 was irreversibly excluded from septin complexes and replaced by another septin, Spr3. Here, we discuss the broader implications of these results and related findings with regard to how septin dynamics is coordinated with the mitotic cell cycle and in the yeast life cycle, and how these observations may relate to control of the dynamics of other complex multi-subunit assemblies.  相似文献   

9.
Septin proteins are necessary for cytokinesis in budding yeast and Drosophila and are thought to be the subunits of the yeast neck filaments. To test whether septins actually form filaments, an immunoaffinity approach was used to isolate a septin complex from Drosophila embryos. The purified complex is comprised of the three previously identified septin polypeptides Pnut, Sep2, and Sep1. Hydrodynamic and sequence data suggest that the complex is composed of a heterotrimer of homodimers. The complex copurifies with one molecule of bound guanine nucleotide per septin polypeptide. It binds and hydrolyzes exogenously added GTP. These observations together with conserved sequence motifs identify the septins as members of the GTPase superfamily. We discuss a model of filament structure and speculate as to how the filaments are organized within cells.  相似文献   

10.
The effect of the addition of guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S), the GTP analog which activates the inhibitory guanine nucleotide-binding regulatory protein of adenylyl cyclase (Ni), on the pertussis toxin-mediated ADP-ribosylation reaction was studied in detail. Two effects were discerned: a stimulation of the ADP-ribosyltransferase activity of the toxin, akin to what was described for ATP and GDP in a previous report (Mattera, R., Codina, J., Sekura, R., and Birnbaumer, L. (1986) J. Biol. Chem. 261, 11173-11179), and a decrease in the ability of Ni to be a substrate for the activated toxin. Both effects were time-dependent with activation of the toxin being somewhat faster than inactivation of Ni. The effect of the addition of GTP gamma S on Ni was readily reversed by excess GDP and attenuated by increasing EDTA in the medium from 0.35 to 10 mM, suggesting dependence on trace concentrations of a divalent cation. It is suggested that this cation is Mg2+ on the basis that low (5-10 nM) concentrations of Mg2+ are needed for the endogenous GTPase activity of Ni (Sunyer, T., Codina, J., and Birnbaumer, L. (1984) J. Biol. Chem. 259, 15447-15451). Sucrose density gradient analysis of the Ni X GTP gamma S complexes with decreased susceptibility to ADP-ribosylation by pertussis toxin showed the same sedimentation parameters as Ni or Ni X GDP complexes, indicating that the molecule of Ni with GTP gamma S bound is heterotrimetric as opposed to dissociated into alpha i X GTP gamma S plus beta X gamma. Thus, these experiments define two conformations of heterotrimeric Ni: one -pt+, ADP-ribosylated by pertussis toxin, and the other pt-, poorly or not ADP-ribosylated by pertussis toxin. This latter, hitherto unrecognized conformation, is stabilized by the addition of strongly activating guanine nucleotides such as GTP gamma S and guanyl-5'-yl imidodiphosphate and should be important in the train of events that lead from an inactive heterotrimeric Ni to a fully active and dissociated Ni.  相似文献   

11.
Leucine rich repeat kinase 2 (LRRK2) is a Parkinson's disease (PD) gene that encodes a large multidomain protein including both a GTPase and a kinase domain. GTPases often regulate kinases within signal transduction cascades, where GTPases act as molecular switches cycling between a GTP bound "on" state and a GDP bound "off" state. It has been proposed that LRRK2 kinase activity may be increased upon GTP binding at the LRRK2 Ras of complex proteins (ROC) GTPase domain. Here we extensively test this hypothesis by measuring LRRK2 phosphorylation activity under influence of GDP, GTP or non-hydrolyzable GTP analogues GTPγS or GMPPCP. We show that autophosphorylation and lrrktide phosphorylation activity of recombinant LRRK2 protein is unaltered by guanine nucleotides, when co-incubated with LRRK2 during phosphorylation reactions. Also phosphorylation activity of LRRK2 is unchanged when the LRRK2 guanine nucleotide binding pocket is previously saturated with various nucleotides, in contrast to the greatly reduced activity measured for the guanine nucleotide binding site mutant T1348N. Interestingly, when nucleotides were incubated with cell lysates prior to purification of LRRK2, kinase activity was slightly enhanced by GTPγS or GMPPCP compared to GDP, pointing to an upstream guanine nucleotide binding protein that may activate LRRK2 in a GTP-dependent manner. Using metabolic labeling, we also found that cellular phosphorylation of LRRK2 was not significantly modulated by nucleotides, although labeling is significantly reduced by guanine nucleotide binding site mutants. We conclude that while kinase activity of LRRK2 requires an intact ROC-GTPase domain, it is independent of GDP or GTP binding to ROC.  相似文献   

12.
Septins are filament-forming GTP-binding proteins involved in important cellular events, such as cytokinesis, barrier formation, and membrane remodeling. Here, we present two crystal structures of the GTPase domain of a Schistosoma mansoni septin (SmSEPT10), one bound to GDP and the other to GTP. The structures have been solved at an unprecedented resolution for septins (1.93 and 2.1 Å, respectively), which has allowed for unambiguous structural assignment of regions previously poorly defined. Consequently, we provide a reliable model for functional interpretation and a solid foundation for future structural studies. Upon comparing the two complexes, we observe for the first time the phenomenon of a strand slippage in septins. Such slippage generates a front-back communication mechanism between the G and NC interfaces. These data provide a novel mechanistic framework for the influence of nucleotide binding to the GTPase domain, opening new possibilities for the study of the dynamics of septin filaments.  相似文献   

13.
The interactions of elongation factor 1A (eEF1A) from Saccharomyces cerevisiae with elongation factor 1Balpha (eEF1Balpha), guanine nucleotides, and aminoacyl-tRNA were studied kinetically by fluorescence stopped-flow. eEF1A has similar affinities for GDP and GTP, 0.4 and 1.1 microm, respectively. Dissociation of nucleotides from eEF1A in the absence of the guanine nucleotide exchange factor is slow (about 0.1 s(-1)) and is accelerated by eEF1Balpha by 320-fold and 250-fold for GDP and GTP, respectively. The rate constant of eEF1Balpha binding to eEF1A (10(7)-10(8) M (-1) s(-1)) is independent of guanine nucleotides. At the concentrations of nucleotides and factors prevailing in the cell, the overall exchange rate is expected to be in the range of 6 s(-1), which is compatible with the rate of protein synthesis in the cell. eEF1A.GTP binds Phe-tRNA(Phe) with a K(d) of 3 nm, whereas eEF1A.GDP shows no significant binding, indicating that eEF1A has similar tRNA binding properties as its prokaryotic homolog, EF-Tu.  相似文献   

14.
Septins constitute a family of guanine nucleotide-binding proteins that were first discovered in the yeast Saccharomyces cerevisiae but are also present in many other eukaryotes. In yeast they congregate at the bud neck and are required for cell division. Their function in metazoan cells is uncertain, but they have been implicated in exocytosis and cytokinesis. Septins have been purified from cells as hetero-oligomeric filaments, but their mechanism of assembly is unknown. Further studies have been limited by the difficulty in expressing functional septin proteins in bacteria. We now show that stable, soluble septin heterodimers can be produced by co-expression from bicistronic vectors in bacteria and that the co-expression of three septins results in their assembly into filaments. Pre-assembled dimers and trimers bind guanine nucleotide and show a slow GTPase activity. The assembly of a heterodimer from monomers in vitro is accompanied by GTP hydrolysis. Borg3, a downstream effector of the Cdc42 GTPase, binds specifically to a septin heterodimer composed of Sept6 and Sept7 and to the Sept2/6/7 trimer, but not to septin monomers or to other heterodimers. Septins associate through their C-terminal coiled-coil domains, and Borg3 appears to recognize the interface between these domains in Sept6 and Sept7.  相似文献   

15.
Momany M  Zhao J  Lindsey R  Westfall PJ 《Genetics》2001,157(3):969-977
Members of the septin gene family are involved in cytokinesis and the organization of new growth in organisms as diverse as yeast, fruit fly, worm, mouse, and human. Five septin genes have been cloned and sequenced from the model filamentous fungus A. nidulans. As expected, the A. nidulans septins contain the highly conserved GTP binding and coiled-coil domains seen in other septins. On the basis of hybridization of clones to a chromosome-specific library and correlation with an A. nidulans physical map, the septins are not clustered but are scattered throughout the genome. In phylogenetic analysis most fungal septins could be grouped with one of the prototypical S. cerevisiae septins, Cdc3, Cdc10, Cdc11, and Cdc12. Intron-exon structure was conserved within septin classes. The results of this study suggest that most fungal septins belong to one of four orthologous classes.  相似文献   

16.
Yeast mitochondrial elongation factor Tu (EF-Tu) was purified 200-fold from a mitochondrial extract of Saccharomyces cerevisiae to yield a single polypeptide of Mr = approximately 47,000. The factor was detected by complementation with Escherichia coli elongation factor G and ribosomes in an in vitro phenylalanine polymerization reaction. Mitochondrial EF-Tu, like E. coli EF-Tu, catalyzes the binding of aminoacyl-tRNA to ribosomes and possesses an intrinsic GTP hydrolyzing activity which can be activated either by kirromycin or by ribosomes. Kinetic and binding analyses of the interactions of mitochondrial EF-Tu with guanine nucleotides yielded affinity constants for GTP and GDP of approximately 5 and 25 microM, respectively. The corresponding affinity constants for the E. coli factor are approximately 0.3 and 0.003 microM, respectively. In keeping with these observations, we found that purified mitochondrial EF-Tu, unlike E. coli EF-Tu, does not contain endogenously bound nucleotide and is not stabilized by GDP. In addition, we have been unable to detect a functional counterpart to E. coli EF-Ts in extracts of yeast mitochondria and E. coli EF-Ts did not detectably stimulate amino acid polymerization with mitochondrial EF-Tu or enhance the binding of guanine nucleotides to the factor. We conclude that while yeast mitochondrial EF-Tu is functionally analogous to and interchangeable with E. coli EF-Tu, its affinity for guanine nucleotides and interaction with EF-Ts are quite different from those of E. coli EF-Tu.  相似文献   

17.
The number of moles of guanine nucleotides (denoted GXP), either guanosine 5'-triphosphate (GTP) or guanosine 5'-diphosphate (GDP), bound to a mole of phosphocellulose-purified tubulin after gel filtration into a variety of nucleotide-free buffers has been measured (H. B. Croom, J. J. Correia, and R. C. Williams, Jr., unpublished results). All buffers we have studied that promote reduction of the number of bound nucleotides to fewer than two per tubulin dimer also eventually cause irreversible loss of activity of the protein. However, in 0.1 M 1,4-piperazinediethanesulfonic acid (pH 6.9) and 2 mM dithioerythritol (with no Mg2+), tubulin rapidly releases approximately 0.4 mol of bound nucleotides during two successive gel filtrations requiring less than 0.5 h and regains the ability to polymerize when magnesium and GTP are immediately added to the buffer. No change in conformation detectable by circular dichroism or sedimentation velocity accompanies this reversible process. (Upon prolonged incubation in the buffer, however, tubulin undergoes irreversible changes according to apparent first-order kinetics with a half-life of approximately 8 h. These changes include the irreversible release of nucleotide, a loss of the ability to polymerize, and a decrease in molar ellipticity between 210 and 240 nm.) The nucleotide which is reversibly released in this buffer comes from that population which exchanges readily with [3H]GTP in vitro.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
We have purified, characterized, and identified two GTP-binding proteins with Mr of 25,000 (c25KG) and 21,000 (c21KG) from the cytosol fraction of human platelets. These two proteins were not copurified with the beta gamma subunits of heterotrimeric GTP-binding proteins. Amino acid sequences of tryptic fragments of c21KG completely matched with those of rap1 protein (Pizon, V., Chardin, P., Lerosey, I., Olofsson, B., and Tavitian, A. (1988) Oncogene 3, 201-204), smg p21 (Kawata, M., Matsui, Y., Kondo, J., Hishida, T., Teranishi, Y., and Takai, Y. (1988) J. Biol. Chem. 263, 18965-18971), and Krev-1 protein (Kitayama, H., Sugimoto, Y., Matsuzaki, T., Ikawa, Y., and Noda, M. (1989) Cell 56, 77-84). The partial amino acid sequence analysis of c25KG revealed that this protein was different from any low Mr GTP-binding proteins already reported. c25KG bound about 1 mol of [35S] guanosine 5'-(3-O-thio)triphosphate (GTP gamma S)/mol of protein, with a Kd value of about 45 nM. [35S]GTP gamma S-binding to c25KG was specifically inhibited by guanine nucleotides, GTP and GDP, but not by adenine nucleotides such as ATP and adenyl-5'-yl beta, gamma-imidodiphosphate. The binding activity was not inhibited by pretreatment with N-ethylmaleimide. c25KG hydrolyzed GTP to librate Pi with the specific activity of 1.8 mmol of Pi/mol of protein/min, which are different from the activities of the already purified low Mr GTP-binding proteins. We conclude that c25KG is a novel GTP-binding protein and c21KG is a rap1/smg p21/Krev-1 product.  相似文献   

19.
We have recorded the circular dichroism spectra of the cellular and the viral H-ras gene products both in the absence and in the presence of guanine nucleotides and analyzed these spectra in terms of the secondary structure composition of these proteins. It is shown that the GTP complex of the ras proteins has a different secondary structure composition than the GDP complex and, furthermore, that there are differences in the secondary structure of the viral ras protein and the cellular ras protein. We have also recorded and analyzed the circular dichroism spectrum of the isolated guanine nucleotide binding domain of the Escherichia coli elongation factor Tu (EF-Tu), which has been considered as a model for the tertiary structure of the ras proteins [McCormick, F., Clark, B. F. C., LaCour, T. F. M., Kjeldgaard, M., Norskov-Lauritsen, L., & Nyborg, J. (1985) Science (Washington, D.C.) 230, 78-82]. Our data show that the guanine nucleotide binding domain of EF-Tu (30% alpha-helix and 16% beta-pleated sheet for the GDP complex) has quite a different secondary structure composition than the ras proteins (e.g., the cellular ras protein has 47% alpha-helix and 22% beta-pleated sheet for the GDP complex), indicating that the protein core comprising the guanine nucleotide binding site might be similar but that major structural differences must exist at the portion outside this core. Normal and transforming ras proteins also differ slightly in their hydrodynamic properties as shown by sedimentation velocity runs in the analytical ultracentrifuge.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
A Tamir  A B Fawzi  J K Northup 《Biochemistry》1990,29(30):6947-6954
Gp is a major GTP-binding protein of human placenta and platelets [Evans, T., Brown, M. L., Fraser, E. D., & Northup, J. K. (1986) J. Biol. Chem. 261, 7052-7059]. High-affinity guanine nucleotide binding is associated with a polypeptide migrating identically with H-ras on SDS-PAGE. We have characterized the interactions of preparations of purified human placental Gp with guanine nucleotides in detergent solution. Equilibrium binding studies with [35S]GTP gamma S, [3H]Gpp(NH)p, and [3H]GTP identified a single class of sites with a dissociation constant of 10 +/- 1, 153 +/- 61, and 125 +/- 77 nM for the ligands, respectively. These three ligands were mutually competitive with Ki values consistent with the Kd values from direct binding experiments. Competition for the binding of [3H]Gpp(NH)p was used to determine the specificity of the site. Ki values determined from this assay were 14 nM for GTP gamma S, 143 nM for Gpp(NH)p, 3.3 microM for GDP beta S, 69 nM for GTP, and 64 nM for GDP. ATP, ADP, cAMP, cGMP, and NAD+ had no detectable affinity for this site. While the equilibrium binding data fit well to a single class of sites, association kinetics of these ligands were better fit to two rate constants. Dissociation kinetics, however, were not clearly resolved into two rates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号