首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The concentrations of the inner mitochondrial membrane markers cardiolipin and cytochrome alpha have been measured in liver homogenates and in purified mitochondria after thyroxine administration to thyroidectomized and normal rats. The biochemical results have been correlated with stereological electron micrographic analyses of hepatocytes in liver sections, and of isolated mitochondrial pellets. There were progressive and parallel increases in homogenate and mitochondrial cardiolipin concentration, and in mitochondrial cytochrome alpha concentration, after administration of 20 microgram of thyroxine on alternate days to thyroidectomized rats, and of 300 microgram on alternate days to normal rats. Electron microscope measurements showed marked differences in the shape of the mitochondria and in the number of cristae in different thyroid states. Hypothyroid mitochondria were shorter and wider than controls, and hyperthyroid mitochondria longer but of similar width. Mitochondrial volume per unit cell volume was virtually unchanged in hypo- and hyperthyroid animals. The most striking changes were a decrease in the area of the inner membrane plus cristae in thyroidectomized rats, and a substantial increase in membrane area after thyroxine administration. The biochemical and electron micrographic results indicate that, in rat liver, thyroid hormone administration leads to a selective increase in the relative amount of mitochondrial inner membranes, with little or no change in the mitochondrial volume per unit cell volume, or in total mitochondrial protein per unit total cell protein.  相似文献   

2.
J Bouhnik  O Michel  D Fran?ois  J P Clot  R Michel 《Biochimie》1975,57(6-7):779-786
Mitochondria used in the present study were isolated from skeletal muscle of normal and thyroidectomized rats. The preparations were controlled by electron microscopy. It was not possible to find any morphological change induced by thyroidectomy, nevertheless, some difference appeared in the cytochrome contents which were slightly decreased. Oxygen consumption rates of thyroidectomized rat mitochondria were decreased when the particles were maintained in states 3 and 4 in the presence of various substrates, but the P/O ratios were not modified. The activities of mitochondrial enzymes were in general slightly affected by thyroidectomy except for glycerol-1-phosphate cytochrome c reductase and NADH rotenone sensitive cytochrome c reductase which were decreased and for glutamate dehydrogenase activity which was increased. The tRNA nucleotidyltransferase activity found in the mitochondrial matrix was not influenced by the absence of thyroid secretion. Normal rat muscle mitochondria incorporate 14C-leucine with an artificial ATP-generating system or with a respiratory substrate. The amino acid incorporation was decreased by thyroidectomy. Muscle mitochondria analyzed by polyacrylamide gel electrophoresis contained more than 30 protein components with MW ranging from 10.000 to 135.000. Thyroidectomy lowered the amount of a fraction of about 54.000 MW. It is not impossible that all the data observed in the absence of thyroid secretion are in relation with changes induced in the mitochondrial genome as previously shown in mitochondria isolated from liver or thyroidectomized rats.  相似文献   

3.
The effect of thyroid hormone on the turnover of mitochondrial DNA and protein was studied in rat heart and liver. Changes in turnover were observed in both thyroidectomized and normal rats following administration of thyroid hormone. In heart and liver the turnover of mitochondrial DNA and protein was slower in thyroidectomized rats than in normal rats. The turnover of mitochondrial DNA and protein was affected similarly following the administration of thyroid hormone, suggesting that mechanisms which control turnover of mitochondrial constituents may be predicated upon a major part of the mitochondrion. In heart a decreased rate of degradation contributes to the increase in total mitochondrial protein. Mitochondrial DNA, labeled before administration of thyroid hormone, turns over, after the start of thyroid hormone administration, at a different rate from that in newly synthesized DNA. The different turnover rates suggest that in liver the pre-existing population of mitochondria is being replaced by another population synthesized under new physiological conditions.  相似文献   

4.
D N Kalu  R R Hardin 《Life sciences》1984,34(24):2393-2398
Studies were carried out in rats to examine the role of calcitonin deficiency in the pathogenesis of ovariectomy-induced osteopenia. The parathyroid glands of 80 female Wistar rats were autotransplanted to their thigh muscle and the animals divided into 4 groups. Group 1 rats were sham ovariectomized, and thyroidectomized to make them calcitonin deficient; Group 2 rats were thyroidectomized, and ovariectomized to make them deficient in ovarian hormones as well; Group 3 rats were sham thyroidectomized and sham ovariectomized, and Group 4 rats were sham thyroidectomized and ovariectomized. A fifth group of rats were unoperated upon and served as controls. Thyroidectomized animals were maintained on thyroxine replacement and 11 months after ovariectomy all the animals were bled, killed and their femurs dissected out. In both the thyroid intact and thyroidectomized animals, ovariectomy decreased femur density significantly (P less than 0.01). Similarly, ovariectomy resulted in a decrease in femur calcium (P less than 0.01) in both groups of animals, and in a significant decrease in serum calcitonin (P less than 0.05) in the thyroid intact animals. We conclude from these findings that ovarian hormone deficiency can cause bone loss independently of lowering circulating calcitonin levels.  相似文献   

5.
The effect of long term administration of thyroid hormones and its deprivation on delayed type hypersensitivity (DTH) reaction to 2-4 dinitrochlorobenzene (DNCB) was studied. Animals were either pre-treated with thyroid hormones (T3 or T4) for 15 days and then subjected to DNCB skin test or the animals received thyroid hormones and simultaneously subjected to DNCB skin test. In both the cases DTH reaction was found to be increased significantly. When DNCB skin test was performed in the thyroidectomized animals, DNCB skin reaction was significantly decreased and the reaction was restored to normal following supplementation of thyroid hormones to the thyroidectomized animals. TLC and ALC were increased significantly following hormone treatment and thyroidectomized animals. TLC hand, induced significant depression in the count which was restored by hormone administration to the thyroidectomized animals.  相似文献   

6.
M Baudry  J P Clot  R Michel 《Biochimie》1975,57(1):77-83
Liver mitochondria were isolated from normal and thyroidectomized rats and their protein components analyzed by polyacrylamide gel electrophoresis. In whole mitochondria 35 protein fractions with MW ranging from 10,000 to 135,000 were characterized. In the absence of thyroid hormone secretion, the amount of a MW 54,000 fraction was always decreased. Injection of small doses of 3,5,3'-triiodo-L-thyronine to the thyroidectomized animal restored the quantity of that protein fraction to normal. Isolated outer mitochondrial membranes showed the presence of 20 protein fractions. These fractions revealed no change after thyroidectomy. The mitoplast, which contained 35 fractions, exhibited a decrease of the MW 54,000 component in thyroidectomized rats. The mitoplast was separated into several fractions. Water soluble matrix proteins presented molecular weights ranging between 40,000 and 55,000. Proteins, which were slightly bound to the inner mitochondrial membrane and could be extracted by KCl, presented molecular weights between 25,000 and 45,000. Structural proteins showed a principal specific component of MW equals 23,000. Electrophoretic patterns obtained with these submitochondrial fractions were similar in normal and thyroidectomized animals. The mitoplast fraction which contained the insoluble cytochromes (a, a3, b, c1) was isolated ; its principal constituent, of MW 54,000 was significantly decreased after thyroidectomy. Thus, the lack of thyroid hormone secretion lowered the level of a protein constituent bound to the inner membrane of liver mitochondria. The synthesis of this constituent could be controlled by mitochondrial nucleic acids.  相似文献   

7.
It has been reported that the mitochondrial cytochromes and citrate cycle enzymes occur in constant proportions to each other and increase or decrease roughly in parallel in response to various stimuli. The purpose of this study was to determine whether this proportionality is an obligatory consequence of the way in which mitochondria are assembled. Severe iron deficiency was used to bring about decreases of the iron-containing constituents of the mitochondrial respiratory chain in skeletal muscle. Cytochrome c concentration and cytochrome oxidase activity were decreased approximately 50%, while succinate dehydrogenase and NADH dehydrogenase activities were decreased by 78% in iron-deficient muscle. On electron microscopic examination, mitochondria in iron-deficient muscles had relatively sparse numbers of cristae. The iron deficiency had little or no effect on the levels of a range of mitochondrial matrix enzymes, including citrate synthase, isocitrate dehydrogenase, fumarase, aspartate aminotransferase, 3-hydroxyacyl-CoA dehydrogenase, 3-ketoacid-CoA transferase, and acetoacetyl-CoA thiolase. These results show that the usual constant proportions between the constituents of the mitochondrial respiratory chain and matrix enzymes are not obligatory; they provide evidence that mitochondrial matrix enzymes and respiratory chain constituents can be incorporated into mitochondria independently and that the ratios between them can vary within wide limits.  相似文献   

8.
The effects of long-term cold exposure on muscle and liver mitochondrial oxygen consumption in hypothyroid and normal rats were examined. Thyroid ablation was performed after 8-wk acclimation to 4 degrees C. Hypothyroid and normal controls remained in the cold for an additional 8 wk. At the end of 16-wk cold exposure, all hypothyroid rats were alive and normothermic and had normal body weight. At ambient temperature (24 degrees C), thyroid ablation induced a 65% fall in muscle mitochondrial oxygen consumption, which was reversed by thyroxine but not by norepinephrine administration. After cold acclimation was reached, suppression of thyroid function reduced muscle mitochondrial respiration by 30%, but the hypothyroid values remained about threefold higher than those in hypothyroid muscle in the warm. Blockade of beta- and alpha1-adrenergic receptors in both hypothyroid and normal rats produced hypothermia in vivo and a fall in muscle, liver, and brown adipose tissue mitochondria respiration in vitro. In normal rats, cold acclimation enhanced muscle respiration by 35%, in liver 18%, and in brown adipose tissue 450% over values in the warm. The results demonstrate that thyroid hormones, in the presence of norepinephrine, are major determinants of thermogenic activity in muscle and liver of cold-acclimated rats. After thyroid ablation, cold-induced nonshivering thermogenesis replaced 3,5,3'-triiodothyronine-induced thermogenesis, and normal body temperature was maintained.  相似文献   

9.
Activities of hexokinase and glucose-6-phosphate dehydrogenase have been measured in red blood cells from thyroidectomized, triiodothyronine treated and hyperthyroid rats. After thyroidectomy, significant decrease in the activities of hexokinase and glucose-6-phosphate dehydrogenase was observed as compared to controls. The effects were reversed with triiodothyronine administration to the thyroidectomized rats. Hyperthyroidism increased both enzymes. The observations further confirm the hypermetabolic effects of thyroid hormones on the cellular metabolism.  相似文献   

10.
甲状腺激素对白头鹎基础产热的影响   总被引:2,自引:0,他引:2  
甲状腺激素对动物的基础产热有调节作用,甲状腺活性的增加往往与基础代谢的增加相伴行。通过每日饲喂甲状腺素(T4)研究了甲状腺机能亢进对白头鹎(Pycnonotus sinensis)代谢产热的影响。代谢率的测定采用封闭式流体压力呼吸计测定,细胞色素C氧化酶(COX)采用铂氧电极-溶氧仪测定,反应温度为30℃,肝脏和肌肉的线粒体状态4呼吸采用铂氧电极-溶氧仪测定,反应温度为30℃,线粒体蛋白的测定以牛血清蛋白作为标准,采用Folin-phenol方法,测定肝脏和肌肉组织的蛋白质含量。与对照组相比,甲亢组的基础代谢率(BMR)明显升高;肝脏及肌肉组织状态4呼吸增加;肝脏和肌肉线粒体的COX活力升高。  相似文献   

11.
Whole cells, homogenates and mitochondrial obtained from the livers of albino rats which were starved for 6 days or more showed a 50% decrease in oxidative activity. The decrease could be corrected by the addition of cytochrome c in vitro. The phosphorylative activity of mitochondria remained unaffected. The decrease in oxidative rate was not observed when starving animals were given the anti-hypercholesterolaemic drug clofibrate. The total cellular concentration of cytochrome c was not affected by starvation. However, the concentration of the pigment in hepatic mitochondria isolated from starving animals was less than half that in normal mitochondria. Clofibrate-treated animals did not show a decreased concentration of cytochrome c in hepatic mitochondria. Mitochondria isolated from starving animals, though deficient in cytochrome c, did not show any decrease in succinate dehydrogenase activity or in the rate of substrate-dependent reduction of potassium ferricyanide or attendant phosphorylation. In coupled mitochondria, ferricyanide may not accept electrons from the cytochrome c in the respiratory chain. Starvation decreases the concentration of high-affinity binding sites for cytochrome c on the mitochondrial membrane. The dissociation constant increases in magnitude.  相似文献   

12.
To establish the relationship between thyroid hormone and cyclic Adenosine monophosphate (cAMP) during lacertilian tail regeneration, cAMP phosphodiesterase, the hydrolytic enzyme of cAMP, was assayed in the tail regenerate, liver, and skeletal muscle of control (group A), chemically thyroidectomized (group B), and thyroidectomized and T4-replaced (group C) animals during various periods of tail regeneration. Enzyme activity was elevated in all three tissues of group B animals. Animals of group C showed an intermediate level of enzyme activity between controls (group A) and experimental animals (group B). These observations suggest a possible regulatory role of thyroxine in maintaining optimum levels of phosphodiesterase. The retardation in regeneration observable in the hypothyroid group of animals may be correlated with low levels of tissue cAMP. However, the operation of other influencing factors on phosphodiesterase during regeneration can be surmised from the observed tendency to exhibit similar patterns of phase-specific modulations in enzyme activity. Our observations are discussed in terms of phase-specific involvement of cAMP in regeneration, as well as its role in other metabolic aspects and the possible mode of indirect control exerted by thyroxine on lacertilian tail regeneration. © 1996 Wiley-Liss, Inc.  相似文献   

13.
The specific activities of testicular enzymes of the pyruvate/malate cycle involved in lipogenesis after thyroidectomy and thyroxine replacement were studied in prepubertal, pubertal and adult rats. Thyroidectomy induced testicular ATP citrate-lyase, malate dehydrogenase and malic enzyme activities and inhibited isocitrate dehydrogenase (NADP+) activity. Thyroxine treatment on thyroidectomized animals reverted all enzyme activities to normal. The result suggests that thyroid hormones have a differential effects on testicular enzymes of the pyruvate/malate cycle involved in lipogenesis.  相似文献   

14.
1. Normal and thyroidectomized rats were treated with near-physiological doses of tri-iodothyronine. Liver mitochondria were isolated and incubated with radioactive amino acids. In normal rats tri-iodothyronine caused only a slight stimulation of incorporation into mitochondrial protein, but in thyroidectomized animals the incorporation was doubled. 2. There was a lag period of about 36 hr. after injection and the maximum effect was observed after 2 days. 3. Direct addition of tri-iodothyronine to the incubation medium had no effect on mitochondrial incorporation. 4. The incorporation was not due to bacterial, nuclear, lysosomal or microsomal contamination and the labelled particles had sedimentation properties identical with those of mitochondria, as followed by suitable enzyme markers. 5. Thyroid hormone treatment did not cause any marked alterations in the pattern of labelling of submitochondrial fractions and in all cases the most radioactive protein was in an insoluble lipid-rich fraction. The amino acid compositions of the total mitochondrial protein and the more radioactive lipoprotein were also unaltered. 6. Increases in the content of RNA and various cytochromes per mg. of mitochondrial protein were observed after treatment with tri-iodothyronine. These occurred slightly later than the stimulation of amino acid incorporation. 7. No uncoupling of oxidative phosphorylation was observed and the ATP production per mg. of mitochondrial protein increased. 8. It was concluded that tri-iodothyronine stimulated amino acid incorporation into mitochondrial protein and that the result is consistent with the view that treatment with thyroid hormone results in an enhanced selective synthesis of mitochondrial respiratory units.  相似文献   

15.
Manganese concentration has been measured in the different subcellular fractions of live cells of normal and thyroidectomized rats. Results show that the quantity of Mn2+ taken up is smaller in the mitochondria and larger in the nuclei of the hypothyroid animals. When manganese is added to isolated mitochondria, an activation of mitochondrial respiration occurs and this activation is greater in thyroidectomized animals.  相似文献   

16.
1. The effect of thyroidectomy on turnover rates of liver, kidney and brain mitochondrial proteins was examined. 2. In the euthyroid state, liver and kidney mitochondria show a synchronous turnover with all protein components showing more or less identical half-lives compared with the whole mitochondria. The brain mitochondrial proteins show asynchronous turnover, the soluble proteins having shorter half-lives. 3. Mitochondrial DNA (m-DNA) of liver and kidney has half-lives comparable with that of whole mitochondria from these tissues. 4. Thyroidectomy results in increased half-lives of liver and kidney mitochondria, with no apparent change in the half-life of brain mitochondria. 5. A detailed investigation of the turnover rates of several protein components revealed a significant decrease in the turnover rates of mitochondrial insoluble proteins from the three tissues under study. 6. The turnover rates of m-DNA of liver and kidney show a parallel decrease. 7. Thus it is apparent that thyroid hormone(s) may have a regulatory role in maintaining the synchrony of turnover of liver and kidney mitochondria in the euthyroid state. Turnover of brain mitochondria may perhaps be regulated by some other factor(s) in addition to thyroid hormone(s). 8. It seems likely that during mitochondrial turnover m-DNA and insoluble proteins may constitute a major unit. 9. The mitochondrial protein contents of the three tissues are not affected by thyroidectomy. 10. No correlation was seen between the turnover rate of mitochondria and cathepsin activity in any of the tissues under study in normal or thyroidectomized animals. 11. On the other hand, mitochondrial proteinase activity shows good correlation with the turnover rates of mitochondria in normal animals, and a parallel decrease in activity comparable with the decreased rates of turnover is observed after thyroidectomy. 12. It is concluded that mitochondrial proteinase activity may play a significant role in their protein turnover.  相似文献   

17.
Long-term preservation of muscle mitochondria for consequent functional analysis is an important and still unresolved challenge in the clinical study of metabolic diseases and in the basic research of mitochondrial physiology. We here present a method for cryopreservation of mitochondria in various muscle types including human biopsies. Mitochondrial function was analyzed after freeze-thawing permeabilized muscle fibers using glycerol and dimethyl sulfoxide as cryoprotectant. Using optimal freeze-thawing conditions, high rates of adenosine 5(')-diphosphate-stimulated respiration and high respiratory control were observed, showing intactness of mitochondrial respiratory function after cryopreservation. Measurement of adenosine 5(')-triphosphate (ATP) formation showed normal rates of ATP synthesis and ATP/O ratios. Intactness of the outer mitochondrial membrane and functional coupling between mitochondrial creatine kinase and oxidative phosphorylation were verified by respiratory cytochrome c and creatine tests. Simultaneous confocal imaging of mitochondrial flavoproteins and nicotinamide adenine dinucleotide revealed normal intracellular arrangement and metabolic responses of mitochondria after freeze-thawing. The method therefore permits, after freezing and long-term storage of muscle samples, mitochondrial function to be estimated and energy metabolism to be monitored in situ. This will significantly expand the scope for screening and exchange of human biopsy samples between research centers, thus providing a new basis for functional analysis of mitochondrial defects in various diseases.  相似文献   

18.
19.
Thyroid hormones can increase energy expenditure and stimulate basal thermogenesis by lowering metabolic efficiency. In the present study, we examined the effects of thyroid hormones on basal heat production as well as on several physiological and biochemical measures indicative of thermogenic capacity to test our hypothesis that thyroid hormones stimulate increases in thermogenesis in little buntings. Little buntings that fed on thyroxine (T4)–laced poultry food of 3 and 5 ppm concentrations showed increases in basal metabolic rate (BMR) during the 3-week acclimation. At the end, these buntings had lower body weights, higher levels of contents of mitochondrial protein, state 4 respiration and cytochrome c oxidase activity in liver and muscle, and higher concentrations of serum triiodothyronine (T3) and T4 compared to control buntings. These results support the argument that thyroid hormones play an important role in the regulation of thermogenic ability in buntings by stimulating mitochondrial respiration and enzyme activities associated with aerobic metabolism.  相似文献   

20.
Uncoupling protein-3 (UCP3) is a mitochondrial protein that can diminish the mitochondrial membrane potential. Levels of muscle Ucp3 mRNA are increased by thyroid hormone and fasting. Ucp3 has been proposed to influence metabolic efficiency and is a candidate obesity gene. We have produced a Ucp3 knockout mouse to test these hypotheses. The Ucp3 (-/-) mice had no detectable immunoreactive UCP3 by Western blotting. In mitochondria from the knockout mice, proton leak was greatly reduced in muscle, minimally reduced in brown fat, and not reduced at all in liver. These data suggest that UCP3 accounts for much of the proton leak in skeletal muscle. Despite the lack of UCP3, no consistent phenotypic abnormality was observed. The knockout mice were not obese and had normal serum insulin, triglyceride, and leptin levels, with a tendency toward reduced free fatty acids and glucose. Knockout mice showed a normal circadian rhythm in body temperature and motor activity and had normal body temperature responses to fasting, stress, thyroid hormone, and cold exposure. The base-line metabolic rate and respiratory exchange ratio were the same in knockout and control mice, as were the effects of fasting, a beta3-adrenergic agonist (CL316243), and thyroid hormone on these parameters. The phenotype of Ucp1/Ucp3 double knockout mice was indistinguishable from Ucp1 single knockout mice. These data suggest that Ucp3 is not a major determinant of metabolic rate but, rather, has other functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号