首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Minichromosome maintenance (Mcm) proteins are well-known for their functions in DNA replication. However, their roles in chromosome segregation are yet to be reviewed in detail. Following the discovery in 1984, a group of Mcm proteins, known as the ARS-nonspecific group consisting of Mcm13, Mcm16-19, and Mcm21-22, were characterized as bonafide kinetochore proteins and were shown to play significant roles in the kinetochore assembly and high-fidelity chromosome segregation. This review focuses on the structure, function, and evolution of this group of Mcm proteins. Our in silico analysis of the physical interactors of these proteins reveals that they share non-overlapping functions despite being copurified in biochemically stable complexes. We have discussed the contrasting results reported in the literature and experimental strategies to address them. Taken together, this review focuses on the structure-function of the ARS-nonspecific Mcm proteins and their evolutionary flexibility to maintain genome stability in various organisms.  相似文献   

2.
Anaphase B spindle elongation plays an important role in chromosome segregation. In the present paper, we discuss our model for anaphase B in Drosophila syncytial embryos, in which spindle elongation depends on an ip (interpolar) MT (microtubule) sliding filament mechanism generated by homotetrameric kinesin-5 motors acting in concert with poleward ipMT flux, which acts as an 'on/off' switch. Specifically, the pre-anaphase B spindle is maintained at a steady-state length by the balance between ipMT sliding and ipMT depolymerization at spindle poles, producing poleward flux. Cyclin B degradation at anaphase B onset triggers: (i) an MT catastrophe gradient causing ipMT plus ends to invade the overlap zone where ipMT sliding forces are generated; and (ii) the inhibition of ipMT minus-end depolymerization so flux is turned 'off', tipping the balance of forces to allow outward ipMT sliding to push apart the spindle poles. We briefly comment on the relationship of this model to anaphase B in other systems.  相似文献   

3.
In most bacteria two vital processes of the cell cycle: DNA replication and chromosome segregation overlap temporally. The action of replication machinery in a fixed location in the cell leads to the duplication of oriC regions, their rapid separation to the opposite halves of the cell and the duplicated chromosomes gradually moving to the same locations prior to cell division. Numerous proteins are implicated in co-replicational DNA segregation and they will be characterized in this review. The proteins SeqA, SMC/MukB, MinCDE, MreB/Mbl, RacA, FtsK/SpoIIIE playing different roles in bacterial cells are also involved in chromosome segregation. The chromosomally encoded ParAB homologs of active partitioning proteins of low-copy number plasmids are also players, not always indispensable, in the segregation of bacterial chromosomes.  相似文献   

4.
5.
Recent advances have completely overturned the classical view of chromosome segregation in bacteria. Far from being a passive process involving gradual separation of the chromosomes, an active, possibly mitotic-like machinery is now known to exist. Soon after the initiation of DNA replication, the newly replicated copies of the oriC region, behaving rather like eukaryotic centromeres, move rapidly apart towards opposite poles of the cell. They then determine the positions that will be taken up by the newly formed sister nucleoids when DNA replication has been completed. Thus, the gradual expansion of the diffuse nucleoid camouflages an underlying active mechanism. Several genes involved in chromosome segregation in bacteria have now been defined; their possible functions are discussed.  相似文献   

6.
7.
8.
The duplication of DNA and faithful segregation of newly replicated chromosomes at cell division is frequently dependent on recombinational processes. The rebuilding of broken or stalled replication forks is universally dependent on homologous recombination proteins. In bacteria with circular chromosomes, crossing over by homologous recombination can generate dimeric chromosomes, which cannot be segregated to daughter cells unless they are converted to monomers before cell division by the conserved Xer site-specific recombination system. Dimer resolution also requires FtsK, a division septum-located protein, which coordinates chromosome segregation with cell division, and uses the energy of ATP hydrolysis to activate the dimer resolution reaction. FtsK can also translocate DNA, facilitate synapsis of sister chromosomes and minimize entanglement and catenation of newly replicated sister chromosomes. The visualization of the replication/recombination-associated proteins, RecQ and RarA, and specific genes within living Escherichia coli cells, reveals further aspects of the processes that link replication with recombination, chromosome segregation and cell division, and provides new insight into how these may be coordinated.  相似文献   

9.
Bacterial chromosomes are evenly distributed between daughter cells, however no equivalent eukaryotic mitotic apparatus has been identified yet. Nevertheless, an advance in our understanding of the dynamics of the bacterial chromosome has been accomplished in recent years by adopting fluorescence microscopy techniques to visualize living bacterial cells. Here, some of the most recent studies that yield new insights into the nature of bacterial chromosome dynamics are described. In addition, we review in detail the current models that attempt to illuminate the mechanism of chromosome segregation in bacteria and discuss the possibility that a bacterial mitotic apparatus does indeed exist.  相似文献   

10.
Nuclear organization and chromosome segregation   总被引:9,自引:1,他引:8       下载免费PDF全文
  相似文献   

11.
Comment on: Ptacin JL, et al. Nat Cell Biol 2010; 12:791–8.  相似文献   

12.
13.
Regulated and controlled chromosome condensation and segregation is essential for the transmission of genetic information from one generation to the next. A myriad of techniques has been utilized over the last few decades to identify proteins required for the organized compaction of the massive length of a cell's DNA. A full understanding of the components and processes involved relies on further work, exploiting biochemical, genetic, cytological, and proteomics approaches to complete the picture of how a cell packages and partitions its genome during the cell cycle.  相似文献   

14.
Analytical DNA ultracentrifugation revealed that eukaryotic genomes are mosaics of isochores: long DNA segments (>300 kb on average) relatively homogeneous in G+C. Important genome features are dependent on this isochore structure, e.g. genes are found predominantly in the GC-richest isochore classes. However, no reliable method is available to rigorously partition the genome sequence into relatively homogeneous regions of different composition, thereby revealing the isochore structure of chromosomes at the sequence level. Homogeneous regions are currently ascertained by plain statistics on moving windows of arbitrary length, or simply by eye on G+C plots. On the contrary, the entropic segmentation method is able to divide a DNA sequence into relatively homogeneous, statistically significant domains. An early version of this algorithm only produced domains having an average length far below the typical isochore size. Here we show that an improved segmentation method, specifically intended to determine the most statistically significant partition of the sequence at each scale, is able to identify the boundaries between long homogeneous genome regions displaying the typical features of isochores. The algorithm precisely locates classes II and III of the human major histocompatibility complex region, two well-characterized isochores at the sequence level, the boundary between them being the first isochore boundary experimentally characterized at the sequence level. The analysis is then extended to a collection of human large contigs. The relatively homogeneous regions we find show many of the features (G+C range, relative proportion of isochore classes, size distribution, and relationship with gene density) of the isochores identified through DNA centrifugation. Isochore chromosome maps, with many potential applications in genomics, are then drawn for all the completely sequenced eukaryotic genomes available.  相似文献   

15.
16.
Recent major advances in the understanding of prokaryotic DNA segregation have been achieved by using fluorescence microscopy to visualize the localization of cellular components. Plasmids and bacterial chromosomes are partitioned in a highly dynamic fashion, suggesting the presence of a mitotic-like apparatus in prokaryotes. The identification of chromosomal homologues of the well-characterized plasmid partitioning genes indicates that there could be a general mechanism of bacterial DNA partitioning.  相似文献   

17.
Yeast chromosome replication and segregation.   总被引:71,自引:2,他引:69       下载免费PDF全文
  相似文献   

18.
19.
20.
Watts FZ 《Chromosoma》2007,116(1):15-20
Chromosome segregation is an essential feature of the eukaryotic cell cycle. Efficient chromosome segregation requires the co-ordination of several cellular processes; some of which involve gross rearrangements of the overall structure of the genetic material. Recent advances in the analysis of the role of SUMO (small ubiquitin-like modifier) and in the identification of SUMO-modified targets indicate that sumoylation is likely to have several key roles in regulating chromosome segregation This mini-review summarises the recently published data concerning the role of SUMO in the processes required for efficient chromosome segregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号