首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The effect of palmitic acid on basal and insulin-stimulated incorporation of glucose into rat adipocytes was studied. Palmitic acid (2.40 mM) stimulated basal as well as insulin-stimulated glucose incorporation in rat adipocytes three and twofold, respectively. Similar degrees of stimulation of basal glucose oxidation by palmitate were also observed. The ability of palmitic acid to stimulate glucose uptake was additive with respect to the stimulation induced by insulin and was proportional to the palmitic acid concentration between 0.15 mM and 2.40 mM. Stimulation of glucose incorporation by palmitic acid was inhibited by preincubating the cells with quin2-AM, which accumulates intracellularly yielding the trapped chelator form. quin2, which binds intracellular Ca2+.The concentration of quin2-AM required for half-maximal inhibition of palmitic acid stimulated glucose incorporation was 3.8 +/- 1.2 microM (mean +/- SEM). The inhibition of palmitic acid-stimulated glucose incorporation by quin2-AM (10 microM) was overcome by incubating cells with the Ca2+ ionophore, A23187, in the presence of extracellular Ca2+ (2.6 mM). Chelation of extracellular Ca2+ with EGTA did not significantly affect the magnitude of palmitic acid-stimulated glucose incorporation. Dantrolene (12.5-100 microM) failed to affect basal or palmitic acid-stimulated glucose incorporation. These findings suggest that palmitic acid stimulates incorporation of glucose in the adipocyte by a mechanism dependent upon intracellular but not extracellular Ca2+.  相似文献   

2.
A steroid sulphotransferase (EC 2.8.2.2) was partially purified from female rat liver. The enzyme was active towards the substrates, dehydroepiandrosterone, epiandrosterone and pregnenolone but was inactive towards oestrogens, cholesterol and ergocalciferol. A pH optimum of 5.0 was recorded but the enzyme was unstable at low pH. The enzyme was stimulated slightly by the addition of reducing agents and inhibited by p-chloromercuribenzoate and HgCl2. Crude enzyme activity was markedly stimulated by divalent cations but this effect was not observed with purified enzyme. A Km of 13 muM was calculated for the donor substrate 3'-phosphoadenylyl sulphate and the acceptor substrate, dehydroepiandrosterone had a Km value of 6 muM. The enzyme appeared to be highly susceptible to product inhibition by adenosine 3', 5'-diphosphate.  相似文献   

3.
U Pick  M Weiss  H Rottenberg 《Biochemistry》1987,26(25):8295-8302
Palmitic acid and gramicidin D at low concentrations uncouple photophosphorylation in a mechanism that is inconsistent with classical uncoupling in the following properties: (1) delta pH, H+ uptake, or the transmembrane electric potential is not inhibited. (2) O2 evolution is stimulated under nonphosphorylating conditions but slightly inhibited in the presence of adenosine 5'-diphosphate + inorganic phosphate (Pi). (3) Light-triggered adenosine 5'-triphosphate (ATP)-Pi exchange is hardly affected, and ATPase activity is only slightly stimulated. (4) ATP-induced delta pH formation is selectively inhibited. This characteristic uncoupling is observed only when the native coupling sites of the electron transport system are used for energization such as for methylviologen-coupled phosphorylation. With pyocyanine, which creates an artificial coupling site, 1000-fold higher gramicidin D and higher palmitic acid concentrations are required for inhibition, and the inhibition is accompanied by a decrease in delta pH. Moreover, comparison between photosystem 1 and photosystem 2 electron transport and the effects of membrane unstacking suggest that low gramicidin D preferentially inhibits photosystem 2, while palmitic acid inhibits more effectively photosystem 1 coupling sites. The inhibitory capacity of fatty acids significantly drops when the chain length is reduced below 16 hydrocarbons or upon introduction of a single double bond in the hydrocarbon chain. It is suggested that palmitic acid and gramicidin D interfere with a direct H+ transfer between specific electron transport and the ATP synthase complexes, which provides an alternative coupling mechanism in parallel with bulk to bulk delta microH+. The sites of inhibition seem to be located in chloroplast ATP synthase, photosystem 2, and the cytochrome b6f complexes.  相似文献   

4.
(1) Subcutaneous or intra-abdominal injections of 8 mg of HgCl2/100 g body weight markedly depressed hepatic fatty acid synthetase activity of chicks at 1 h post-injection. The depression occurred despite the fact that the chicks continued to eat up until the time they were killed. Under these same conditions, the hepatic activity of acetyl-CoA carboxylase (EC 6.4.1.2) was not affected by HgCl2, while the activity of the mitochondrial system of fatty acid elongation was stimulated. (2) When 2-mercaptoethanol was included in the incubation medium for a highly purified preparation of fatty acid synthetase, 500 muM HgCl2 was required to show definite inhibition of the enzyme. When 2-mercaptoethanol was omitted, 50 muM HgCl2 was inhibitory and 100 muM HgCl2 abolished enzyme activity. (3) 2 mM dithiothreitol completely protected the purified fatty acid synthetase preparation from inhibition by 100 muM HgCl2. When dithiothreitol was added after the addition of enzyme to the mercury-containing medium, protection of the enzyme was not complete. (4) Dialysis of cytosol fractions from chicks injected with HgCl2 against 500 vol. of 0.2 M potassium phosphate buffer (pH 7.0) containing 1 mM EDTA and 10 mM dithiothreitol for 4 h at 4 degrees stimulated the fatty acid synthetase activity of the fractions. Dialysis of cytosol fractions from noninjected chicks under the same conditions was without effect on fatty acid synthetase activity. (5) These data support the hypothesis that the inhibitory effect of HgCl2 administered in vivo on hepatic fatty acid synthetase activity in chicks is mediated through the interaction of mercury with the sulfhydryl groups of the enzyme.  相似文献   

5.
Throughout the development (maturation) of mango fruit the contents of citric and glyoxylic acids increased steadily. As the fruit matured the levels of isocitrate lyase, malate lyase and alanine: glyoxylate aminotransferase increased and reached maximum values prior to the time of harvesting. At and after harvest the levels of malate lyase and alanine : glyoxylate aminotransferase began to decrease but that of isocitrate lyase remained high until after the harvest when it decreased. The level of glyoxylate reductase was highest in the early developmental stage but declined as the fruit matured and ripened. As the fruit ripened, after harvest, the amounts of citric and glyoxylic acids decreased concomitant with a considerable increase in the levels of isocitrate dehydrogenase, malic dehydrogenase, malic enzyme and glyoxylate dehydrogenase.Fatty acid oxidizing capacity of mitochondria isolated from immature (developing) and postclimacteric fruit pulps was much less than that observed with mitochondria from preclimacteric and climacteric fruit. Glyoxylate stimulated the oxidation of caprylic, lauric, myristic and palmitic acids and inhibited the activity of isocitrate dehydrogenase in vitro.  相似文献   

6.
Inhibition of the fermentation of acetate to methane and carbon dioxide by acetate was analyzed with an acetate-acclimatized sludge and with Methanosarcina barkeri Fusaro under mesophilic conditions. A second-order substrate inhibition model, q(ch(4) ) = q(m)S/[K(s) + S + (S/K(i))], where S was the concentration of undissociated acetic acid, not ionized acetic acid, could be applicable in both cases. The analysis resulted in substrate saturation constants, K(s), of 4.0 muM for the acclimatized sludge and 104 muM for M. barkeri. The threshold concentrations of undissociated acetic acid when no further acetate utilization was observed were 0.078 muM (pH 7.50) for the acclimatized sludge and 4.43 muM (pH 7.45) for M. barkeri. These kinetic results suggested that the concentration of undissociated acetic acid became a key factor governing the actual threshold acetate concentration for acetate utilization and that the acclimatized sludge in which Methanothrix spp. appeared dominant could utilize acetate better and survive at a lower concentration of undissociated acetic acid than could M. barkeri.  相似文献   

7.
Cyclic AMP and cyclic GMP phosphodiesterase activities (3' : 5'-cyclic AMP 5'-nucleotidohydrolase, EC 3.1.4.17) were demonstrated in the isolated intima, media, and adventitia of rabbit aorta. The activity for cyclic AMP hydrolysis in the intima was 2.7-fold higher than that for cyclic GMP hydrolysis. The activity for cyclic AMP hydrolysis in the media was approximately equal to that for cyclic GMP hydrolysis, but in the adventitia, cyclic GMP hydrolytic activity was 2.1-fold higher than cyclic AMP hydrolytic activity. Distribution of the activator of the phosphodiesterase was studied in the three layers. Each layer contained the activator. The activator was predominantly localized in the smooth muscle layer (the media). The effect of the activator and Ca2+ on the media cyclic AMP and cyclic GMP phosphodiesterase was also briefly studied. The activity of the cyclic GMP phosphodiesterase was stimulated by micromolar concentration of Ca2+ in the presence of the activator. However, the activity of the cyclic AMP phosphodiesterase was not significantly stimulated by Ca2+ up to 100 muM in the presence of the activator. Above 90% of cyclic nucleotide phosphodiesterase activity in the whole aorta was found to be derived from the media. A major portion (60-70%) of the media enzyme was found in 105 000 times g supernatant. Cyclic AMP phosphodiesterase in the supernatant was partially purified through Sepharose 6B column chromatography and partially separated from cyclic GMP phosphodiesterase. Using a partially purified preparation from the 105 000 times g supernatant the main kinetic parameters were specified as follows: 1) The pH optimum was found to be about 9.0 using Tris-maleate buffer. The maximum stimulation of the enzyme by Mg2+ was achieved at 4mM of MgC12. 2) High concentration of cyclic GMP (0.1 mM) inhibited noncompetitively the enzyme activity, and the activity was not stimulated at any tested concentration of cyclic GMP. 3) Activity-substrate concentration relationship revealed a high affinity (Km equals 1.0 muM) and low affinity (Km equals 45 muM) for cyclic AMP. The homogenate and 105 000 times g supernatant of the media also showed non-linear kinetics similar to the Sepharose 6B preparation and their apparent Km values for cyclic AMP hydrolysis were 1.2 muM and 36-40 muM and an enzyme extracted by sonication from 105 000 times g precipitate also exhibited non-linear kinetics (Km equals 5.1 muM and 70 muM). 4) Papaverine exhibited much stronger inhibition on the aorta cyclic AMP phosphodiesterase (50% inhibition of the intima enzyme, I5 o at 0.62 muM, I5 o of the media at 0.62 muM and I5 o of the adventitia at 1.0 muM) than on the brain (I5 o at 8.5 muM) and serum (I5 o at 20 muM) cyclic AMP phosphodiesterase, while theophylline inhibited these enzymes similarly. However, cyclic GMP phosphodiesterases in all tissues examined were inhibited similarly, not only by theophylline but also by papaverine.  相似文献   

8.
In dispersed rat thymocytes neither basal alpha-aminoisobutyric acid influx nor influx stimulated by insulin, prostaglandin theophylline, or butyryl adenosine 3':5'-monophosphate (cyclic AMP) depended on extracellular calcium or magnesium. The divalent cation ionophore A23187 inhibited both basal and stimulated alpha-aminoisobutyric acid influx. The extent to which influx was inhibited depended on ionophore concentration, extracellular calcium concentration, and time but did not depend on extracellular magnesium. Significant inhibition could be detected at an ionophore concentration of 1 muM and maximal inhibition occurred with 6 muM A23187. A23187 increased cellular uptake of calcium and there was good agred calcium uptake and that for ionophore inhibition of alpha-aminoisobutyric acid influx. Incubating cells with A23187 and then adding ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N',-tetraacetic acid completely reversed ionophore-stimulated cellular calcum uptake but did not reverse inhibition of alpha-aminoisobutyric acid influx. Thus, A23187 produces irreversible inhibition of alpha-aminoisobutyric acid transport in dispersed rat thymocytes. Ethanol abolished insulin-stimulated alpha-aminoisobutyric acid influx but did not alter basal influx or that stimulated by prostaglandin E1, theophylline, or N6,O2'-dibutyryl adenosine 3':5'-monophosphate. Inhibition could be detected with 0.2% (v/v) ethanol and insulin-stimulated alpha-aminoisobutyric influx was abolished with 1% ethanol. The effect of ethanol occurred immediately and could be reversed completely. This ability of ethanol to inhibit selectively insulin-stimulated alpha-aminoisobutyric acid influx indicates that the mechanism through which insulin stimulates alpha-aminoisobutyric acid influx is functionally distinct from the stimulation produced by cyclic AMP.  相似文献   

9.
Production of platelet-activating factor (PAF) during opsonized zymosan stimulation of human polymorphonuclear leukocytes is dependent on the concentration of extracellular albumin and on the presence of exogenous fatty acids. Fatty acid-free albumin caused a concentration-dependent increase in PAF synthesis up to 5% albumin concentrations (w/v) where the amount of PAF produced was three- to four-fold higher than in controls containing no albumin. The addition of free fatty acids, particularly arachidonic acid and palmitic acid, to 5% fatty acid-free albumin media caused a concentration-dependent decrease in PAF synthesis. A 50% inhibition of PAF synthesis was observed at an arachidonic acid concentration of 120 microM and at a palmitic acid concentration of 100 microM. The inhibition of PAF production by palmitic acid was also dependent on the concentration of extracellular albumin. In 0.5% fatty acid-free albumin media, a palmitic acid concentration of 40 microM produced a 50% inhibition in PAF synthesis. The addition of palmitic acid did not affect the release of endogenous arachidonic acid during stimulation. In contrast, the addition of stearic acid up to 120 microM in 5% fatty acid-free albumin media had no effect on PAF production. The different inhibitory effects of palmitic acid and stearic acid on PAF production may be related to differences in intracellular utilization of these two fatty acids during cell stimulation.  相似文献   

10.
Nonsteroidal anti-inflammatory drugs inhibit gastric peroxidase activity   总被引:1,自引:0,他引:1  
The peroxidase activity of the mitochondrial fraction of rat gastric mucosa was inhibited with various nonsteroidal anti-inflammatory drugs (NSAIDs) in vitro. Indomethacin was found to be more effective than phenylbutazone (PB) or acetylsalicylic acid (ASA). Mouse gastric peroxidase was also very sensitive to indomethacin inhibition. Indomethacin has no significant effect on submaxillary gland peroxidase activity of either of the species studied. Purified rat gastric peroxidase activity was inhibited 75% with 0.15 mM indomethacin showing half-maximal inhibition at 0.04 mM. The inhibition could be withdrawn by increasing the concentration of iodide but not by H2O2. NSAIDs inhibit gastric peroxidase activity more effectively at acid pH (pH 5.2) than at neutral pH. Spectral studies showed a bathochromic shift of the Soret band of the enzyme with indomethacin indicating its interaction at or near the heme part of the enzyme.  相似文献   

11.
1. Guanylate cyclase of washed particles and plasma membranes showed S-shaped progress curves when titrated with either GTP or Mn2+ ions; similar results were obtained with Triton X-100-solubilized enzyme preparation from washed particles. Hill plots of these data revealed multiple metal-nucleotide and free-metal binding sites. 2. Guanylate cyclase of supernatant fractions displayed typical Michaelis-Menten properties when enzyme required excess of (free) Mn2+ (over GTP) for maximal activities; Ka (free Mn2+) was about 0.15-0.25 mM at subsaturating concentrations of GTP. 4 MnATP, MnADP, and MnGDP were found to increase the activities of both particulate and superantant enzyme, when MnGTP concentration was below saturation and free Mn2+ ion concentration was low (less than 100 muM); MnATP (50muM-1 mM) inhibited both these activities at high free Mn2+ concentration (1.5 mM) and inhibition of the particulate enzyme was greater than that of supernatant enzyme. 5. Ca2+ ions stimulated supernatant-enzyme activity; the stimulatory concentration of Ca2+ ions depended on the concentration of Mn2+ and GTP. 6. A modest stimulation of particulate guanylate cyclase by pyrophosphate (0.02-1 mM) was observed; the pyrophosphate effect appeared to be competitive with respect to GTP. At a higher concentration (2 mM), pyrophosphate produced a marked inhibition of particulate enzyme; the nature of inhibitory effect appeared complex. 7. Inorganic salts (e.g. NaCl, KCl, LiBr, NaF) produced inhibition of particulate enzyme; the degree of inhibition of Triton X-100-stimulated activity was less than that of unstimulated activity. 9. Treatment of sarcolemmal or microsomal membranes with either phospholipase C or trypsin decreased, whereas phospholipase A increased, the activity of guanylate cyclase.  相似文献   

12.
The kinetics of rat liver L-type pyruvate kinase (EC 2.7.1.40), phosphorylated with cyclic AMP-stimulated protein kinase from the same source, and the unphosphorylated enzyme have been compared. The effects of pH and various concentrations of substrates, Mg2+, K+ and modifiers were studied. In the absence of fructose 1, 6-diphosphate at pH 7.3, the phosphorylated pyruvate kinase appeared to have a lower affinity for phosphoenolpyruvate (K0.5=0.8 mM) than the unphosphorylated enzyme (K0.5=0.3 mM). The enzyme activity vs. phosphoenolpyruvate concentration curve was more sigmoidal for the phosphorylated enzyme with a Hill coefficient of 2.6 compared to 1.6 for the unphosphorylated enzyme. Fructose 1, 6-diphosphate increased the apparent affinity of both enzyme forms for phosphoenolpyruvate. At saturating concentrations of this activator, the kinetics of both enzyme forms were transformed to approximately the same hyperbolic curve, with a Hill coefficient of 1.0 and K0.5 of about 0.04 mM for phosphoenolpyruvate. The apparent affinity of the enzyme for fructose 1, 6-diphosphate was high at 0.2 mM phosphoenolpyruvate with a K0.5=0.06 muM for the unphosphorylated pyruvate kinase and 0.13 muM for the phosphorylated enzyme. However, in the presence of 0.5 mM alanine plus 1.5 mM ATP, a higher fructose 1, 6-diphosphate concentration was needed for activation, with K0.5 of 0.4 muM for the unphosphorylated enzyme and of 1.4 muM for the phosphorylated enzyme. The results obtained strongly indicate that phosphorylation of pyruvate kinase may also inhibit the enzyme in vivo. Such an inhibition should be important during gluconeogenesis.  相似文献   

13.
Ferrochelatase (EC 4.99.1.1) was purified 2000-fold to apparent homogeneity from isolated chicken erythrocyte mitochondria. The purified enzyme yields a single band on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis with an apparent Mr of 42 000. The enzyme utilizes proto-, meso- and deutero-porphyrin with Km values of 37, 51 and 80 microM respectively. The disubstituted porphyrins 2,4-bisglycol deutero-porphyrin and 2,4-disulphonic deuteroporphyrin were not substrates. Mn2+, Hg2+, Pb2+ and Co2+ were strong inhibitors of the purified enzyme. Palmitic acid and oleic acid stimulated activity, whereas linoleic acid inhibited and phospholipids had variable effects. Chicken ferrochelatase was inhibited by N-ethylmaleimide and iodoacetamide. Inhibition by iodoacetamide was pseudo-first-order, but inhibition by N-ethylmaleimide appeared to be biphasic in nature with an initial high rate followed by a much lower rate of inactivation. The characteristics of the chicken erythrocyte enzyme are compared with those previously reported for mammalian liver ferrochelatase.  相似文献   

14.
1. Renal tubular membranes from rat kidneys were prepared, and adenylate cyclase activity was measured under basal conditions, after stimulation by NaF or salmon calcitonin. Apparent Km value of the enzyme for hormone-linked receptor was close to 1 x 10(-8) M. 2. The system was sensitive to temperature and pH. pH was found to act both on affinity for salmon calcitonin-linked receptor and maximum stimulation, suggesting an effect of pH on hormone-receptor binding and on a subsequent step. 3. KCl was without effect areas whereas CoCl and CaCl2 above 100 muM and MnCl2 above 1 muM inhibited F- -and salmon calcitonin-sensitive adenylate cyclase activities. The Ca2+ inhibition of the response reflected a fall in maximum stimulation and not a loss of affinity of salmon calcitonin-linked receptor for the enzyme. 4. The measurement of salmon calcitonin-sensitive adenylate cyclase activity as a function of ATP concentration showed that the hormone increases the maximum velocity of the adenylate cyclase. GTP, ITP and XTP at 200 muM did not modify basal, salmon calcitonin- and parathyroid hormone-sensitive adenylate cyclase activities. 5. Basal, salmon calcitonin- and F- -sensitive adenylate cyclase activities decreased at Mg2+ concentrations below 10 mM. High concentrations of Mg2+ (100 mM) led to an inhibition of the F- -stimulated enzyme. 6. Salmon calcitonin-linked receptor had a greater affinity for adenylate cyclase than human or porcine calcitonin-linked receptors. There was no additive effect of these three calcitonin peptides whereas parathyroid hormone added to salmon calcitonin increased adenylate cyclase activity, thus showing that both hormones bound to different membrane receptors. Human calcitonin fragments had no effect on adenylate cyclase activity. 7. Salmon calcitonin-stimulated adenylate cyclase activity decreased with the preincubation time. This was due to progressive degradation of the hormone and not to the rate of binding to membrane receptors.  相似文献   

15.
1. Micrococcus denitrificans excretes three catechol-containing compounds, which can bind iron, when grown aerobically and anaerobically in media deficient in iron, and anaerobically in medium with a high concentration of Ca2+. 2. One of these compounds was identified as 2,3-dihydroxybenzoic acid (compound I), and the other two were tentatively identified as N1N8-bis-(2,3-dihydroxybenzoyl)spermidine (compound II) and 2-hydroxybenzoyl-N-L-threonyl-N4[N1N8-bis-(2,3-dihydroxybenzoyl)]spermidine (compound III). 3. The equimolar ferric complex of compound III was prepared; compound III also forms complexes with Al3+, Cr3+ and Co2+ ions. 4. Cell-free extracts from iron-deficient organisms catalyse the formation of compound II from 2,3-dihydroxybenzoic acid and spermidine, and of compound III from compound II, L-threonine and 2-hydroxybenzoic acid; both reactions require ATP and dithiothreitol, and Mg2+ stimulates activity. The enzyme system catalysing the formation of compound II has optimum activity at pH 8.8 Fe2+ (35muM), Fe3+ (35muM) and Al3+ (65muM) inhibit the reaction by 50 percent. The enzyme system forming compound III has optimum activity at pH 8.6. Fe2+ (110 muM), Fe3+ (110 muM) and Al3+ (135 muM) inhibit the reaction by 50 percent. 5. At least two proteins are required for the formation of compound II, and another two proteins for its conversion into compound III. 6. The changes in the activities of these two systems were followed after cultures became deficient in iron. 7. Ferrous 1,10-phenanthroline is formed when a cell-free extract from iron-deficient cells is incubated with the ferric complex of compound III, succinate, NADH and 1,10-phenanthroline under N2.  相似文献   

16.
We have previously purified a membrane-bound ceramidase from rat brain and recently cloned the human homologue. We also observed that the same enzyme is able to catalyze the reverse reaction of ceramide synthesis. To obtain insight into the biochemistry of this enzyme, we characterized in this study this reverse activity. Using sphingosine and palmitic acid as substrates, the enzyme exhibited Michaelis-Menten kinetics; however, the enzyme did not utilize palmitoyl-CoA as substrate. Also, the activity was not inhibited in vitro and in cells by fumonisin B1, an inhibitor of the CoA-dependent ceramide synthase. The enzyme showed a narrow pH optimum in the neutral range, and there was very low activity in the alkaline range. Substrate specificity studies were performed, and the enzyme showed the highest activity with d-erythro-sphingosine (Km of 0.16 mol %, and Vmax of 0.3 micromol/min/mg), but d-erythro-dihydrosphingosine and the three unnatural stereoisomers of sphingosine were poor substrates. The specificity for the fatty acid was also studied, and the highest activity was observed for myristic acid with a Km of 1.7 mol % and a Vmax of 0.63 micromol/min/mg. Kinetic studies were performed to investigate the mechanism of the reaction, and Lineweaver-Burk plots indicated a sequential mechanism. Two competitive inhibitors of the two substrates were identified, l-erythro-sphingosine and myristaldehyde, and inhibition studies indicated that the reaction followed a random sequential mechanism. The effect of lipids were also tested. Most of these lipids showed moderate inhibition, whereas the effects of phosphatidic acid and cardiolipin were more potent with total inhibition at around 2.5-5 mol %. Paradoxically, cardiolipin stimulated ceramidase activity. These results define the biochemical characteristics of this reverse activity. The results are discussed in view of a possible regulation of this enzyme by the intracellular pH or by an interaction with cardiolipin and/or phosphatidic acid.  相似文献   

17.
Palmitic acid incorporation into the intramuscular acylglycerols in rat skeletal muscles of different fiber types was investigated at various total and unbound to albumin concentrations by means of the hind-limb perfusion technique. It was found that at simultaneously increasing total and unbound to albumin palmitic acid concentrations in the perfusion medium the incorporation of palmitic acid into acylglycerols increased. However, when the concentration of palmitic acid not bound to albumin was kept constant and the total palmitic acid concentration was increased, the incorporation also increased although markedly less than under former conditions. The increase was most apparent in the muscles composed of slow-twitch oxidative and fast-twitch oxidative-glycolytic fibers where fatty acid uptake is the greatest. These findings suggest that fatty acid incorporation into intramuscular acylglycerols depends not only on the unbound to albumin fatty acid concentration but also, to some extent, on the total fatty acid concentration.  相似文献   

18.
Phosphatidate phosphatase (phosphatidate phosphohydrolase, EC 3.1.3.4) was present at very high specific activity in the soluble fraction of isolated rat adipocytes. Using phosphatidate in aqueous dispersion 90% of its hydrolysis depended on the presence of Mg2+. Mg2+ appeared to almost saturate the enzyme at 20-40 mM with no indication of an optimum. The substrate concentration was optimum at 1.2 mM and the pH at 6.8. Initial rates were linear for only 4-5 min at optimum conditions. Increasing inhibition occurred at high phosphatidate concentrations. At optimum conditions acid or alkaline phosphatase activity was not measurable. The Mg2+-dependent activity was enhanced by 3-sn-phophatidylcholine and inhibited by albumin, 3-sn-phosphatidyletanolamine, 3-sn-phosphatidylinositol, diacylglycerol, oleoyl-CoA, and oleate. Oleoyl-CoA was the most potent "effector". Fasting for 24, 48 and 72 h decreased the activity both relative to protein and to DNA. The activity thus decreased to about one-third of that of the fed rat during 72 h of fasting. The effects of Mg2+, various lipids, and fasting may indicate that some form of control of glyceride synthesis can be exerted through the soluble phosphatidate phosphatase.  相似文献   

19.
Folic acid and vitamin C were used in the concentration range of 0-500muM as exogenous growth enhancers to stimulate pea (Pisum sativum) seedling vigour. The results suggest that a concentration of 50muM folic acid and 500muM vitamin C were optimum in maximally enhancing seed vigour and potentially seedling performance according to both agronomic and biochemical seed vigour parameters. Results indicated that germination percentage, shoot weight, shoot height, and root length were enhanced in folic acid and vitamin C treated plants compared to control plants. The levels of enhanced phenolic content in response to folic acid and vitamin C treatments were highest on days 8 and 10. Evaluation of critical biochemical parameters indicated that the average glucose-6-phosphate dehydrogenase (G6PDH) activity and proline content in response to treatments were higher than control and correlated to enhanced phenolic content and DPPH-based antioxidant activity. Key enzymes, guaiacol peroxidase (GPX), superoxide dismutase (SOD), and catalase (CAT) were also higher in response to treatments and correlated to enhanced phenolic content and DPPH-based antioxidant activity. Taken together, these studies support the hypothesis that the proline-linked pentose phosphate pathway stimulates phenolic synthesis and related free-radical scavenging antioxidant activity. Further, this proline-linked pentose phosphate pathway stimulation in response to folic acid and vitamin C was also correlated to antioxidant enzyme response indicated by the stimulation of GPX, SOD, and CAT activities. Therefore, this study indicates the enhancement of seed vigour response by folic acid and vitamin C as reflected in both agronomic and biochemical responses, and this occurred through the stimulation of phenolic-linked antioxidant response that is likely positively modulated through the proline-linked pentose phosphate pathway.  相似文献   

20.
Guanylate cyclase from human platelets was over 90% soluble, even when assayed in the presence of Triton X-100. A time-dependent increase in activity occurred when the enzyme was incubated at 37 degrees and this spontaneous activation was prevented by dithiothreitol. Arachidonic acid stimulated the soluble enzyme activity approximately 2- to 3-fold. Linear double reciprocal plots of guanylate cyclase activation as a function of arachidonic acid concentration were obtained with a Ka value of 2.1 muM. A Hill coefficient of 0.98 was obtained indicating that one fatty acid binding site is present for each catalytic site. Concentrations of arachidonic acid in excess of 10 muM caused less than maximal stimulation. Dihomo-gamma-linolenic acid and two polyunsaturated 22 carbon fatty acids stimulated the activity of guanylate cyclase to the same degree as did arachidonic acid. The methyl ester of arachidonic acid was much less effective. Diene, monoene, and saturated fatty acids of various carbon chain lengths as well as prostaglandins E1, E2, and F2alpha, had little or no effect. These data indicate that the structural determined required for stimulation by fatty acids of soluble platelet guanylate cyclase is a 1,4,7-octatriene group with its first double bond in the omega6 position. This structural group is similar to the substrate specificity determinants of fatty acid cyclooxygenase, the first enzyme of the prostaglandin synthetase complex. However, conversion of arachidonic acid to a metabolite of the cyclooxygenase pathway did not appear to be required for activation of the cyclase since activation occurred in the 105,000 X g supernatant fraction and pretreatment of this fraction with aspirin did not alter the ability of arachidonic acid to activate guanylate cyclase. Kinetic studies showed that the stimulation of guanylate cyclase by arachidonic acid is primarily an effect on maximal velocity. Arachidonic acid did not alter the concentration of free Mn2+ required for optimal activity. It is concluded that the activity of the soluble form of guanylate cyclase in cell-free preparations of human platelets can be increased by a lipid-protein interaction involving specific polyunsaturated fatty acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号