首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Gene》1996,171(1):59-63
A chromosomal DNA fragment containing the Bacillus macquariensis (Bm) ATP-dependent phosphofructokinase-encoding gene (pfk) was cloned from a subgenomic library in pUC19 using a PCR-derived probe. The region containing pfk, including flanking sequences, was sequenced and the deduced amino acid sequence (aa) was found to be homologous to other PFK, but it contained two single-aa changes conserved in a range of other organisms from pro- and eukaryotic origins. Enzymatic studies with PFK purified from overproducing Escherichia coli (Ec) host cells showed that the Bm enzyme is similar to B. stearothermophilus (Bs) PFK in many respects and that it is relatively cold stable.  相似文献   

2.
3.
4.
5.
Corynebacterium glutamicum mutant KY9707 was originally isolated for lysozyme-sensitivity, and showed temperature-sensitive growth. Two DNA fragments from a wild-type C. glutamicum chromosomal library suppressed the temperature-sensitivity of KY9707. These clones also rescued the lysozyme-sensitivity of KY9707, although partially. One of them encodes a protein of 382 amino acid residues, the N-terminal domain of which was homologous to RNase HI. This gene suppressed the temperature-sensitive growth of an Escherichia coli rnhA rnhB double mutant. We concluded that this gene encodes a functional RNase HI of C. glutamicum and designated it as rnhA. The other gene encodes a protein of 707 amino acid residues highly homologous to RecG protein. The C. glutamicum recG gene complemented the UV-sensitivity of E. coli recG258::kan mutant. KY9707 showed increased UV-sensitivity, which was partially rescued by either the recG or rnhA gene of C. gluamicum. Point mutations were found in both recG and rnhA genes in KY9707. These suggest that temperature-sensitive growth, UV-sensitivity, and probably lysozyme-sensitivity also, of KY9707 were caused by mutations in the genes encoding RNase HI and RecG.  相似文献   

6.
To investigate a possible chromosomal clustering of glycolytic enzyme genes, the complete nucleotide sequence of the 8029 bp insert of Escherichia coli DNA in the ColE1 plasmid pLC33-5 of the Clarke and Carbon collection (Clark and Carbon, 1976) was determined. Genes (pgk, fda) encoding the phosphoglycerate kinase and Class II fructose 1,6-bisphosphate aldolase, respectively, of E. coli were identified. The phosphoglycerate kinase was found to be highly homologous in primary structure to the same enzyme from eukaryotic organisms. A further large open reading frame, designated gapB, was also identified, which on the basis of sequence homology, appears to encode another glycolytic enzyme, glyceraldehyde 3-phosphate dehydrogenase. This putative gene differs significantly from that (designated gapA) already identified as coding for this enzyme in E. coli and which maps elsewhere on the chromosome. The products, if any, of several other open reading frames remain to be identified.  相似文献   

7.
Early genetic analysis of alternate recombination pathways in Escherichia coli identified the RecE recombination pathway and the required exonuclease VIII encoded by the recE gene. Observations that not ail recombination events promoted by the RecE pathway require recA suggest the existence of an additional homologous pairing protein besides RecA in E. coli. Genetic and biochemical analysis of the recE gene region indicates there are two partially overlapping genes, recE and recT, encoding at least two proteins: exoVIII and the RecT protein. Biochemical analysis has shown that the RecT protein, in combination with exoVIII, promotes homologous pairing and strand exchange in reactions containing linear duplex DNA and homologous, circular, single-stranded DNA as substrates. This reaction occurs in the absence of any high-energy cofactor. These two proteins, RecT and exoVIII, appear to be members of a second class of homologous pairing proteins that are required in genetic recombination and differ from the class of homologous pairing proteins that includes RecA. Members of this second class of proteins appear to include both bacteriophage-encoded proteins and proteins from eukaryotes and their viruses.  相似文献   

8.
L F Wu  A Reizer  J Reizer  B Cai  J M Tomich    M H Saier  Jr 《Journal of bacteriology》1991,173(10):3117-3127
The fruK gene encoding fructose-1-phosphate kinase (FruK), located within the fructose (fru)-catabolic operon of Rhodobacter capsulatus, was sequenced. FruK of R. capsulatus (316 amino acids; molecular weight = 31,232) is the same size as and is homologous to FruK of Escherichia coli, phosphofructokinase B (PfkB) of E. coli, phosphotagatokinase of Staphylococcus aureus, and ribokinase of E. coli. These proteins therefore make up a family of homologous proteins, termed the PfkB family. A phylogenetic tree for this new family was constructed. Sequence comparisons plus chemical inactivation studies suggested the lack of involvement of specific residues in catalysis. Although the Rhodobacter FruK differed markedly from the other enzymes within the PfkB family with respect to amino acid composition, these enzymes exhibited similar predicted secondary structural features. A large internal segment of the Rhodobacter FruK was found to be similar in sequence to the domain bearing the sugar bisphosphate-binding region of the large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase of plants and bacteria. Proteins of the PfkB family did not exhibit statistically significant sequence identity with PfkA of E. coli. PfkA, however, is homologous to other prokaryotic and eukaryotic ATP- and PPi-dependent Pfks (the PfkA family). These eukaryotic, ATP-dependent enzymes each consist of a homotetramer (mammalian) or a heterooctamer (yeasts), with each subunit containing an internal duplication of the size of the entire PfkA protein of E. coli. In some of these enzymes, additional domains are present. A phylogenetic tree was constructed for the PfkA family and revealed that the bacterial enzymes closely resemble the N-terminal domains of the eukaryotic enzyme subunits whereas the C-terminal domains have diverged more extensively. The PPi-dependent Pfk of potato is only distantly related to the ATP-dependent enzymes. On the basis of their similar functions, sizes, predicted secondary structures, and sequences, we suggest that the PfkA and PfkB families share a common evolutionary origin.  相似文献   

9.
The genomic organization of the hsp83 gene of Drosophila auraria, a far-eastern endemic species belonging to the montium subgroup of the melanogaster species group, is presented here. Based on in situ hybridization on polytene chromosomes, cDNA and genomic clone mapping, nucleotide sequencing, and genomic Southern analysis, hsp83 is shown to be present as a single-copy gene at locus 64B on the 3L chromosome arm in D. auraria. This gene is organized into two exons separated by a 929-bp intron. The first exon represents the mRNA leader sequence and is not translated, while the coding region, having a length of 2,151 bp, is solely included in the second exon. Nucleotide sequence comparisons of D. auraria hsp83 with homologous sequences from other organisms show high conservation of the coding region (88–92% identity) in the genus Drosophila, in addition to the conserved genomic organization of two-exons–one-intron, of comparable size and arrangement. A phylogenetic tree based on the protein sequences of homologous genes from representative organisms is in accord with the accredited phylogenetic position of D. auraria. In the hsp83 gene region, a second case of long antiparallel coupled open reading frames (LAC ORFs) for this species was found. The antiparallel to the hsp83 gene ORF is 1,554 bases long, while the two ORFs overlap has a size of 1,548 bp. The anti-hsp83 ORF does not show significant homology to any known gene sequences. In addition, no similar LAC ORF structures were found in homologous gene regions of other organisms. Received: 18 April 1997 / Accepted: 1 August 1997  相似文献   

10.
Several species of Enterobacteriaceae were investigated for their ability to synthesise selenium-containing macromolecules. Selenated tRNA species as well as selenated polypeptides were formed by all organisms tested. Two selenopolypeptides could be identified in most of the organisms which correspond to the 80 kDa and 110 kDa subunits of the anaerobicaly induced formate dehydrogenase isoenzymes of E coli. In those organisms possessing both isoenzymes, their synthesis was induced in a mutually exclusive manner dependent upon whether nitrate was present during anaerobic growth. The similarity of the 80 kDa selenopolypeptide among the different species was assessed by immunollogical and genetic analyses. Antibodies raised against the 80 kDa selenopolypeptide from E. coli cross-reacted with an 80 kDa polypeptide in those organisms which exhibited fermentative formate dehydrogenase activity. These organisms also contained genes which hydridised with the fdhF gene from E. coli. In an attempt to identify the signals responsible for incorporation of selenium into the selenopolypeptides in these organisms we cloned a portion of the fdhF gene homologue from Enterobacter aerogenes. The nucleotide sequence of the cloned 723 bp fragment was determined and it was shown to contain an in-frame TGA (stop) codon at the position corresponding to that present in the E. coli gene. This fragment was able to direct incorporation of selenocysteine when expressed in the heterologous host, E. coli. Moreover, the E. coli fdhF gene was expressed in Salmonella typhimurium, Serratia marcescens and Proteus mirabilis, indicating a high degree of convervation of the selenating system throughout the enterobacteria.Abbreviations DTT dithiothreitol - SDS sodium dodecyl sulfate - Lac lactose operon gene(s) - amp ampicillin - IPTG isopropyl-thio--d-galactopyranoside  相似文献   

11.
Genetic selection and DNA sequences of 4.5S RNA homologs.   总被引:8,自引:2,他引:6       下载免费PDF全文
S Brown  G Thon    E Tolentino 《Journal of bacteriology》1989,171(12):6517-6520
A general strategy for cloning the functional homologs of an Escherichia coli gene was used to clone homologs of 4.5S RNA from other bacteria. The genes encoding these homologs were selected by their ability to complement a deletion of the gene for 4.5S RNA. DNA sequences of the regions encoding the homologs were determined. Since this approach does not require that the homologous genes hybridize with probes generated from the E. coli sequence, the sequences of the homologs were not all similar to the sequence of the E. coli gene. Despite the dissimilarity of the primary sequences of some of the homologs, all could be folded to obtain a similar structure.  相似文献   

12.
Summary The recA gene of Azotobacter vinelandii was isolated from a genomic library by heterologous complementation of an Escherichia coli recA mutation for resistance to UV radiation. The A. vinelandii recA gene was localized on adjacent PstI fragments of 1.3 and 1.7 kb. The cloned A. vinelandii recA gene was functionally analogous to the E. coli recA gene. It was also able to complement the E. coli recA mutation for homologous recombination. A recA deletion mutant of A. vinelandii was constructed. This mutant was sensitive to DNA-damaging agents like UV rays, methyl methane sulfonate (MMS) and nalidixic acid and was deficient in homologous recombination.  相似文献   

13.
Summary We have cloned from Pseudomonas putida a gene homologous to Escherichia coli dnaA, and determined the sequence of the gene and its neighboring region. The dnaA gene and at least three other genes, dnaN, recF and gyrB, were found to be highly homologous to the genes in the dnaA regions of the E. coli and Bacillus subtilis chromosomes. A non-translatable region of some 600 bp immediately upstream of the dnaA gene is also conserved in the three bacteria and contains 3, 12, and 14 DnaA-boxes (TTATCCACA and closely related sequences) in E. coli, P. putida and B. subtilis, respectively. The present results confirm our hypothesis that the dnaA region is the replication origin region of the ancestral bacterium and that the essential feature of the dnaA and DnaA-box combination is conserved in most eubacteria and plays a central role in initiation of chromosomal replication.  相似文献   

14.
15.
Two structural genes for the Thermus thermophilus elongation factor Tu (tuf) were identified by cross-hybridization with the tufA gene from E. coli. The sequence of one of these tuf genes, localized on a 6.6 kb Bam HI fragment, was determined and confirmed by partial protein sequencing of an authentic elongation factor Tu from T. thermophilus HB8. Expression of this tuf gene in E. coli minicells provided a low amount of immuno-precipitable thermophilic EF-Tu. Affinity labeling of the T. thermophilus EF-Tu and sequence comparison with homologous proteins from other organisms were used to identify the guanosine-nucleotide binding domain.  相似文献   

16.
17.
Summary A gene library of Bacillus subtilis chromosomal DNA was screened for genes capable of reverting the growth defects of the Escherichia coli secA51(Ts) mutant at 42° C. A B. subtilis gene, designated csaA, was found to phenotypically suppress not only the growth defects of the E. coli mutant, but also to relieve the detrimental accumulation of precursors of exported proteins. The csaA gene encoded a protein of 15 kDa (137 amino acids) and was likely to be the distalmost member of an operon. No similarity to csaA was found among DNA or protein sequences deposited in databases. In contrast to other homologous or heterologous suppressors of the E. coli secA51(Ts) mutation, the csaA gene did not exert pleiotropic effects on either the E. coli sec Y24(Ts) or lep9(Ts) mutations. However, it restored the ability of a SecB-deficient mutant to grow on complex medium. It is proposed that CsaA serves as a molecular chaperone for exported proteins or alternatively acts by stabilizing the SecA protein.  相似文献   

18.
19.
The gene encoding thioredoxin in Anabaena sp. strain PCC 7119 was cloned in Escherichia coli based on the strategy that similarity between the two thioredoxins would be reflected both in the gene sequence and in functional cross-reactivity. DNA restriction fragments containing the Anabaena thioredoxin gene were identified by heterologous hybridization to the E. coli thioredoxin gene following Southern transfer, ligated with pUC13, and used to transform an E. coli strain lacking functional thioredoxin. Transformants that complemented the trxA mutation in E. coli were identified by increased colony size and confirmed by enzyme assay. Expression of the cloned Anabaena thioredoxin gene in E. coli was substantiated by subsequent purification and characterization of the algal protein from E. coli. The amino acid sequence derived from the DNA sequence of the Anabaena gene was identical to the known amino acid sequence of Anabaena thioredoxin. The E. coli strains which expressed Anabaena thioredoxin complemented the TrxA- phenotype in every respect except that they did not support bacteriophage T7 growth and had somewhat decreased ability to support bacteriophages M13 and f1.  相似文献   

20.
Dephosphocoenzyme A (dephospho-CoA) kinase catalyzes the final step in coenzyme A biosynthesis, the phosphorylation of the 3'-hydroxy group of the ribose sugar moiety. Wild-type dephospho-CoA kinase from Corynebacterium ammoniagenes was purified to homogeneity and subjected to N-terminal sequence analysis. A BLAST search identified a gene from Escherichia coli previously designated yacE encoding a highly homologous protein. Amplification of the gene and overexpression yielded recombinant dephospho-CoA kinase as a 22.6-kDa monomer. Enzyme assay and nuclear magnetic resonance analyses of the product demonstrated that the recombinant enzyme is indeed dephospho-CoA kinase. The activities with adenosine, AMP, and adenosine phosphosulfate were 4 to 8% of the activity with dephospho-CoA. Homologues of the E. coli dephospho-CoA kinase were identified in a diverse range of organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号