首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The enzyme kinetic studies with endonucleases specific for single-stranded DNA and the thermal denaturation analyses of DNA showed that a high mobility group (HMG) nonhistone protein fraction HMG (1 + 2), composed of HMG1 and HMG2, has an activity to unwind DNA partially at low protein-to-DNA weight ratio. Isolated HMG1 and HMG2 have the same activity. Divalent cations such as Mg++ or Ca++ were necessary for the unwinding reaction. A peptide containing high glutamic and aspartic (HGA) region, isolated from the tryptic digest of HMG (1 + 2), unwound DNA depending on the presence of Mg++ or Ca++, suggesting that the HMA region in HMG protein is the active site for the DNA unwinding reaction. Poly-L-glutamic acid, employed as a model peptide of the HGA region, showed the activity. Finally, mechanisms of the DNA unwinding reaction by the HMG protein and possible role of the divalent cations are discussed.  相似文献   

2.
In order to examine a possibility that the high acidic amino acid region in the nonhistone protein HMG(1+2) is concerned with the Mg2+-, or Ca2+-dependent unwinding of DNA by the HMG(1+2) (1,2), poly-L-glutamic acid was employed as an acidic model peptide for thermal melting temperature analysis. The poly-L-glutamic acid bound to DNA either in the presence or absence of Mg2+. The poly-L-glutamic acid unwound DNA double-helix to a similar extent to HMG(1+2) in the presence of Mg2+ or Ca2+, but not in the absence of them. These results may suggest that the high acidic amino acid region in HMG(1+2) participates in Mg2+-, Ca2+-dependent unwinding of DNA double-helix.  相似文献   

3.
A high mobility group (HMG) nonhistone protein fraction HMG(1 + 2), composed of HMG1 and HMG2, was prepared from pig thymus chromatin. In order to examine a possibility that the HMG(1 + 2) participates in the unwinding of the DNA double-helix, DNA hydrolysis assay systems with the endonucleases specific for single-stranded DNA were employed. In the presence of HMG(1 + 2), the hydrolysis of double-stranded DNA by N. crassa endonuclease was markedly promoted, while the hydrolysis of single-stranded DNA was hardly enhanced. The reaction kinetic data showed that the stimulation of the hydrolysis of double-stranded DNA in the presence of HMG(1 + 2) was due to the unwinding of the DNA double-helix by the HMG(1 + 2), and not due to stimulation of enzyme activity of the endonuclease by the protein. The unwinding reactions were dependent on the HMG protein concentration at low weight protein to DNA ratios and reached a maximum at the ratio of 0.025. The region unwound in the whole DNA was partial. Similar results were obtained for experiments with nuclease S1. Isolated HMG1 and HMG2 fractions showed DNA unwinding activity of similar extents. The association constant obtained by fluorescence quenching analysis showed that the HMG(1 + 2) has higher affinity to single-stranded DNA than to double-stranded DNA. The susceptibility to the unwinding differed with the DNA source. These results suggest that HMG(1 + 2) at a low weight protein to DNA ratio binds to some limited double-stranded region in DNA and unwinds the DNA partially.  相似文献   

4.
A high mobility group (HMG) nonhistone protein fraction HMG(1+2) from pig thymus, composed of HMG1 and HMG2, has an activity to unwind the double helical structure of DNA (Yoshida, M. and Shimura, K. (1984) J. Biochem. 95, 117-124; Makiguchi, K., Chida, Y., Yoshida, M., and Shimura, K. (1984) J. Biochem. 95, 423-429). The HMG(1+2) was cleaved with trypsin, followed by peptide separation by ionic exchange column chromatography with Polybuffer exchanger PBE94. The effects of five peptide fractions thus obtained on the thermal denaturation of DNA were measured. A peptide containing a high glutamic and aspartic (HGA) region, of the composition Glu34Asp15Lys3, unwound DNA depending on the presence of Mg2+ or Ca2+, while other peptide fractions did not, suggesting that the HGA region in HMG(1+2) is an active site in the unwinding reaction of the double helical structure of DNA.  相似文献   

5.
Nonhistone proteins HMG1 and HMG2 unwind DNA double helix.   总被引:9,自引:6,他引:3       下载免费PDF全文
In a previous communication we have shown that both HMG1 and HMG2 nonhistone proteins change the DNA helical structure and the binding of HMG1 and HMG2 to DNA induces a net unwinding equivalent of DNA double helix (Javaherian, K., Liu, L. F. and Wang, J. C. (1978) Science, 199, 1345-1346). Employing melting absorption technique, we now show that in the presence of salt HMG1 and HMG2 destabilize DNA whereas in the absence of salt, they both stabilize DNA molecules. Consequently the folded structure of HMG must play an important role in melting DNA. Furthermore, by measuring topological winding number using competition unwinding experiments, we conclude that HMG1 has a higher affinity for a single-stranded DNA relative to double-stranded DNA. These results together suggest that HMG1 and HMG2 unwind DNA double helix by local denaturation of the DNA base pairs. The net unwinding angles have been measured to be 22 degrees and 26 degrees per molecule of HMG1 and HMG2 respectively.  相似文献   

6.
recA protein, which is essential for genetic recombination in Escherichia coli, causes extensive unwinding of the double helix by an ATP-dependent reaction and accumulation of positive supercoiling in closed circular double-stranded DNA. Initiation of the extensive unwinding was largely dependent on homologous single-stranded DNA. Therefore, it is likely that the extensive unwinding is initiated mainly at the site of D-loops. "Nascent D-loops" in which the two DNA molecules did not interwind were also good initiation sites of extensive unwinding. When the concentration of Mg2+ was decreased from the standard conditions for D-loop formation (13 mM MgCl2; the higher Mg2+ condition) to the lower Mg2+ condition (1 to 2 mM MgCl2), extensive unwinding by recA protein was initiated very quickly in the absence of single-stranded DNA. Results showed that this single-stranded DNA-independent initiation of extensive unwinding (i) requires negative superhelicity of the double-stranded DNA and (ii) is a first order reaction with respect to the DNA. These observations suggest that, under the lower Mg2+ condition, the extensive unwinding starts at a transiently denatured site in the negative superhelical DNA. Once initiated, the unwinding by recA protein is propagated extensively, even under conditions that do not allow its initiation. Therefore, the propagation of unwinding is a processive reaction ("processive unwinding"). Previous studies indicated that recA protein promotes "distributive unwinding" of double helix which depends on single-stranded DNA. Therefore, recA protein promotes unwinding of the double helix by either of two distinct pathways. Stress caused by the processive unwinding could explain the dissociation of D-loops and reversible inactivation of the double-stranded DNA in a D-loop cycle.  相似文献   

7.
A DNA helicase from human cells.   总被引:8,自引:6,他引:2       下载免费PDF全文
We have initiated the characterization of the DNA helicases from HeLa cells, and we have observed at least 4 molecular species as judged by their different fractionation properties. One of these only, DNA helicase I, has been purified to homogeneity and characterized. Helicase activity was measured by assaying the unwinding of a radioactively labelled oligodeoxynucleotide (17 mer) annealed to M13 DNA. The apparent molecular weight of helicase I on SDS polyacrylamide gel electrophoresis is 65 kDa. Helicase I reaction requires a divalent cation for activity (Mg2+ greater than Mn2+ greater than Ca2+) and is dependent on hydrolysis of ATP or dATP. CTP, GTP, UTP, dCTP, dGTP, dTTP, ADP, AMP and non-hydrolyzable ATP analogues such as ATP gamma S are unable to sustain helicase activity. The helicase activity has an optimal pH range between pH8.0 to pH9.0, is stimulated by KCl or NaCl up to 200mM, is inhibited by potassium phosphate (100mM) and by EDTA (5mM), and is abolished by trypsin. The unwinding is also inhibited competitively by the coaddition of single stranded DNA. The purified fraction was free of DNA topoisomerase, DNA ligase and nuclease activities. The direction of unwinding reaction is 3' to 5' with respect to the strand of DNA on which the enzyme is bound. The enzyme also catalyses the ATP-dependent unwinding of a DNA:RNA hybrid consisting of a radioactively labelled single stranded oligodeoxynucleotide (18 mer) annealed on a longer RNA strand. The enzyme does not require a single stranded DNA tail on the displaced strand at the border of duplex regions; i.e. a replication fork-like structure is not required to perform DNA unwinding. The purification of the other helicases is in progress.  相似文献   

8.
We have compared HMG1 with the product of tryptic removal of its acidic C-terminal domain termed HMG3, which contains two 'HMG-box' DNA-binding domains. (i) HMG3 has a higher affinity for DNA than HMG1. (ii) Both HMG1 and HMG3 supercoil circular DNA in the presence of topoisomerase I. Supercoiling by HMG3 is the same at approximately 50 mM and approximately 150 mM ionic strength, as is its affinity for DNA, whereas supercoiling by HMG1 is less at 150 mM than at 50 mM ionic strength although its affinity for DNA is unchanged, showing that the acidic C-terminal tail represses supercoiling at the higher ionic strength. (iii) Electron microscopy shows that HMG3 at a low protein:DNA input ratio (1:1 w/w; r = 1), and HMG1 at a 6-fold higher ratio, cause looping of relaxed circular DNA at 150 mM ionic strength. Oligomeric protein 'beads' are apparent at the bases of the loops and at cross-overs of DNA duplexes. (iv) HMG3 at high input ratios (r = 6), but not HMG1, causes DNA compaction without distortion of the B-form. The two HMG-box domains of HMG1 are thus capable of manipulating DNA by looping, compaction and changes in topology. The acidic C-tail down-regulates these effects by modulation of the DNA-binding properties.  相似文献   

9.
L G Sheflin  S W Spaulding 《Biochemistry》1989,28(13):5658-5664
HMG 1 is known to bind to a variety of DNAs and to unwind nicked and closed circular DNA. We now report evidence that it has a significantly higher unwinding angle on negatively supercoiled DNA than on the other torsional forms. The degree of unwinding observed on nicked circular DNA depends on the purity of the HMG 1 preparation used. HMG 1 from CM-Sephadex has an unwinding angle of 28.8 degrees, compared to 7.2 degrees for the purer preparation obtained from Mono S, suggesting that contaminating strand-separating activity is removed by the additional purification step. The subsequent studies on closed circular forms of DNA were all performed using the purer HMG 1. After preincubation of highly negatively supercoiled DNA (sigma = -0.040) with HMG 1, the DNA-protein mixture was relaxed with Escherichia coli topoisomerase I. At molar ratios of less than 100:1 (HMG 1 to DNA), negatively supercoiled DNA displays a dose-dependent change in the linking number, indicating an unwinding angle of 57.6 degrees. HMG 1 protects 50% of highly negatively supercoiled DNA from E. coli topoisomerase I at a molar ratio of 100:1, and protects all supercoils at a molar ratio of 200:1, indicating saturation of the DNA at this concentration. HMG 1 also protects highly negatively supercoiled DNA from calf thymus topoisomerase I, with an apparent unwinding angle of 57.6 degrees. Moderately negatively supercoiled DNA (sigma = -0.018), but not moderately positively supercoiled DNA (sigma = +0.011), competes for the protective effect of HMG 1 on highly negatively supercoiled DNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
11.
The nucleosome core binds more than two molecules of HMG17 at low ionic strength (8.9 mM Tris-HCl/8.9 mM boric acid/0.25 mM Na2EDTA, pH 8.3). Circular dichroism of the complexes showed only minor conformational changes of the nucleosome core DNA on binding of HMG17, with no detectable change in the histone secondary structure. The fluorescence of N-(3-pyrene) maleimide bound to -SH groups at Cys-110 of H3 histones in the core particle suggested that the structure of the histone octamer assembly changed little upon binding of HMG17 to the nucleosome. These observations support the idea that even a high level of HMG17 binding, e.g., four HMGs per nucleosome, alone, does not open up the core particle.  相似文献   

12.
1. Purified pig kidney ATPase was incubated in 30--160 mM Tris-HCl with various monovalent cations. 130 mM LiCl stimulated a ouabain-sensitive ATP hydrolysis (about 5% of the maximal (Na+ + K) activity), whereas 160 mM Tris-HCl did not stimulate hydrolysis. Similar results were obtained with human red blood cell broken membranes. 2. In the absence of Na+ and with 130 mM LiCl, the ATPase activity as a function of KCl concentration showed an initial slight inhibition (50 micrometer KCl) followed by an activation (maximal at 0.2 mM KCl) and a further inhibition, which was total at mM KCl. In the absence of LiCl, the rate of hydrolysis was not affected by any of the KCl concentrations investigated. 3. The lithium-activation curve for ATPase activity in the absence of both Na+ and K+ had sigmoid characteristics. It also showed a marked dependence on the total LiCl + Tris-HCl concentration, being inhibited at high concentrations. This inhibition was more noticeable at low LiCl concentrations. 4. In the absence of Na+, 130 mM Li+ showed promoted phosphorylation of ATPase from 1 to 3 mM ATP in the presence of Mg2+. In enzyme treated with N-ethylmaleimide, the levels of phosphorylation in Li+-containing solutions, amounted to 40% of those in Na+- and up to 7 times of those in K+-containing solutions. 5. The total (Na+ + K+)-ATPase activity was markedly inhibited at high buffer concentrations (Tris-HCl, Imidazole-HCl and tetramethylammonium-HEPES gave similar results) in cases when either the concentration of Na+ or K+ (or both) was below saturation. On the other hand, the maximal (Na+ + K+)-ATPase activity was not affected (or very slightly) by the buffer concentration. 6. Under standard conditions (Tris-HCl + NaCl = 160 mM) the Na+-activation curve of Na+-ATPase had a steep rise between 0 and 2.5 mM, a fall between 2.5 and 20 mM and a further increase between 20 and 130 mM. With 30 mM Tris-HCl, the curve rose more steeply, inhibition was noticeable at 2.5 mM Na+ and was completed at 5 mM Na+. With Tris-HCl + NaCl = 280 mM, the amount of activation decreased and inhibition at intermediate Na+ concentrations was not detected.  相似文献   

13.
Media prepared with CDTA and low concentrations of Ca2+, as judged by the lack of Na+-dependent phosphorylation and ATPase activity of (Na+ +K+)-ATPase preparations are free of contaminant Mg2+. In these media, the Ca2+-ATPase from human red cell membranes is phosphorylated by ATP, and a low Ca2+-ATPase activity is present. In the absence of Mg2+ the rate of phosphorylation in the presence of 1 microM Ca2+ is very low but it approaches the rate measured in Mg2+-containing media if the concentration of Ca2+ is increased to 5 mM. The KCa for phosphorylation is 2 microM in the presence and 60 microM in the absence of Mg2+. Results are consistent with the idea that for catalysis of phosphorylation the Ca2+-ATPase needs Ca2+ at the transport site and Mg2+ at an activating site and that Ca2+ replaces Mg2+ at this site. Under conditions in which it increases the rate of phosphorylation, Ca2+ is without effect on the Ca2+-ATPase activity in the absence of Mg2+ suggesting that to stimulate ATP hydrolysis Mg2+ accelerates a reaction other than phosphorylation. Activation of the E1P----E2P reaction by Mg2+ is prevented by Ca2+ after but not before the synthesis of E1P from E1 and ATP, suggesting that Mg2+ stabilizes E1 in a state from which Mg2+ cannot be removed by Ca2+ and that Ca2+ stabilizes E1P in a state insensitive to Mg2+. The response of the Ca2+-ATPase activity to Mg2+ concentration is biphasic, activation with a KMg = 88 microM is followed by inhibition with a Ki = 9.2 mM. Ca2+ at concentration up to 1 mM acts as a dead-end inhibitor of the activation by Mg2+, and Mg2+ at concentrations up to 0.5 mM acts as a dead-end inhibitor of the effects of Ca2+ at the transport site of the Ca2+-ATPase.  相似文献   

14.
In order to characterize the phosphoenzymes (EPs) formed from MgATP and CaATP as substrates, the effects of Mg2+ and Ca2+ outside SR vesicles on the hydrolysis rates of EPs were examined by using purified and unpurified Ca-ATPases of sarcoplasmic reticulum (SR) at low [gamma-32P]ATP (4-10 microM), 0.1 M KCl, pH 7.0, and 0 degrees C. When the phosphorylation reaction was stopped by adding an excess of EDTA over Ca and Mg, two components of EP, EPfast (rate constant, kfast = 15-20 min-1), and EPslow (kslow = 0.3-0.4 min-1), were recognized in the time course of EP decomposition. These two rates did not depend on the Ca2+ or Mg2+ concentration in the medium during the phosphorylation reaction, although the proportions of EPfast and EPslow essentially depended on the concentrations of MgATP and CaATP in the phosphorylation reaction medium. The proportion of EPfast increased with increasing [MgATP]/[CaATP] in the medium, whereas that of EPslow decreased. The rate of EPslow hydrolysis in the presence of excess EDTA was basically the same as that of EP formed from CaATP. These results suggest that EPfast and EPslow are derived from MgATP and CaATP, respectively, and EPfast is a reaction intermediate with Mg bound at the substrate site (MgEP), while the main EPslow is a reaction intermediate with Ca bound at the substrate site (CaEP) which is readily converted to metal-free EP by EDTA addition (Shigekawa et al., (1983) J. Biol. Chem. 258, 8698-8707). Mg2+ added outside SR vesicles stimulated the conversion of CaEP to MgEP and inhibited the hydrolysis of MgEP in the relatively high concentration range (K(Mg) = 7.9 mM). Ca2+ added outside SR vesicles stimulated the conversion of MgEP to CaEP and inhibited the conversion of CaEP to MgEP by Mg2+ addition. The Ca2+ outside SR vesicles did not essentially affect the hydrolysis of MgEP. These results suggest that the interconversion between MgEP and CaEP takes place during the reaction by exchange of the divalent cation on the substrate site. The following scheme is proposed. (formula: see text)  相似文献   

15.
The rate of production of acid-soluble material during degradation of duplex DNA by Hemophilus influenzae ATP-dependent DNAse (Hind exonuclease V) has been shown to be directly dependent upon the Mg2+ concentration in the reaction mixture. At high concentrations of Mg2+ (5 to 20 mM), DNA degradation to acid-soluble products is rapid and the rate of ATP hydrolysis is slightly depressed. At low concentrations of Mg2+ (0.1 to 0.5 mM), the enzyme rapidly hydrolyzes ATP and converts up to 35% of linear duplex DNA to single-stranded material while degrading less than 0.2% of the DNA to acid-soluble products. We refer to this enzymatic production of single-stranded DNA as the "melting" activity. Under the conditions of our assay, the initial melting reaction is processive, lasting about 70s on phage T7 DNA. Using DNAs with several different lengths, we have established that the duration of the initial reaction is dependent upon DNA length, requiring approximately 1 s per 0.18 mum. The products of the initial reaction on phage T7 DNA are somewhat heterogeneous, consisting of short duplex fragments approximately 0.5 mum long, purely single-stranded products up to 7 mum long, and longer duplex fragments 3 to 11 mum in length, some of which have single-stranded tails. Nearly half of the single-stranded material remains linked to a duplex segment of DNA after the inital processive reaction. We propose that Hind exo V initiates attack at the DNA termini and then acts in a processive manner, migrating along the DNA molecule, converting some regions to single-stranded material by the combined action of the melting activity and limited phosphodiester cleavage, while leaving other regions double-stranded. At the completion of its processive movement through a single DNA molecule, it is released and then recycles onto either intact molecules or the partially degraded products, continuing in this manner until the DNA is finally reduced to oligonucleotides.  相似文献   

16.
DNA helicase IV from HeLa cells.   总被引:5,自引:5,他引:0       下载免费PDF全文
Human DNA helicase IV, a novel enzyme, was purified to homogeneity from HeLa cells and characterized. The activity was measured by assaying the unwinding of 32P labeled 17-mer annealed to M13 ss DNA. From 440g of HeLa cells we obtained 0.31 mg of pure protein. Helicase IV was free of DNA topoisomerases, DNA ligase and nuclease activities. The apparent molecular weight is 100 kDa. It requires a divalent cation for activity (Mg2+ = Mn2+ = Zn2+) and the hydrolysis of only ATP or dATP. The activity is destroyed by trypsin and is inhibited by 200 mM KCl or NaCl, 100 mM potassium phosphate, 45 mM ammonium sulfate, 5 mM EDTA, 20 microM ss M13 DNA or 20 microM poly [G] (as phosphate). The enzyme unwinds DNA by moving in the 5' to 3' direction along the bound strand, a polarity opposite to that of the previously described human DNA helicase I (Tuteja et al Nucleic Acids Res. 18, 6785-6792, 1990). It requires more than 84 bases of single-stranded DNA in order to exert its unwinding activity and does not require a replication fork-like structure. Like human DNA helicase I the enzyme can also unwind RNA-DNA hybrid.  相似文献   

17.
Reannealed hybrid molecules of wild-type bacteriophage lambda DNA were prepared in aqueous solutions of formamide at a variety of NaCl concentrations at both room temperature ( 22 degrees C) and 37 degrees C. Treatment of the hybrid DNA molecules with the single-strand-specific nuclease S1 from Aspergillus oryzae followed by alkaline sucrose gradient sedimentation was used to monitor the extent and fidelity of hybridization. The optimal renaturation conditions at room temperature were found to be: 50% formamide, 35-55 mM NaCl and 10 mM Tris-HCl (pH 8.5) at 20-25 mug DNA/ml. Optimal conditions at 37 degrees C were: 32% formamide, 35-55 mM NaCl and 10 mM Tris-HCl (pH 8.5) at 20-25 mug DNA/ml. Under these conditions approximately 85-90% of the input single-stranded DNA (molecular weight 1.5 X 10(7)) was rendered S1-nuclease-resistant within 8 h at room temperature and 5 h at 37 degrees C. Neither Mg2+ nor spermidine appeared to have an effect on either the extent or fidelity of duplex formation. Experiments performed with excess enzyme and with lambda/lambda imm 434 heteroduplex hybrids suggested that the hybrid that the hybrid DNA molecules formed under optimal conditions contained no, or only short (less than 1%), mismatched regions.  相似文献   

18.
Active Ca2+ uptake and the associated (Ca2+ + Mg2+)-ATPase activity were studied under the same conditions in an inside-out vesicle preparation of human red blood cells made essentially by the procedure of Quist and Roufogalis (Journal of Supramolecular Structure 6, 375-381, 1977). Some preparations were treated with 1 mM EDTA at 30 degrees to further deplete them of endogenous levels of calmodulin. As the Ca2+ taken up by the EDTA-treated inside-out vesicles, as well as the non-EDTA treated vesicles, was maintained after addition of 4.1 mM EGTA, the vesicles were shown to be impermeable to the passive leak of Ca2+ over the time course of the experiments. In the absence of added calmodulin, both active Ca2+ uptake and (Ca2+ + Mg2+)-ATPase were sensitive to free Ca2+ over a four log unit concentration range (0.7 microM to 300 microM Ca2+) at 6.4 mM MgCl2. Below 24 microM Ca2+ the stoichiometry of calcium transported per phosphate liberated was close to 2:1, both in EDTA and non-EDTA treated vesicles. Above 50 microM Ca2+ the stoichiometry approached 1:1. When MgCl2 was reduced from 6.4 mM to 1.0 mM, the stoichiometry remained close to 2:1 over the whole range of Ca2+ concentrations examined. In contrast to the results at 6.4 mM MgCl2, the Ca2+ pump was maximally activated at about 2 microM free Ca2+ and significantly inhibited above this concentration at 1 mM MgCl2. Calmodulin (0.5-2.0 microgram/ml) had little effect on the stoichiometry in any of the conditions examined. The possible significance of a variable stoichiometry of the Ca2+ pump in the red blood cell is discussed.  相似文献   

19.
A comparative study of the orthophosphate-pyrophosphate exchange reaction catalyzed by the soluble pyrophosphatase from baker's yeast and by the membrane-bound pyrophosphatase of Rhodospirillum rubrum chromatophores was performed. In both systems the rate of exchange increased when the pH of the medium was raised from 6.0 to 7.8 and when the MgCl2 concentration was raised from 0.1 mM to 20 mM. For the yeast pyrophosphatase the exchange rates measured at different pH values and in the presence of 6.7 to 8.8 mM free Mg2+ superimposed as a single curve when plotted as a function of the concentrations of either HPO4(2-) or MgHPO4. This was not observed with the use of R. rubrum chromatophores. With yeast pyrophosphatase, the Km for Pi was higher than 10 mM and could not be measured when the free Mg2+ concentration in the medium was lower than 0.5 mM. There was a decrease in the Km for Pi when the free Mg2+ concentration was raised to 6.7-8.8 mM or when, in the presence of low free Mg2+, the organic solvents dimethylsulfoxide (20% v/v) or ethyleneglycol (40% v/v) were included in the assay medium. In the presence of 6.7-8.8 mM free Mg2+ the Km for total Pi was 7 mM at pH 7.0 and 12 mM at pH 7.8. For the ionic species HPO4(2-) and MgHPO4, the Km values were 5.8 mM and 4.2 mM respectively. In the presence of 0.24-0.42 mM free Mg2+ and either 20% (v/v) dimethylsulfoxide or 40% (v/v) ethyleneglycol the Km values for total Pi, HPO4(2-) and MgHPO4 were 7.6, 3.5 and 0.5 mM respectively. With R. rubrum chromatophores, the Km for Pi in the presence of 5.5-7.5 mM free Mg2+ was very high and could not be measured. In the presence of 0.24-0.45 mM free Mg2+ the ratio between the velocities of hydrolysis and synthesis of pyrophosphate measured at pH 7.8 with yeast pyrophosphatase and chromatophores of R. rubrum were practically the same. When the free Mg2+ concentration was raised to 5.5-8.8 mM this ratio decreased from 1028 to 540 when the yeast pyrophosphatase was used and from 754 to 46 when chromatophores were used.  相似文献   

20.
Feng Y  Cao S  Xiao A  Xie W  Li Y  Zhao Y 《Peptides》2006,27(6):1554-1560
It was found that Nalpha,Nepsilon-di[N-(O,O-diisopropyl)phosphoryl-L-leucy]-L-lysyl-methyl ester (1) and Nalpha,Nepsilon-di[N-(O,O-diisopropyl)phosphoryl-L-phenylalanyl]-L-lysyl-methyl ester (2) could cleave supercoiled DNA such as PUC19 efficiently in 40 mM Britton-Robinson buffer. The cleavage activities for both were investigated by agarose gel electrophoresis. The T4 ligase experiments implied that the cleavage of DNA occurs via a hydrolytic path. The results showed that the cleavage reaction of DNA is dependent on the value of pH and ionic strength in the solution. DNA cleavage is more efficient by N-phosphoryl branched peptide 2 than by N-phosphoryl branched peptide 1. The experiments also show that hydrolysis of DNA by N-phosphoryl branched peptide 1 was accelerated in the presence of Mg2+ or Zn2+ ions. The interactions of DNA with N-phosphoryl branched peptides were also characterized by melting temperature measurements and circular dichroism (CD) techniques. On the basis of experimental data, the possible mechanism of interactions between DNA with N-phosphoryl branched peptides was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号