首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The purpose of this study was to investigate how the CNS adjusts motor patterns for variants of a complex axial movement-the sit-up. Adjustments were induced by changing the support surface contact and mass distribution of the body. Healthy adults performed straight-legged sit-ups, 3 s in duration, with support added to or removed from the lumbar trunk, or with mass added to the head or to the legs. Each of these interventions either increased or decreased the difficulty of the task. The study addressed the extent to which changes in sit-up difficulty are compensated by scaling of muscle activity, kinematics, and dynamics versus the extent to which they are compensated by changing discretely the motor pattern. The analysis of muscle activity, kinematics, and dynamics focused on the first 30-40% of the sit-up-the trunk flexion phase-since this is the most critical part of the movement. Our results demonstrate that, in some respects, sit-up kinematics and dynamics scaled with difficulty, but in other respects, they did not. Muscle activity also scaled, in many respects, but in more difficult sit-ups, abdominal flexor activity decreased instead of increased. Non-scaling changes in these parameters suggest that complex movements, such as the sit-up, may require discrete changes in motor pattern in order to deal with large loads, which challenge the available leverage.  相似文献   

2.
A pelvic position has been sought that optimizes abdominal muscle activation while diminishing hip flexor activation. Thus, the objective of the study was to investigate the effect of pelvic position and the Janda sit-up on trunk muscle activation. Sixteen male volunteers underwent electromyographic (EMG) testing of their abdominal and hip flexor muscles during a supine isometric double straight leg lift (DSLL) with the feet held approximately 5 cm above a board. The second exercise (Janda sit-up) was a sit-up action where participants simultaneously contracted the hamstrings and the abdominal musculature while holding an approximately 45 degrees angle at the knee. Root mean square surface electromyography was calculated for the Janda sit-up and DSLL under 3 pelvic positions: anterior, neutral, and posterior pelvic tilt. The selected muscles were the upper and lower rectus abdominis (URA, LRA), external obliques, lower abdominal stabilizers (LAS), rectus femoris, and biceps femoris. The Janda sit-up position demonstrated the highest URA and LRA activation and the lowest rectus femoris activation. The Janda sit-up and the posterior tilt were significantly greater (p < 0.01 and p < 0.05, respectively) than the anterior tilt for the URA and LRA muscles. Activation levels of the URA and LRA in neutral pelvis were significantly (p < 0.01 and p < 0.05, respectively) less than the Janda sit-up position, but not significantly different from the posterior tilt. No significant differences in EMG activity were found for the external obliques or LAS. No rectus femoris differences were found in the 3 pelvis positions. The results of this study indicate that pelvic position had a significant effect on the activation of selected trunk and hip muscles during isometric exercise, and the activation of the biceps femoris during the Janda sit-up reduced the activation of the rectus femoris while producing high levels of activation of the URA and LRA.  相似文献   

3.
 The purpose of this study was to provide objective information on the involvement of different abdominal and hip flexor muscles during various types of common training exercises used in rehabilitation and sport. Six healthy male subjects performed altogether 38 different static and dynamic training exercises – trunk and hip flexion sit-ups, with various combinations of leg position and support, and bi- and unilateral leg lifts. Myoelectric activity was recorded with surface electrodes from the rectus abdominis, obliquus externus, obliquus internus, rectus femoris, and sartorius muscles and with indwelling fine-wire electrodes from the iliacus muscle. The mean electromyogram amplitude, normalised to the highest observed value, was compared between static and dynamic exercises separately. The hip flexors were highly activated only in exercises involving hip flexion, either lifting the whole upper body or the legs. In contrast, the abdominal muscles showed marked activation both during trunk and hip flexion sit-ups. In hip flexion sit-ups, flexed and supported legs increased hip flexor activation, whereas such modifications did not generally alter the activation level of the abdominals. Bilateral, but not unilateral, leg lifts required activation of abdominal muscles. In trunk flexion sit-ups an increased activation of the abdominal muscles was observed with increased flexion angle, whereas the opposite was true for hip flexion sit-ups. Bilateral leg lifts resulted in higher activity levels than hip flexion sit-ups for the iliacus and sartorius muscles, while the opposite was true for rectus femoris muscles. These data could serve as a basis for improving the design and specificity of test and training exercises. Accepted: 12 August 1996  相似文献   

4.
The objective of this report was to study the influence of the orientation of gravitational loading on the behavior of anterior and posterior trunk muscles during anterior trunk flexion-extension. Participants (N=13) performed five (5) cycles of trunk flexion-extension while standing with gravity parallel to the body axis and five (5) cycles while in the supine condition (e.g. sit-ups) with gravity perpendicular to the body axis. Surface electromyographic (EMG) patterns from lumbar paraspinal, rectus abdominis, external oblique, rectus femoris, semimembranosis, and biceps femoris muscles were analyzed during each condition. EMG signals were synchronized with lumbar flexion and trunk inclination angles. Flexion-extension from the standing position resulted in a myoelectric silent period of the lumbar posterior muscles (e.g. flexion-relaxation phenomena (FRP)) as well as the hamstring muscles through deep angles during which activity was observed in abdominal muscles. Flexion-extension during sit-ups, however, resulted in a myoelectric silent period of the abdominal muscles and the quadriceps through deep angles during which the lumbar posterior muscles were active. In this condition, the FRP was not observed in posterior muscles. The new findings demonstrate the profound impact of the orientation of the gravity vector on the FRP, the abdominal muscles reaction to gravitational loads during sit-ups and its relationships with lumbar antagonists and thigh musculature. The new findings suggest that gravitational moments requirements dominate the FRP through the prevailing kinematics, load sharing and reflex activation-inhibition of muscles in various conditions. Lumbar kinematics or fixed sensory motor programs by themselves, however, are not the major contributor to the FRP. The new findings improve our insights into spinal biomechanics as well as understanding and evaluating low back disorders.  相似文献   

5.
To understand the role of trunk muscles in maintenance of dynamic postural equilibrium we investigate trunk movements during gait initiation and walking, performing trunk kinematics analysis, Erector spinae muscle (ES) recordings and dynamic analysis. ES muscle expressed a metachronal descending pattern of activity during walking and gait initiation. In the frontal and horizontal planes, lateroflexion and rotation occur before in the upper trunk and after in the lower trunk. Comparison of ES muscle EMGs and trunk kinematics showed that trunk muscle activity precedes corresponding kinematics activity, indicating that the ES drive trunk movement during locomotion and thereby allowing a better pelvis mobilization. EMG data showed that ES activity anticipates propulsive phases in walking with a repetitive pattern, suggesting a programmed control by a central pattern generator. Our findings also suggest that the programs for gait initiation and walking overlap with the latter beginning before the first has ended.  相似文献   

6.
Based on musculoskeletal anatomy of the lower back, abdominal wall, pelvis and upper legs, a biomechanical model has been developed on forces in the load transfer through the pelvis. The aim of this model is to obtain a tool for analyzing the relations between forces in muscles, ligaments and joints in the transfer of gravitational and external load from the upper body via the sacroiliac joints to the legs in normal situations and pathology. The study of the relation between muscle coordination patterns and forces in pelvic structures, in particular the sacroiliac joints, is relevant for a better understanding of the aetiology of low back pain and pelvic pain. The model comprises 94 muscle parts, 6 ligaments and 6 joints. It enables the calculation of forces in pelvic structures in various postures. The calculations are based on a linear/non-linear optimization scheme. To gain a better understanding of the function of individual muscles and ligaments, deviant properties of these structures can be preset. The model is validated by comparing calculations with EMG data from the literature. For agonistic muscles, good agreement is found between model calculations and EMG data. Antagonistic muscle activity is underestimated by the model. Imposed activity of modelled antagonistic muscles has a minor effect on the mutual proportions of agonistic muscle activities. Simulation of asymmetric muscle weakness shows higher activity of especially abdominal muscles.  相似文献   

7.
We examined the influence of the application of postural taping on the kinematics of the lumbo–pelvic–hip complex, electromyographic (EMG) activity of back extensor muscles, and the rating of perceived exertion (RPE) in the low back during patient transfer. In total, 19 male physical therapists with chronic low back pain performed patient transfers with and without the application of postural taping on the low back. The kinematics of the lumbo–pelvic–hip complex and EMG activity of the erector spinae were recorded using a synchronized 3-D motion capture system and surface EMG. RPE was measured using Borg’s CR-10 scale. Differences in kinematic data, EMG activity, and RPE between the two conditions were analyzed using a paired t-test. Peak angle and range of motion (ROM) of lumbar flexion, EMG activity of the erector spinae, and RPE decreased significantly, while peak angle and ROM of pelvic anterior tilt and hip flexion increased significantly during patient transfer under the postural taping condition versus no taping (p < 0.05). These findings suggest that postural taping can change back extensor muscle activity and RPE as well as the kinematics of the lumbo–pelvic–hip complex in physical therapists with chronic low back pain during patient transfer.  相似文献   

8.
Accurate quantification of the trunk transient response to sudden loading is crucial in prevention, evaluation, rehabilitation and training programs. An iterative dynamic kinematics-driven approach was used to evaluate the temporal variation of trunk muscle forces, internal loads and stability under sudden application of an anterior horizontal load. The input kinematics is hypothesized to embed basic dynamic characteristics of the system that can be decoded by our kinematics-driven approach. The model employs temporal variation of applied load, trunk forward displacement and surface EMG of select muscles measured on two healthy and one chronic low-back pain subjects to a sudden load. A finite element model accounting for measured kinematics, nonlinear passive properties of spine, detailed trunk musculature with wrapping of global extensor muscles, gravity load and trunk biodynamic characteristics is used to estimate the response under measured sudden load. Results demonstrate a delay of ~200 ms in extensor muscle activation in response to sudden loading. Net moment and spinal loads substantially increase as muscles are recruited to control the trunk under sudden load. As a result and due also to the trunk flexion, system stability significantly improves. The reliability of the kinematics-driven approach in estimating the trunk response while decoding measured kinematics is demonstrated. Estimated large spinal loads highlight the risk of injury that likely further increases under larger perturbations, muscle fatigue and longer delays in activation.  相似文献   

9.
The purpose of this study was to determine the effects of shoulder muscle fatigue on three dimensional scapulothoracic and glenohumeral kinematics. Twenty healthy subjects participated in this study. Three-dimensional scapulothoracic and glenohumeral kinematics were determined from electromagnetic sensors attached to the scapula, humerus, and thorax. Surface electromyographic (EMG) data were collected from the upper and lower trapezius, serratus anterior, anterior and posterior deltoid, and infraspinatus muscles. Median power frequency (MPF) values were derived from the raw EMG data and were used to indicate the degree of local muscle fatigue. Kinematic and EMG measures were collected prior to and immediately following the performance of a shoulder elevation fatigue protocol. Following the performance of the fatigue protocol subjects demonstrated more upward and external rotation of the scapula, more clavicular retraction, and less humeral external rotation during arm elevation. All muscles with the exception of the lower trapezius showed EMG signs of fatigue, the most notable being the infraspinatus and deltoid muscles. In general, greater scapulothoracic motion and less glenohumeral motion was observed following muscle fatigue. Further studies are needed to determine what effects these changes have on the soft tissues and mechanics of the shoulder complex.  相似文献   

10.
Hemiplegic gait: a kinematic analysis using walking speed as a basis.   总被引:8,自引:0,他引:8  
The kinematics of treadmill ambulation of stroke patients (N = 9) and healthy subjects (N = 4) was studied at a wide range of different velocities (i.e. 0.25-1.5 m s-1), with a focus on the transverse rotations of the trunk. Video recordings revealed, for both stroke patients and healthy subjects, similar relations between walking speed and stride length as well as stride frequency. The phase difference between pelvic and thoracic rotations (i.e. trunk rotation) and the total range of trunk rotation were almost linearly related to the walking speed. Healthy subjects showed a marked increase in pelvic rotation from 1 to 1.5 m s-1. Using dimensional analysis in a comparison between stroke patients and healthy subjects, invariances in the coordination of gait were found for stride length, stride frequency, pelvic rotation, and trunk rotation. Constant relations were obtained between, on the one hand, dimensionless velocity and, on the other, dimensionless stride length as well as stride frequency. Transitions were found between the velocities 0.75 and 1 m s-1 for dimensionless pelvic rotation and trunk rotation, indicating that, from this velocity range onwards, pelvic swing lengthens the stride: rotations of pelvis, thorax and trunk become tightly coordinated. On the basis of the dimensionless stride length, stride frequency, pelvic rotation and trunk rotation, deficits in the gait of stroke patients could be quantified. It is concluded that walking speed is an important control parameter, which should be used as a basic variable in the evaluation of the gait of stroke patients.  相似文献   

11.
Although deficits in the activation of abdominal muscles are present in people with low back pain (LBP), this can be modified with motor training. Training of deep abdominal muscles in isolation from the other trunk muscles, as an initial phase of training, has been shown to improve the timing of activation of the trained muscles, and reduce symptoms and recurrence of LBP. The aim of this study was to determine if training of the trunk muscles in a non-isolated manner can restore motor control of these muscles in people with LBP. Ten subjects with non-specific LBP performed a single session of training that involved three tasks: “abdominal curl up”, “side bridge” and “birdog”. Electromyographic activity (EMG) of trunk and deltoid muscles was recorded with fine-wire and surface electrodes during rapid arm movements and walking, before and immediately following the intervention. Onset of trunk muscle EMG relative to that of the prime mover (deltoid) during arm movements and the mean, standard deviation (SD) and coefficient of variation of abdominal muscle EMG during walking were calculated. There was no significant change in the times of onset of trunk muscle EMG during arm movements nor was there any change in the variability of EMG of the abdominal muscles during walking. However, the mean amplitude and SD of abdominal EMG was reduced during walking after training. The results of this study suggest that unlike isolated voluntary training, co-contraction training of the trunk muscles does not restore the motor control of the deep abdominal muscles in people with LBP after a single session of training.  相似文献   

12.
By using a suitable experimental and mathematical procedure variables characterising motor coordination in human locomotion have been obtained for different subjects and correlations between them have been analysed.—1. The comparison between the EMG signals and the torques at joints point out the complex coordination of muscle activation with particular reference to the function of biarticular muscles.—1. The comparison between the EMG signals and the instantaneous length of the eleven muscles considered suggests a relevant influence of the reflex regulation from Ia afferents.—It appears that locomotion cannot be considered to be a completely stereotiped function. In fact, despite the similar kinematics, the torque time courses of different subjects present significant differences in agreement with different temporal sequence of muscle activation.  相似文献   

13.
Women with pregnancy-related pelvic girdle pain (PPP), or athletes with groin pain, may have trouble with the active straight leg raise (ASLR), for which a pelvic belt can be beneficial. How the problems emerge, or how the belt works, remains insufficiently understood. We assessed muscle activity during ASLR, and how it changes with a pelvic belt. Healthy nulligravidae (N=17) performed the ASLR, and walked on a treadmill at increasing speeds, without and with a belt. Fine-wire electromyography (EMG) was used to record activity of the mm. psoas, iliacus and transversus abdominis, while other hip and trunk muscles were recorded with surface EMG. In ASLR, all muscles were active. In both tasks, transverse and oblique abdominal muscles were less active with the belt. In ASLR, there was more activity of the contralateral m. biceps femoris, and in treadmill walking of the m. gluteus maximus in conditions with a belt. For our interpretation, we take our starting point in the fact that hip flexors exert a forward rotating torque on the ilium. Apparently, the abdominal wall was active to prevent such forward rotation. If transverse and oblique abdominal muscles press the ilia against the sacrum (Snijders’ “force closure”), the pelvis may move as one unit in the sagittal plane, and also contralateral hip extensor activity will stabilize the ipsilateral ilium. The fact that transverse and oblique abdominal muscles were less active in conditions with a pelvic belt suggests that the belt provides such “force closure”, thus confirming Snijders’ theory.  相似文献   

14.
The aim of the study was to determine the relation between motor abilities and belly dance performance in elementary school fifth- and sixth-grade female students. A battery of 19 motor tests was used in a sample of 96 students twice, i.e. at the beginning (initial measurement) and at the end (final measurement) of the academic year. On initial measurement, five factors were isolated by the motor space factor analysis: first factor of muscular-aerobic endurance; second factor integrating the strength of legs, coordination of foot and hand movement, and agility; third factor integrating explosive strength of the arms with speed and body coordination; fourth factor defined by flexibility (muscle tone regulation); and fifth factor integrating explosive strength of legs with equilibrium. On final measurement, five factors were isolated as well: first factor as a general one integrating coordination abilities, explosive strength of legs and flexibility; second factor defined by repetitive strength of the trunk and legs; third factor defined by rhythm coordination accompanied by flexibility; fourth factor predominantly defined by equilibrium (accompanied by explosive strength of throwing type and speed); and fifth factor predominantly defined by static strength of arms and legs (accompanied by arm movement frequency). On initial measurement, fourth factor responsible for muscle tone regulation and second factor integrating the strength of legs, coordination of movement frequency of arms and legs, and agility were found to be the best predictors of belly dance performance. In this setting, the tests of forward bow (flexibility) and sit-ups (repetitive strength of abdominal musculature) proved superior in differentiating high performance students and those less successful in belly dance. On final measurement, third factor named rhythm coordination (accompanied by muscle tone regulation) and second factor defined by repetitive strength of the trunk and legs were the best predictors of belly dance performance. In this setting, the tests of rhythm coordination, flexibility tests, tests of repetitive strength of the trunk and legs, and test of aerobic endurance proved superior in differentiating high performance and less successful students in belly dance.  相似文献   

15.
Determination of the trunk maximum voluntary exertion moment capacity and associated internal spinal forces could serve in proper selection of workers for specific occupational task requirements, injury prevention and treatment outcome evaluations. Maximum isometric trunk exertion moments in flexion and extension along with surface EMG of select trunk muscles are measured in 12 asymptomatic subjects. Subsequently and under individualized measured harness-subject forces, kinematics and upper trunk gravity, an iterative kinematics-driven finite element model is used to compute muscle forces and spinal loads in 4 of these subjects. Different co-activity and intra-abdominal pressure levels are simulated. Results indicate significantly larger maximal resistant moments and spinal compression/shear forces in extension exertions than flexion exertions. The agonist trunk muscles reach their maximum force generation (saturation) to greater extent in extension exertions compared to flexion exertions. Local lumbar extensor muscles are highly active in extension exertions and generate most of the internal spinal forces. The maximum exertion attempts produce large spinal compression and shear loads that increase with the antagonist co-activity level but decrease with the intra-abdominal pressure. Intra-abdominal pressure decreases agonist muscle forces in extension exertions but generally increase them in flexion exertions.  相似文献   

16.
Most birds use at least two modes of locomotion: flying and walking (terrestrial locomotion). Whereas the wings and tail are used for flying, the legs are mainly used for walking. The role of other body segments remains, however, poorly understood. In this study, we examine the kinematics of the head, the trunk, and the legs during terrestrial locomotion in the quail (Coturnix coturnix). Despite the trunk representing about 70% of the total body mass, its function in locomotion has received little scientific interest to date. This prompted us to focus on its role in terrestrial locomotion. We used high-speed video fluoroscopic recordings of quails walking at voluntary speeds on a trackway. Dorso-ventral and lateral views of the motion of the skeletal elements were recorded successively and reconstructed in three dimensions using a novel method based on the temporal synchronisation of both views. An analysis of the trajectories of the body parts and their coordination showed that the trunk plays an important role during walking. Moreover, two sub-systems participate in the gait kinematics: (i) the integrated 3D motion of the trunk and thighs allows for the adjustment of the path of the centre of mass; (ii) the motion of distal limbs transforms the alternating forward motion of the feet into a continuous forward motion at the knee and thus assures propulsion. Finally, head bobbing appears qualitatively synchronised to the movements of the trunk. An important role for the thigh muscles in generating the 3D motion of the trunk is suggested by an analysis of the pelvic anatomy.  相似文献   

17.
The local dynamic stability of trunk movements, quantified using the maximum Lyapunov exponent (λmax), can provide important information on the neuromuscular control of spine stability during movement tasks. Although previous research has displayed the promise of this technique, all studies were completed with healthy participants. Therefore the goal of this study was to compare the dynamic stability of spine kinematics and trunk muscle activations, as well as antagonistic muscle co-contraction, between athletes with and without low back pain (LBP). Twenty interuniversity varsity athletes (10 LBP, 10 healthy controls) were recruited to participate in the study. Each participant completed a repetitive trunk flexion task at 15 cycles per minute, both symmetrically and asymmetrically, while trunk kinematics and muscular activity (EMG) were monitored. The local dynamic stability of low back EMG was significantly higher (lower λmax) in healthy individuals (p=0.002), whereas the dynamic stability of kinematics, the dynamic stability of full trunk system EMG, and the amount of antagonistic co-contraction were significantly higher when moving asymmetrically (p<0.05 for all variables). Although non-significant, kinematic and trunk system EMG stability also tended to be impaired in LBP participants, whereas they also tended to co-contract their antagonist muscles more. This study provides evidence that Lyapunov analyses of kinematic and muscle activation data can provide insight into the neuromuscular control of spine stability in back pain participants. Future research will repeat these protocols in patients with higher levels of pain, with hopes of developing a tool to assess impairment and treatment effectiveness in clinical and workplace settings.  相似文献   

18.
Trunk rotation often accompanies humeral elevation, during daily activities as well as sports activities. Earlier studies have demonstrated that changes in spinal posture contribute to scapular motion during humeral elevation. However, the effect of trunk rotation on scapular kinematics during humeral elevation has received scant attention. This study aimed to clarify how trunk rotation affects scapular kinematics and muscle activities during humeral elevation. Electromagnetic motion capture and electromyography were used to assess scapular and clavicular motion and muscle activity in the right and left sides of 12 healthy young men. The subjects were seated and instructed to elevate both arms with the trunk in neutral, ipsilaterally rotated, or contralaterally rotated position. Ipsilaterally rotated trunk position decreased the internal rotation (by 5°, relative to neutral trunk position) and increased the upward rotation (by 4°, relative to neutral trunk position) of the scapula. Trunk position did not affect clavicular motion during humeral movement. Electromyography showed that contralaterally rotated trunk position increased the activity of the upper trapezius and serratus anterior muscles and decreased the activity of the lower trapezius. Therapists should consider the importance of trunk rotation, which may be the key to developing more efficient rehabilitation programs.  相似文献   

19.
BackgroundMuscle imbalance between serratus anterior (SA), upper trapezius (UA), middle trapezius (MT), and lower trapezius (LT) muscles has been observed in subjects with subacromial impingement syndrome (SAIS).Objective(1) To investigate the effect of electromyography (EMG) biofeedback training on muscle balance ratios and scapular kinematics in healthy adults and subjects with SAIS. (2) To investigate whether the effects of EMG biofeedback on muscle balance ratios are different between groups.DesignTwelve healthy adults and 13 subjects with SAIS were recruited in this study. EMG was used to record the activity of scapular muscles. The ratios (UT/SA, UT/MT, and UT/LT) during exercises with/without EMG biofeedback were calculated. Scapular kinematics were recorded before and after exercises with/without EMG biofeedback.ResultsFor the subjects with SAIS, muscle balance ratios were lower during forward flexion with EMG biofeedback than during exercise only (UT/SA: 70.3–45.2; UT/LT: 124.8–94.6). Additionally, similar results were found during side-lying external rotation (UT/MT: 58.5–36.4). For the scapular upward rotation and tipping in both groups, there were no significant differences with and without EMG biofeedback.ConclusionEMG biofeedback improved the scapular muscular balance during training exercises in both groups. Further clinical trials should investigate the long-term effects of EMG biofeedback.  相似文献   

20.
The purpose of this study was to investigate the activation of the hip flexor and abdominal muscles during an active straight leg raise (ASLR) to end range of hip flexion. Data were recorded from nine healthy men. Fine-wire electromyography (EMG) electrodes were inserted into psoas major (PM), and surface electrodes were placed over rectus femoris (RF), rectus abdominis, obliquus externus abdominis (OE), and obliquus internus abdominis/transversus abdominis (OI/TrA). EMG and kinematic data were obtained during concentric, hold (at end range) and eccentric phases of an ASLR. Concentric and eccentric movements were divided into three phases (early, mid, and late). Onsets of EMG relative to the onset of the ALSR movement and EMG amplitudes in each phase were compared between muscles. Onsets of the PM (–33 ± 245 ms) and RF (-3 ± 119 ms) EMG prior to leg elevation were significantly earlier than those of the OE and OI/TrA. PM EMG showed highest activation in the late concentric, hold, early eccentric phase, and was significantly higher than RF EMG. OI/TrA EMG was significantly greater in mid and late concentric, hold, and early eccentric phase than other phases. During the ASLR, unlike RF, PM EMG continues to increase towards the end range of hip flexion. Activation of OI/TrA muscle may be involved in control trunk and pelvic movement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号