首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cellular electrical activity of diaphragm from F1B normal and BIO 14.6 dystrophic hamsters has been investigated using microelectrodes. Resting membrane potentials and action potentials were recorded from control muscles and from muscles exposed to 2,4-dinitrophenol. The action potentials of normal and dystrophic diaphragms were similar in amplitude and configuration. Treatment with 2,4-dinitrophenol caused the action potential amplitude of both diaphragms to decline by similar amounts. The control resting membrane potential of diaphragm from dystrophic hamsters is not significantly different from that of normal hamsters. Treatment with 2,4-dinitrophenol caused a linear decrease in the resting membrane potentials of both groups of muscles. Dystrophic muscle, however, showed a more rapid decline in excitability when exposed to 2,4-dinitrophenol. This suggests that adenosine triphosphate production in dystrophic muscle is partially inhibited as has been suggested by other workers.  相似文献   

2.
The nucleic acid metabolism of various tissues of normal and dystrophic hamsters has been studied as a function of animal age and progression of the disease. Muscle weights were significantly heavier in the dystrophic animals at 98 and 225 days, but not 28 days after birth. DNA synthesis and the concentrations of DNA and RNA were markedly higher in the dystrophic diaphragm, soleus and extensor digitorum longus muscles after 28 days of age. The dystrophic process appears to be specific to muscle, since the nucleic acid metabolism of the kidney was unaffected.  相似文献   

3.
The Bio 14.6 hamster has a well-documented cardiomyopathy which leads to congestive heart failure. Previous work demonstrated that hearts from these hamsters have depressed fatty acid oxidation and depressed carnitine concentrations compared to those of normal hamsters. Analyses of tissue carnitine concentrations from 40 to 464 days of age demonstrate that the cardiomyopathic hamsters have a cardiac carnitine deficiency throughout life. Therefore, the carnitine deficiency is not a secondary effect of an advanced stage of the cardiomyopathy. Both the observation that other tissues of the cardiomyopathic hamster have normal or markedly elevated carnitine concentrations and the observation that oral carnitine treatment could not increase the cardiac carnitine concentrations to those of normal hamsters are consistent with the hypothesis that the cardiac carnitine deficiency is the result of a defective cardiac transport mechanism. Cardiac carnitine-binding protein (which may function in the cardiac carnitine transport mechanism) prepared from hearts of cardiomyopathic hamsters had a lower maximal carnitine binding and an increased dissociation constant for carnitine compared to the cardiac carnitine-binding protein prepared from normal hamsters. Thus, several types of data indicate that the cardiomyopathic hamster has an altered cardiac carnitine transport mechanism.  相似文献   

4.
Cholesterol and cholesteryl ester concentrations and cholesteryl ester fatty acid substituents have been measured during the first 10 weeks of life in tissues of normal and dystrophic mice. In normal Swiss and 129ReJ(+/?) mice the concentrations of both cholesterol and cholesteryl esters remain essentially constant in liver, increase in brain and fall sharply in both thigh (mixed fiber type muscles) and chest muscles (predominantly slow oxidative muscles) over this period. In all cases the concentration of free cholesterol exceeds that of esterified cholesterol. In dystrophic mice, similar patterns are found in brain and liver. In both thigh and chest muscles, however, the developmental pattern is significantly different. After an initial decrease the concentrations of cholesterol and cholesteryl esters increase rapidly with the largest increase occurring in the concentration of cholesteryl esters which by 10 weeks of age exceeds the concentration of cholesterol in chest muscle. During the same period the pattern of esterified fatty acids changes gradually in dystrophic tissues towards an increasing ratio of unsaturated/saturated fatty acids. By 10 weeks of age this ratio is significantly higher in dystrophic tissues than normal in all tissues tested.  相似文献   

5.
Observations were made of the biological effects on infection with plerocercoids of Spirometra erinacei on normal female Snell mice, male chinese hamsters, golden hamsters, normal and hypox rats. Plerocercoid infection caused the strongest growth-promoting effect on normal Snell mice. In mice, this effect appears to be independent of strain. Chinese hamsters infected with these larvae showed similar growth. The infected normal rats and golden hamsters, however, showed a weight increase in the skeletal muscle only, while the hypox rats exhibited no effect at all. The elevation in the concentration of serum triglyceride was observed in all the animals investigated except for rats. Golden hamsters, in particular, exhibited a marked increase in the concentration of serum free fatty acids and total cholesterol. There was close correlation between the concentrations of serum triglyceride and free fatty acids, and the regression coefficient of the resulting linear regression equation for the experimentals was higher than that for the controls. This suggests that serum triglyceride results from an increased concentration of serum free fatty acids derived from stimulated lipolysis. The total cholesterol concentration in the serum decreased in chinese hamsters infected with larvae. The serum glucose concentration increased in normal Snell mice but decreased in chinese and golden hamsters. No difference in glycerol and free fatty acid concentration was observed in infected animals except for golden hamsters.  相似文献   

6.
Ca2+ ATPase and calcium binding proteins were studied in cardiac and skeletal muscles of normal and dystrophic mice. In normal and dystrophic mice, Ca2+ ATPase was quite reduced in cardiac muscle compared to skeletal muscle and was, unlike skeletal muscle, insensitive to orthovanadate. Ca2+ ATPase in skeletal muscle of dystrophic mice was reduced as compared to normal mice. In both cases (normal and dystrophic), calcium binding proteins were the same (identical molecular weight). The effect of 2 drugs (Polymixine B and Bepridil) which decrease protein bound calcium was studied: the muscle proteins of dystrophic mice did not present the same sensitivity to Bepridil as controls. These findings suggest the existence of a calcium-related defect in skeletal and cardiac muscle of dystrophic mice.  相似文献   

7.
Lipofuscin, the so-called ageing pigment, is formed by the oxidative degradation of cellular macromolecules by oxygen-derived free radicals and redox-active metal ions. Usually it accumulates in post-mitotic, long-lived cells such as neurons and cardiac muscle cells. In contrast, it is rarely seen in either normal or diseased skeletal muscle fibres. In this paper, we report that lipofuscin accumulates at an early age in both human and murine dystrophic muscles. Autofluorescent lipofuscin granules were localized, using confocal laser scanning microscopy and electron microscopy, in dystrophin-deficient skeletal muscles of X chromosome-linked young Duchenne muscular dystrophy (DMD) patients and of mdx mice at various ages after birth. Age-matched normal controls were studied similarly. Autofluorescent lipofuscin granules were observed in dystrophic biceps brachii muscles of 2-7-year-old DMD patients where degeneration and regeneration of myofibres are active, but they were rarely seen in age-matched normal controls. In normal mice, lipofuscin first appears in diaphragm muscles nearly 20 weeks after birth but in mdx muscles it occurs much earlier, 4 weeks after birth, when the primary degeneration of dystrophin-deficient myofibres is at a peak. Lipofuscin accumulation increases with age in both mdx and normal controls and is always higher in dystrophic muscles than in age-matched normal controls. At the electron microscopical level, it was confirmed that the localisation of autofluorescent granules observed by light microscopy in dystrophin-deficient skeletal muscles coincided with lipofuscin granules in myofibres and myosatellite cells, and in macrophages accumulating around myofibres and in interstitial connective tissue. Our results agree with previous biochemical and histochemical data implying increased oxidative damages in DMD and mdx muscles. They indicate that dystrophin-deficient myofibres are either more susceptible to oxidative stress, or are subjected to higher intra- or extracellular oxidative stress than normal controls, or both.  相似文献   

8.
Diaphragm muscle weakness in patients with chronic obstructive pulmonary disease (COPD) is associated with increased morbidity and mortality. Recent studies indicate that increased contractile protein degradation by the proteasome contributes to diaphragm weakness in patients with COPD. The aim of the present study was to investigate the effect of proteasome inhibition on diaphragm function and contractile protein concentration in an animal model for COPD. Elastase-induced emphysema in hamsters was used as an animal model for COPD; normal hamsters served as controls. Animals were either treated with the proteasome inhibitor Bortezomib (iv) or its vehicle saline. Nine months after induction of emphysema, specific force-generating capacity of diaphragm bundles was measured. Proteolytic activity of the proteasome was assayed spectrofluorometrically. Protein concentrations of proteasome, myosin, and actin were measured by means of Western blotting. Proteasome activity and concentration were significantly higher in the diaphragm of emphysematous hamsters than in normal hamsters. Bortezomib treatment reduced proteasome activity in the diaphragm of emphysematous and normal hamsters. Specific force-generating capacity and myosin concentration of the diaphragm were reduced by ~25% in emphysematous hamsters compared with normal hamsters. Bortezomib treatment of emphysematous hamsters significantly increased diaphragm-specific force-generating capacity and completely restored myosin concentration. Actin concentration was not affected by emphysema, nor by bortezomib treatment. We conclude that treatment with a proteasome inhibitor improves contractile function of the diaphragm in emphysematous hamsters through restoration of myosin concentration. These findings implicate that the proteasome is a potential target of pharmacological intervention on diaphragm weakness in COPD.  相似文献   

9.
Previously administration of thyroxine (T4) to dystrophic hamsters improved ventilation and slowed the progression of the disease. We hypothesized that the normalization of ventilation in these animals was due to T4 improving structural and functional characteristics of the diaphragm. In the present study, contractile characteristics of the diaphragm and the extensor digitorum longus (EDL) from normal and dystrophic hamsters were evaluated after two months of T4 treatment. Compared to their placebo-treated counterparts, diaphragms and EDLs of T4-treated normal hamsters showed increased optimal muscle lengths and twitch tension, decreased contraction times and increased fatigability. T4-treatment in dystrophic hamsters showed only an increase in diaphragmatic twitch tension development. Force-frequency curves before treatment were generally higher for the normal compared to dystrophic diaphragms and EDLs. T4 administration only increased the force in normal diaphragms at the lower frequencies and in the EDLs at the higher frequencies. Although T4 serum levels were increased in both T4-treated groups, triiodothyronine (T3) was much lower in the dystrophic compared to normal hamsters, suggesting that conversion of T4 to T3 was reduced in dystrophic hamsters. We conclude that the limited functional changes in the diaphragms of T4-treated dystrophic hamsters cannot account for the marked improvement in ventilation previously reported.  相似文献   

10.
Catecholamine-induced thermogenesis is significantly diminished in BIO 14.6 cardiomyopathic hamsters as demonstrated by a reduced increase in oxygen consumption of these hamsters in response to administered isoproterenol. This decreased responsiveness is accompanied by a reduction in the amount of brown adipose tissue, a major nonshivering thermogenic effector. The present study demonstrates that the metabolic responses of individual brown fat cells are also altered in the dystrophic hamster. That is, 1 microM norepinephrine, the physiological mediator of nonshivering thermogenesis, evoked rates of oxygen consumption that were significantly lower in brown adipocytes isolated from the BIO 14.6 hamsters than in those from normal controls. Additionally, the dystrophic adipocytes exhibited: decreased maximal activity (per cell as well as per milligram protein) of citrate synthase; decreased cell size; and decreased amounts of protein per cell. These data indicate that the nonshivering thermogenic capacity of the intact BIO 14.6 hamsters reflects altered characteristics of the individual brown adipocytes themselves, as well as decreased amounts of the tissue.  相似文献   

11.
In studies of glucose oxidation in white retroperitoneal adipose tissue of BIO 14.6 dystrophic and F1B normal hamsters aged 55-67 and 368-379 days, no difference was found in the basal state of radiolabelled 14CO2 production using either D-[6-14C]glucose or D-[1-14C]glucose. When C6-labelled glucose was used, insulin induced a slightly greater increase in glucose oxidation in dystrophic adipose tissue at both ages. When C1-labelled glucose was used, insulin enhanced glucose oxidation in dystrophic tissue more than twice normal in tissues from young animals and five times normal in tissues from the old ones. The increase in oxidation with D-[1-14C]glucose likely represents enhanced activity of the pentose phosphate pathway, which has also been observed in certain tissues of other animals with inherited skeletal-muscle degeneration. The change can probably be classified as being compensatory, an attempt by tissues to maintain functional integrity.  相似文献   

12.
Dystrophin-deficient muscle undergoes sudden, postnatal onset of muscle necrosis that is either progressive, as in Duchenne muscular dystrophy, or successfully arrested and followed by regeneration, as in most muscles of mdx mice. The mechanisms regulating regeneration in mdx muscle are unknown, although the possibility that there is renewed expression of genes regulating embryonic muscle cell proliferation and differentiation may provide testable hypotheses. Here, we examine the possibility that necrotic and regenerating mdx muscles exhibit renewed or increased expression of PDGF-receptors. PDGF-binding to receptors on muscle has been shown previously to be associated with myogenic cell proliferation and delay of muscle differentiation. We find that PDGF-receptors are present in 4-week-old mdx mice in muscles that undergo brief, reversible necrosis (hindlimb muscles) or progressive necrosis (diaphragm), as well as in 4-week-old control mouse muscles. Immunoblots indicate that the concentrations of PDGF-receptors in 4-week-old dystrophic (necrotic) and control muscles are similar. Prenecrotic, dystrophic fibers and control fibers possess some cell surface labeling of fibers treated with anti-PDGF-receptor and viewed by indirect immunofluorescence. Necrotic fibers in dystrophic muscle show cytoplasmic labeling for PDGF-receptors and labeling of perinuclear regions at the muscle cell surface. Adult dystrophic muscle displays higher concentrations of PDGF-receptor in both regenerated muscle (hindlimb) and progressively necrotic muscle (diaphragm) than found in controls. Anti-PDGF-receptor labeling of regenerated, dystrophic muscle is observed primarily in granules surrounding central nuclei or surrounding nuclei located at the surface of regenerated fibers. No labeling of perinuclear regions of control muscle or prenecrotic fibers was observed. Myonuclei fractionated from adult mdx hindlimb muscles contained no PDGF-receptor, indicating that PDGF-receptor-positive structures are not tightly associated with nuclei or within nuclei. L6 myoblasts show PDGF-receptor distributed diffusely on the cell surface. Stimulation of L6 myoblasts with 10 ng/ml of PDGF-BB causes receptor internalization and concentration in granules at perinuclear regions. Thus, PDGF stimulation of myoblasts causes a redistribution of PDGF-receptors to resemble receptor localization observed during muscle regeneration. These findings implicate PDGF-mediated mechanisms in regeneration of dystrophic muscle.  相似文献   

13.
The effect of okadaic acid, an inhibitor of protein phosphatases-1 and -2A, was studied on glucose transport and metabolism in soleus muscles isolated from lean and insulin-resistant obese mice. In muscles from lean mice, the uptake of 2-deoxyglucose, an index of glucose transport and phosphorylation, was increased by okadaic acid in a concentration-dependent manner. At 5 microM, okadaic acid was as efficient as a maximally effective insulin concentration. Glucose metabolism (glycolysis and glycogen synthesis) was also measured. Whereas glycolysis was stimulated by okadaic acid, glycogen synthesis was unchanged. When okadaic acid and insulin were added together in the incubation medium, the rates of glucose transport, glycolysis, and glycogen synthesis were similar to those obtained with insulin alone, whether maximal or submaximal insulin concentrations were used. Furthermore, okadaic acid did not activate the kinase activity of the insulin receptor studied in an acellular system or in intact muscles. These results indicate that a step in the insulin-induced stimulation of muscle glucose transport involves a serine/threonine phosphorylation event that is regulated by protein phosphatases-1 and/or -2A. In muscles of insulin-resistant obese mice, the absolute values of deoxyglucose uptake stimulated by okadaic acid were lower than in muscles from lean mice. However, the okadaic acid effect, expressed as a fold stimulation, was normal. These observations suggest that in the insulin-resistant state linked to obesity, the serine/threonine phosphorylation event is likely occurring normally, but a defect at the level of the glucose transporter itself would prevent a normal response to insulin or okadaic acid.  相似文献   

14.
Polyamine (putrescine, spermidine, and spermine) contents and ornithine (ODC) and S-adenosylmethionine (SAMDC) decarboxylase activities have been assessed in an age-dependent manner, in normal and polymyopathic (dystrophic) hamster skeletal muscle, heart, and tongue extract and in primary tongue myoblast and skin fibroblast cultures. At 2 weeks of age, polyamine contents were significantly elevated in all of the dystrophic hamster tissues studied when compared with their age-matched controls. The degree of this elevation decreased with the age of the animals, generally, to a level where no significant difference in polyamine contents could be noted between normal and dystrophic hamster tissues. ODC and SAMDC activities in whole tissue extracts were consistently highest in 2-week-old muscle extracts and also declined with age. However, no significant changes in ODC or SAMDC activities were evident in any of the dystrophic muscle tissues studied when compared with their age-matched controls. Polyamine contents in dystrophic hamster myoblast and fibroblast primary cultures were also during proliferation (1 and 2 days after the initial seeding) compared with cultures prepared from normal hamsters. ODC and SAMDC activities in primary myoblast and fibroblast cultures clearly reflected the rate of cell proliferation, with highest activities found in subconfluent cell cultures. However, in general, no significant dystrophic-related abnormality in ODC or SAMDC activity was evident in proliferating myoblast or fibroblast cultures. These results suggest that the elevated polyamine contents of dystrophic hamster tissues and primary cultures may be due to a deficiency in polyamine catabolism or transport.  相似文献   

15.
The purpose of this study was to evaluate the report that bradykinin is the "muscle activity hypoglycemia factor" responsible for the activation of glucose transport that occurs in response to muscle contractile activity. Stimulation of rat epitrochlearis muscles to contract resulted in approximately a fourfold increase in the rate of intracellular accumulation of the nonmetabolizable glucose analog 3-O-methylglucose. Incubation of the muscles with high concentrations of aprotinin (Trasylol), a polypeptide inhibitor of kallikrein which blocks formation of kinins, did not inhibit the activation of sugar transport by contractile activity. Furthermore incubation of muscles with bradykinin did not have a stimulatory effect on the uptake of 3-methylglucose either at a physiological concentration or at high concentrations. These results provide no support for the claims that aprotinin prevents the activation of sugar transport in muscle by contractile activity or that bradykinin is the muscle activity hypoglycemia factor.  相似文献   

16.
An age-related pigment, lipofuscin (LF), which accumulates in postmitotic, long-lived cells, is formed by the oxidative degradation of cellular macromolecules by oxygen-derived free radicals. In the present study we show that LF is accumulated in some myofibres, myosatellite cells and interstitial cells in the diaphragm muscles of the X chromosome-linked muscular dystrophic (mdx) mice at the age of 10 weeks when repetitive cycles of de- and regeneration of myofibres occur. In contrast, LF is virtually absent in diaphragm muscles of age-matched C57BL/10 (C57) normal control mice. Therefore, mdx muscle is more susceptible to oxidative stress than normal muscle. We hypothesise that gene-regulated cell death (apoptosis) occurs in dystrophic muscle cells that accumulate LF as a consequence of either oxidative stress or injury. We found that 74-79% of apoptotic myosatellite cells, interstitial cells and myofibres in mdx diaphragm contain accumulated or dotted LF granules, but only 12-20% of non-apoptotic cells contain LF. Apoptotic cells are very rare in the diaphragm of age-matched C57 control mice. This suggests that the regeneration of mdx diaphragm muscle initiated from myosatellite cells is impaired by their apoptosis as the result of either oxidative stress or a product of oxidative injury.  相似文献   

17.
The aim of this study was to verify whether an alteration in the aortic endothelin-1 (ET-1) response takes place in UM-X7.1 cardiomyopathic hamsters. Our results showed that ET-1 (10(-12) - 10(-5) mol/L) induces dose-dependent sustained increases in tension in the intact and endothelium denuded aortas from both normal and cardiomyopathic hamsters. The EC50 values of ET-1 of both intact and endothelium denuded aortas of normal hamsters were similar (2.2 x 10(-9) mol/L and 1.8 x 10(-9) mol/L, respectively). However, in cardiomyopathic hamsters, the EC50 of ET-1 in intact aortas was higher (1.5 x 10(-8) mol/L) than that of the endothelium denuded preparations (2.7 x 10(-9) mol/L). The EC50 of ET-1 in normal and cardiomyopathic hamster denuded aortas were similar. However, the EC50 of ET-1 in intact aortas of cardiomyopathic hamster was higher (1.5 x 10(-8) mol/L) than that of normal hamsters (2.2 x 10(-9) mol/L). Pre-treatment with the ETA receptor antagonist ABT-627 (10(-5)mol/L) of intact and endothelium denuded aortas from both normal and cardiomyopathic hamsters significantly prevented ET-1 (10(-7) mol/L) from inducing an increase in tension. Pre-treatment with the ETB receptor antagonist A-192621 (10(-5) mol/L) had no effect on the ET-1-induced increase in tension in endothelium denuded aortas of both normal and cardiomyopathic hamsters, as well as in intact preparations of normal animals. However, blockade of the ETB receptors in intact aortas of cardiomyopathic hamsters significantly (p < 0.001) potentiated the ET-1-induced increase in tension. In summary, an attenuation of the contraction response to ET-1 was found in UM-X7.1 cardiomyopathic hamsters when compared with normal age-matched hamsters. This alteration of the ET-1 effect in the aortas of cardiomyopathic hamsters seems to be dependent on the presence of the endothelium and could be due, in part, to an increase in the contribution of endothelial ETB receptors to relaxation, which in turn acts as a physiological depressor of ET-1 vasoconstriction. Our results suggest that an increase in the endothelium ETB receptor density may play a role in the development of hypotension in UM-X7.1 cardiomyopathic hamsters.  相似文献   

18.
In order to understand the pathogenesis of mouse muscular dystrophy, we investigated the levels of the thiobarbituric acid-reactive substances (TBARS), H2O2 and NADPH oxidase activity, which were relative to the acceleration of oxidative conditions, in tongue and hindleg skeletal muscles from C57BL/6J-dy mice. The TBARS content (702 nmol/g protein) in skeletal muscles from 2-months-old dystrophic mice was increased significantly over that (384 nmol/g protein) in muscles from age-matched normal mice. The H2O2 concentration in dystrophic skeletal muscles was 30% higher than that in normal ones. Microsomal NADPH oxidase activity which was related to the production of superoxide anions, was similar between dystrophic muscles (4.66 nmol/10 min/mg protein) and normal muscles (4.11 nmol/ 10 min/mg protein). These results indicate that oxidation is accelerated in the dystrophic muscles. However, the TBARS content in the tongues of dystrophic mice was identical to that of normal mice. This finding supports our bone-muscle growth imbalance hypothesis for the pathogenesis of mouse muscular dystrophy.  相似文献   

19.
Fasting for 36-48 h or food restriction (30% reduction of daily food intake for 6 weeks) caused brown adipose tissue (BAT) atrophy in hamsters. Fasting-induced atrophy was characterized by reductions in tissue mass, DNA, protein, and thermogenin. By contrast, food restriction had no effect on tissue cellularity (DNA) but markedly reduced the tissue protein and thermogenin contents. The concentration of thermogenin in isolated mitochondria was unchanged by fasting or food restriction. Dystrophic hamsters had a reduced BAT mass when compared with weight-matched control hamsters. This resulted from a reduction in tissue cellularity since BAT DNA, protein and thermogenin contents were all reduced. The extent of binding of [3H]guanosine diphosphate to isolated mitochondria and their content of thermogenin were similar in normal and dystrophic hamsters. In response to cold exposure, as in normal hamsters, BAT of dystrophic hamsters grew and the tissue thermogenin increased, but the mitochondrial concentration of thermogenin did not change. In response to fasting, in contrast with normal hamsters, there was no significant reduction in BAT DNA in dystrophic animals and the loss of tissue protein was reduced. However, the relative changes in BAT composition during chronic food restriction were similar in normal and dystrophic animals. Thus, reduction in hamster BAT thermogenic capacity during food deprivation may occur by loss of cells and (or)reduction in the tissue protein and thermogenin contents. The extent of protein and (or) DNA loss may be dependent upon the original tissue mass and the severity of food deprivation.  相似文献   

20.
Survival of dystrophin/utrophin double-knockout (dko) mice was increased by muscle-specific expression of a neuronal nitric oxide synthase (nNOS) transgene. Dko mice expressing the transgene (nNOS TG+/dko) experienced delayed onset of mortality and increased life-span. The nNOS TG+/dko mice demonstrated a significant decrease in the concentration of CD163+, M2c macrophages that can express arginase and promote fibrosis. The decrease in M2c macrophages was associated with a significant reduction in fibrosis of heart, diaphragm and hindlimb muscles of nNOS TG+/dko mice. The nNOS transgene had no effect on the concentration of cytolytic, CD68+, M1 macrophages. Accordingly, we did not observe any change in the extent of muscle fiber lysis in the nNOS TG+/dko mice. These findings show that nNOS/NO (nitric oxide)-mediated decreases in M2c macrophages lead to a reduction in the muscle fibrosis that is associated with increased mortality in mice lacking dystrophin and utrophin. Interestingly, the dramatic and beneficial effects of the nNOS transgene were not attributable to localization of nNOS protein at the cell membrane. We did not detect any nNOS protein at the sarcolemma in nNOS TG+/dko muscles. This important observation shows that sarcolemmal localization is not necessary for nNOS to have beneficial effects in dystrophic tissue and the presence of nNOS in the cytosol of dystrophic muscle fibers can ameliorate the pathology and most importantly, significantly increase life-span.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号