首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
An adequate zinc status is essential for optimal cellular functions and growth. Yet, excessive zinc supplementation can be cytotoxic and can impair cell growth. Gadd45 plays a vital role as cellular stress sensor in the modulation of cell signal transduction in response to stress. The present study was designed to determine the influence of zinc status on Gadd45 expression and cell cycle progression in zinc deficient and supplemented normal human bronchial epithelial (NHBE) cells, and to decipher the molecular mechanism(s) exerted by the suppression of Gadd45 expression on cell growth and cell cycle progression in this cell type. Cells were cultured for one passage in different concentration of zinc: <0.4 muM (ZD) as severe zinc deficient; 4 muM as normal zinc level in culture medium; 16 microM (ZA) as normal human plasma zinc level; and 32 muM (ZS) as the high end of plasma zinc attainable by oral supplementation. Inhibition of cell growth, upregulation of Gadd45 mRNA and protein expression, and blockage of G2/M cell cycle progression were observed in ZS cells. In contrast, little or no changes in these parameters were seen in ZD cells. The siRNA-mediated knocking down of Gadd45 was found to relieve G2/M blockage in ZS cells, which indicated that the blockage was Gadd45 dependent. Moreover, the enhanced phosphorylation of p38 and p53 (ser15) in ZS cells was normalized after suppression of Gadd45 by siRNA, implicating that the enhanced phosphorylation of these proteins was Gadd45 dependent. Thus, we demonstrated for the first time that an elevated zinc status modulated signal transduction to produce a delay at G2/M during cell cycle progression in NHBE cells.  相似文献   

2.
3.
The influence ofzinc status on the levels of p53, as well as downstream targetsof p53 in cell repair and survival, was examined in human aorticendothelial cells (HAECs). A serum-reduced low-zinc medium (ZD) wasused to deplete zinc over one passage. Other treatments includedzinc-normal control (ZN), zinc-adequate (ZA), and zinc-supplemented (ZS) treatment with 3.0, 16.0, and 32.0 µM zinc, respectively. Cellular zinc levels in the ZD cells were 64% of ZN controls; levelsin the ZA cells were not different, but levels in ZS cells weresignificantly higher (40%) than in ZN cells. No difference in p53 mRNAabundance was detected among all treatments; however, p53 nuclearprotein levels were >100% higher in the ZD and ZS cells and almost200% higher in the ZA cells than in ZN controls. In addition, p21 mRNAabundance, a downstream target of p53 protein, was increased in the ZScells compared with both the ZN control and ZD cells. In the ZS cells,bax and mcl-1 were also ~50% higher compared with ZN controls,whereas bcl-2 mRNA was increased compared with ZA cells. Moreover,caspase-3 activity of ZD cells was not different from that of ZNcontrols but was reduced to 83 and 69% of ZN controls in ZA and ZScells, respectively. Thus p53 protein and p53 downstream target genesappeared to be modulated by intracellular zinc status in HAECs.

  相似文献   

4.
This study was designed to examine theinfluence of zinc depletion and supplementation on the expression ofp53 gene, target genes of p53, andcaspase-3 activity in normal human bronchial epithelial (NHBE) cells. Aserum-free, low-zinc medium containing 0.4 µmol/l of zinc [zincdeficient (ZD)] was used to deplete cellular zinc over one passage. Inaddition, cells were cultured for one passage in media containing 4.0 µmol/l of zinc [zinc normal (ZN)], which represents normal cultureconcentrations (Clonetics); 16 µmol/l of zinc [zinc adequate (ZA)],which represents normal human plasma zinc levels; or 32 µmol/l ofzinc [zinc supplemented (ZS)], which represents the high end ofplasma zinc levels attainable by oral supplementation in humans.Compared with ZN cells, cellular zinc levels were 76% lower in ZDcells but 3.5-fold and 6-fold higher in ZA and ZS cells, respectively.Abundances of p53 mRNA and nuclear p53 protein were elevatedin treatment groups compared with controls (ZN). For p53mRNA abundance, the highest increase (3-fold) was observed in ZD cells.In contrast, the highest increase (17-fold) in p53 nuclearprotein levels was detected in ZS cells. Moreover, gadd45mRNA abundance was moderately elevated in ZD and ZA cells and was notaltered in ZS cells compared with ZN cells. Furthermore, the onlyalteration in c-fos mRNA and caspase-3 activity was thetwofold increase and the 25% reduction, respectively, detected in ZScompared with ZN cells. Thus p53, gadd45, andc-fos and caspase-3 activity appeared to be modulated bycellular zinc status in NHBE cells.

  相似文献   

5.
The influence of zinc status on the expression of proteins known to be involved in the stability of p53, the human tumor suppressor gene product, was examined in hepatoblastoma (HepG2) cells. Cells were cultured in zinc-deficient (ZD0.2, ZD0.4), zinc normal (ZN), zinc adequate (ZA), or zinc-supplemented (ZS) medium, which contained 0.2, 0.4, 4, 16, or 32 microM zinc, respectively. Nuclear p53 levels were almost 100% and 40% higher in ZD0.2 and ZD0.4 cells, respectively, than in ZN cells. Mdm2 protein, which mediates p53 degradation, was 174% and 148% higher in the nucleus of ZD0.2 and ZD0.4 cells, respectively, than in ZN cells. In addition, the observed reductions of nuclear c-Abl in ZD0.2 and ZD0.4 cells to 50% and 60% of ZN cells, respectively, may be a cellular response attempting to normalize nuclear p53 accumulation because nuclear c-Abl is known to down-regulate ubiquitination and nuclear export of p53. Moreover, no changes in total cellular p53, Mdm2, and c-Abl or nuclear Mdmx were observed among the treatment groups. Furthermore, in ZD0.2 and ZD0.4 cells, the reduction in total and nuclear p300, which is known to complex with CREB-binding protein and Mdm2 in the nucleus for the generation of degradable polyubiquitinated form of p53, may have depressed the degradation pathway for p53 and Mdm2, and contributed to the nuclear accumulation of these proteins in ZD cells.  相似文献   

6.
7.
8.
9.
Tumors expressing the ABL oncoproteins (BCR/ABL, TEL/ABL, v-ABL) can avoidapoptosis triggered by DNA damaging agents. The tumor suppressor protein p53 is animportant activator of apoptosis in normal cells; conversely its functional loss may causedrug resistance. The ABL oncoprotein - p53 paradigm represents the relationship between anoncogenic tyrosine kinase and a tumor suppressor gene. Here we show that BCR/ABLoncoproteins employ p53 to induce resistance to DNA damage in myeloid leukemia cells.Cells transformed by the ABL oncoproteins displayed accumulation of p53 upon DNAdamage. In contrast, only a modest increase of p53 expression followed by activation ofcaspase-3 were detected in normal cells expressing endogenous c-ABL. Phosphatidylinositol-3 kinase-like protein kinases (ATR and also ATM) -dependent phosphorylation of p53-Ser15residue was associated with the accumulation of p53, and stimulation of p21Waf-1 andGADD45, resulting in G2/M delay in BCR/ABL cells after genotoxic treatment. Inhibition ofp53 by siRNA or by the temperature-sensitive mutation reduced G2/M accumulation anddrug resistance of BCR/ABL cells. In conclusion, accumulation of the p53 proteincontributed to prolonged G2/M checkpoint activation and drug resistance in myeloid cellsexpressing the BCR/ABL oncoproteins.  相似文献   

10.
11.
Bian T  Gibbs JD  Örvell C  Imani F 《PloS one》2012,7(5):e38052
Respiratory syncytial virus (RSV) is the major cause of viral respiratory infections in children. Our previous study showed that the RSV infection induced lung epithelial cell cycle arrest, which enhanced virus replication. To address the mechanism of RSV-induced cell cycle arrest, we examined the contribution of RSV-matrix (RSV-M) protein. In this report, we show that in both the A549 cell line and primary human bronchial epithelial (PHBE) cells, transfection with RSV-M protein caused the cells to proliferate at a slower rate than in control cells. The cell cycle analysis showed that RSV-M protein induced G1 phase arrest in A549 cells, and G1 and G2/M phase arrest in PHBE cells. Interestingly, RSV-M expression induced p53 and p21 accumulation and decreased phosphorylation of retinoblastoma protein (Rb). Further, induction of cell cycle arrest by RSV-M was not observed in a p53-deficient epithelial cell line (H1299). However, cell cycle arrest was restored after transfection of p53 cDNA into H1299 cells. Taken together, these results indicate that RSV-M protein regulates lung epithelial cell cycle through a p53-dependent pathway, which enhances RSV replication.  相似文献   

12.
UHRF2(ubiquitin like with PHD and ring finger domains 2)是新近发现的具有多个结构域的核蛋白,在细胞周期调控和表观遗传学中发挥重要作用.近期研究提示,UHRF2是肿瘤抑制蛋白p53的1个E3连接酶,在体内外能与p53相互结合并促进其泛素化,过表达UHRF2能使细胞周期停滞于G1期.然而,UHRF2介导的G1期阻滞及其与p53联系尚不清楚.通过共转染UHRF2质粒及p53特异性小干扰RNA(siRNAs)到HEK293细胞构建细胞模型,探索UHRF2引起细胞周期停滞与p53之间的关系.结果显示,UHRF2能促进HEK293细胞中p53的稳定,从而引起p21 (CIP1/WAF1)基因表达,并使细胞周期停滞于G1期;但在siRNA抑制p53的表达后p21(CIP1/WAF1)表达降低,UHRF2引起的细胞周期阻滞消除.研究结果提示,UHRF2可通过稳定p53,上调p21的表达,从而介导细胞周期阻滞于G1期;同时UHRF2可能参与细胞周期调控及DNA损伤反应(DNA damage response, DDR).UHRF2稳定p53的具体分子机制及其在DDR中的作用有待进一步研究证明.  相似文献   

13.
C Lv  Y Hong  L Miao  C Li  G Xu  S Wei  B Wang  C Huang  B Jiao 《Cell death & disease》2013,4(12):e952
Chemotherapy remains the common therapeutic for patients with lung cancer. Novel, selective antitumor agents are pressingly needed. This study is the first to investigate a different, however, effective antitumor drug candidate Wentilactone A (WA) for its development as a novel agent. In NCI-H460 and NCI-H446 cell lines, WA triggered G2/M phase arrest and mitochondrial-related apoptosis, accompanying the accumulation of reactive oxygen species (ROS). It also induced activation of mitogen-activated protein kinase and p53 and increased expression of p21. When we pre-treated cells with ERK, JNK, p38, p53 inhibitor or NAC followed by WA treatment, only ERK and p53 inhibitors blocked WA-induced apoptosis and G2/M arrest. We further observed Ras (HRas, KRas and NRas) and Raf activation, and found that WA treatment increased HRas–Raf activation. Knockdown of HRas by using small interfering RNA (siRNA) abolished WA-induced apoptosis and G2/M arrest. HRas siRNA also halted Raf, ERK, p53 activation and p21 accumulation. Molecular docking analysis suggested that WA could bind to HRas-GTP, causing accumulation of Ras-GTP and excessive activation of Raf/ERK/p53-p21. The direct binding affinity was confirmed by surface plasmon resonance (SPR). In vivo, WA suppressed tumor growth without adverse toxicity and presented the same mechanism as that in vitro. Taken together, these findings suggest WA as a promising novel, potent and selective antitumor drug candidate for lung cancer.  相似文献   

14.
15.
The ubiquitin specific peptidase 22 (USP22) is a positive regulator of the growth of tumors. However, little is known about the impact of USP22 knockdown on the growth of human bladder cells. In the present study, we designed a series of asymmetric interfering RNAs (aiRNAs) and compared the efficacy of aiRNA and conventional symmetric interfering RNA (siRNA) in the silencing of USP22 expression and the growth of human bladder EJ cells in vitro and in vivo. In comparison with transfection with the USP22-specific siRNA, transfection with 15/21 aiRNA was more potent in down-regulating the USP22 expression and inhibiting EJ cell proliferation in vitro. Furthermore, transfection with 15/21 aiRNA induced higher frequency of EJ cells arrested at the G0/G1 phases, but did not trigger EJ cell apoptosis. Moreover, transfection with either the siRNA or 15/21 aiRNA up-regulated the expression of p53 and p21, but down-regulated the expression of cyclin E and Mdm2 in EJ cells. The up-regulated p53 expression induced by the specific siRNA or aiRNA was abrogated by induction of Mdm2 over-expression. In addition, treatment with the specific siRNA or aiRNA inhibited the growth of implanted human bladder tumors in mice and the aiRNA had more potent anti-tumor activity in vivo. Therefore, our data suggest that knockdown of USP22 expression by the aiRNA may down-regulate the expression of Mdm2 and cyclin E, resulting in the up-regulated expression of p53 and p21 and leading to cell cycling arrest and inhibition of human bladder EJ cell proliferation. Our findings indicate that the USP22-specific aiRNA may be a novel approach for the intervention of human bladder tumors.  相似文献   

16.
Polycyclic aromatic hydrocarbons (PAHs) present in ambient air are considered as potential human carcinogens, but the detailed mechanism of action is still unknown. Our aim was to study the in vitro effect of exposure to dibenzo[a,l]pyrene (DB[a,l]P), the most potent carcinogenic PAH ever tested, and benzo[a]pyrene (B[a]P) in a normal human diploid lung fibroblast cells (HEL) using multiple endpoints. DNA adduct levels were measured by 32P-postlabelling, the expression of p53 and p21(WAF1) proteins by western blotting and the cell cycle distribution by flow cytometry. For both PAHs, the DNA adduct formation was proportional to the time of exposure and dependent on the stage of cell growth in culture. DNA binding was detectable even at the lowest concentration used (24h exposure, 0.01 microM for both PAHs). The highest DNA adduct levels were observed after 24h of exposure in near-confluent cells (>90% of cells at G0/G1 phase), but DNA damage induced by DB[a,l]P was approximately 8-10 times higher at a concentration one order of magnitude lower as compared with B[a]P (for B[a]P at 1 microM and for DB[a,l]P at 0.1 microM: 237+/-107 and 2360+/-798 adducts/10(8) nucleotides, respectively). The induction of p53 and p21(WAF1) protein occurred subsequent to the induction of DNA adducts. The DNA adduct levels correlated with both p53 (R=0.832, P<0.001 and R=0.859, P<0.001, for DB[a,l]P and B[a]P, respectively) and p21(WAF1) levels (R=0.808, P<0.001 and R=0.797, P=0.001, for DB[a,l]P and B[a]P, respectively), regardless of the PAH exposure and the phase of cell growth. The results showed that a detectable increase of p53 and p21(WAF1) proteins (> or = 1.5-fold as compared with controls) requires a minimal DNA adduct level of approximately 200-250 adducts/10(8) nucleotides for both PAHs tested and suggest that the level of adducts rather than their structure triggers the p53 and p21(WAF1) responses. The cell cycle was altered after 12-16h of treatment, and after 24h of exposure to 0.1 microM DB[a,l]P in growing cells, there was approximately 24% increase in S phase cells accompanied by a decrease in G1 and G2/mitosis (G2/M) cells. Cell treatment with 1.0 microM B[a]P resulted in more subtle alterations. We conclude that DB[a,l]P, and to a lesser degree B[a]P, are able to induce DNA adducts as well as p53 and p21(WAF1) without eliciting G1 or G2/M arrests but rather an S phase delay/arrest. Whether the S phase delay observed in our study is beneficial for the survival of the cells remains to be further established.  相似文献   

17.
Genotoxic agents such as ionizing radiation trigger cell cycle arrest at the G1/S and G2/M checkpoints, allowing cells to repair damaged DNA before entry into mitosis. DNA damage-induced G1 arrest involves p53-dependent expression of p21 (Cip1/Waf-1), which inhibits cyclin-dependent kinases and blocks S phase entry. While much of the core DNA damage response has been well-studied, other signaling proteins that intersect with and modulate this response remain uncharacterized. In this study, we identify Suppressor of Cytokine Signaling (SOCS)-3 as an important regulator of radiation-induced G1 arrest. SOCS3-deficient fibroblasts fail to undergo G1 arrest and accumulate in the G2/M phase of the cell cycle. SOCS3 knockout cells phosphorylate p53 and H2AX normally in response to radiation, but fail to upregulate p21 expression. In addition, STAT3 phosphorylation is elevated in SOCS3-deficient cells compared to WT cells. Normal G1 arrest can be restored in SOCS3 KO cells by retroviral transduction of WT SOCS3 or a dominant-negative mutant of STAT3. Our results suggest a novel function for SOCS3 in the control of genome stability by negatively regulating STAT3-dependent radioresistant DNA synthesis, and promoting p53-dependent p21 expression.  相似文献   

18.
Tumor suppressor p53 protein mediates checkpoint controls and the apoptotic program that are critical for maintaining genomic integrity and preventing tumorigenesis. Forced-induction of MCT-1 decreased p53 expression before and after genomic insults. While inhibiting protein synthesis, the levels of ubiquinated-p53 and the phospho-MDMA2 were significantly increased in ectopic MCT-1 cells. Abrogation of the proteosome degradation process attenuated p53 destabilization and p21 down-regulation by MCT-1. Concomitantly, MCT-1 overexpression enhanced the phosphorylation status of MAPK (ERK1/ERK2). While MCT-1 gene knockdown or MEK/ERK pathway inhibition dramatically reduced MAPK phosphorylation, the genotoxin-induced p53 and p21 production were noticeably elevated. Upon Etoposide treatment, ectopic MCT-1 cells relaxed S-phase and G2/M checkpoints followed by G1 phase progressing. Moreover, cells inducing with MCT-1 abridged accumulations of G2/M populations in the response to gamma-irradiation. The polyploidy (DNA content>4N) populations were increased in association with p53 loss in MCT-1 oncogenic cells. Alkaline comet assay validated that ectopic MCT-1 cells were less susceptibility to the genotoxicity. Furthermore, the allocation of nuclear MCT-1 induced by the genotoxic stress was moderately coincided with gamma-H2AX appearances. Throughout damage-repairing process, ectopic MCT-1 cells displayed many larger chromosomes and multiple chromosomal fusions compared to the controls that showed increase in chromosomal breaks/gaps and minute chromosomal fragments. Spectral karyotyping analysis precisely identified the acquisition of a single extra copy of chromosome 14 together with a complex genome organizations in ectopic MCT-1 cells, including extra copies of chromosome segments that had been translocated to derivative chromosomes 6 [der(6)] and 9 [der(9)]. In conclusion, MCT-1 deregulates p53-p21 network and impairs the damage checkpoints those are robustly connected to oncogenic chromosomal abnormalities.  相似文献   

19.
High expression of the epidermal growth factor receptor (EGFR) has been implicated in the development of squamous-cell carcinomas of head and neck (SCCHN). ZD1839 ('Iressa') is an orally active, selective EGFR-TKI (EGFR-tyrosine kinase inhibitor) that blocks signal transduction pathways implicated in proliferation and survival of cancer cells, and other host-dependent processes promoting cancer growth. We have demonstrated that ZD1839 induces growth arrest in SCCHN cell lines by inhibiting EGFR-mediated signaling. Cell cycle kinetic analysis demonstrated that ZD1839 induces a delay in cell cycle progression and a G1 arrest together with a partial G2/M block; this was associated with increased expression of both p27(KIP1) and p21(CIP1/WAF1) cyclin-dependent kinase (CDK) inhibitors. The activity of CDK2, the main target of CIP/KIP CDK inhibitors, was reduced in a dose-dependent fashion after 24 h of ZD1839 treatment and this effect correlated to the increased amount of p27(KIP1) and p21(CIP1/WAF1) proteins associated with CDK2-cyclin-E and CDK2-cyclin-A complexes. In addition, ZD1839-induced growth inhibition was significantly reduced in cell transfectants expressing p27(KIP1) or p21(CIP1/WAF1) antisense constructs. Overall, these results as well as the timing of the effect of ZD1839 on G1 arrest and p27(KIP1) and p21(CIP1/WAF1) upregulation, suggest a mechanistic connection between these events.  相似文献   

20.
Emodin-induced apoptosis through p53-dependent pathway in human hepatoma cells   总被引:13,自引:0,他引:13  
Shieh DE  Chen YY  Yen MH  Chiang LC  Lin CC 《Life sciences》2004,74(18):2279-2290
Most of the commonly used cytotoxic anticancer drugs have been shown to induce apoptosis in susceptible cells. However, the signaling pathway of their apoptotic effects remains undefined. In this study, the cytotoxic effect of emodin on various human hepatoma cell lines was investigated. Results demonstrated that emodin exhibited strongly suppressing effect on HepG2/C3A, PLC/PRF/5, and SK-HEP-1 cells, with the IC(50) value of 42.5, 46.6, and 53.1 microM, respectively. Furthermore, emodin induced apoptosis in HepG2/C3A cells was clearly verified by the appearance of DNA fragmentation and sub-G(1) accumulation. Besides, HepG2/C3A cells were found to be arrested in G(2)/M phase after the cells were treated with 60 microM emodin for 48 h. Moreover, significant increase in the levels of apoptosis-related signals such as p53 (419.3 pg/ml), p21 (437.4 units/ml), Fas (6.6 units/ml), and caspase-3 (35.4 pmol/min) were observed in emodin treated HepG2/C3A cells. Taken together, emodin displays effective inhibitory effects on the growth of various human hepatoma cell lines and stimulates the expression of p53 and p21 that resulted in the cell cycle arrest of HepG2/C3A cells at G(2)/M phase. Results also suggest that emodin-induced apoptosis in HepG2/C3A cells were mediated through the activation of p53, p21, Fas/APO-1, and caspase-3. It implies that emodin could be a useful chemotherapeutical agent for treatment of hepatocellular carcinoma (HCC).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号