首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biniossek ML  Schilling O 《Proteomics》2012,12(9):1303-1309
Peptide sequences lacking basic residues (arginine, lysine, or histidine, referred to as "base-less") are of particular importance in proteomic experiments targeting protein C-termini or employing nontryptic proteases such as GluC or chymotrypsin. We demonstrate enhanced identification of base-less peptides by focused analysis of singly charged precursors in liquid chromatography (LC) electrospray ionization (ESI) tandem mass spectrometry (MS/MS). Singly charged precursors are often excluded from fragmentation and sequence analysis in LC-MS/MS. We generated different pools of base-less and base-containing peptides by tryptic and nontryptic digestion of bacterial proteomes. Focused LC-MS/MS analysis of singly charged precursor ions yielded predominantly base-less peptide identifications. Similar numbers of base-less peptides were identified by LC-MS/M Sanalysis targeting multiply charged precursors. There was little redundancy between the base-less sequences derived by both MS/MS schemes. In the present experimental outcome, additional LC-MS/MS analysis of singly charged precursors substantially increased the identification rate of base-less sequences derived from multiply charged precursors. In conclusion, LC-MS/MS based identification of base-less peptides is substantially enhanced by additional focused analysis of singly charged precursors.  相似文献   

2.
The type 1 neurotensin receptor (NTS1) belongs to the G protein-coupled receptor (GPCR) family. GPCRs are involved in important physiological processes, but for many GPCRs ligand binding sites and other structural features have yet to be elucidated. Comprehensive analyses by mass spectrometry (MS) could address such issues, but they are complicated by the hydrophobic nature of the receptors. Recombinant NTS1 must be purified in the presence of detergents to maintain solubility and functionality of the receptor, to allow testing of ligand, or to allow G protein interaction. However, detergents are detrimental to MS analyses. Hence, steps need to be taken to substitute the detergents with MS-compatible polar/organic solvents. Here we report the characterization of NTS1 by electrospray ionization (ESI)-MS with emphasis on methods to transfer intact NTS1 or its proteolytic peptides into compatible solvents by protein precipitation and liquid chromatography (LC) prior to ESI-MS analyses. Molecular mass measurement of intact recombinant NTS1 was performed using a mixture of chloroform/methanol/aqueous trifluoroacetic acid as the mobile phase for size exclusion chromatography-ESI-MS analysis. In a separate experiment, NTS1 was digested with a combination of cyanogen bromide and trypsin and/or chymotrypsin. Subsequent reversed phase LC-ESI-tandem MS analysis resulted in greater than 80% sequence coverage of the NTS1 protein, including all seven transmembrane domains. This work represents the first comprehensive analysis of recombinant NTS1 using MS.  相似文献   

3.
The combination of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), in-gel enzymatic digestion of proteins separated by two-dimensional gel electrophoresis and searches of molecular weight in peptide-mass databases is a powerful and well established method for protein identification in proteomics analysis. For successful protein identification by MALDI-TOF mass spectrometry of peptide mixtures, critical parameters include highly specific enzymatic cleavage, high mass accuracy and sufficient numbers and sequence coverage of the peptides which can be analyzed. For in-gel digestion with trypsin, the method employed should be compatible both with enzymatic cleavage and subsequent MALDI-TOF MS analysis. We report here an improved method for preparation of peptides for MALDI-TOF MS mass fingerprinting by using volatile solubilizing agents during the in-gel digestion procedure. Our study clearly demonstrates that modification of the in-gel digestion protocols by addition of dimethyl formamide (DMF) or a mixture of DMF/N,N-dimethyl acetamide at various concentrations can significantly increase the recovery of peptides. These higher yields of peptides resulted in more effective protein identification.  相似文献   

4.
Attempts to characterize recombinant integral membrane proteins (IMPs) by mass spectrometry are frequently hindered by several factors including the detergents required for extraction and purification that interferes with analysis, poor solubility, incomplete digestion, and limited identification of the transmembrane domain-spanning peptides. The goal of this study was to examine and develop methods for purification of an IMP that are amenable to downstream digestion of the protein and peptide analysis by mass spectrometry. In this study, we have overexpressed a candidate IMP, the vesicular glutamate transporter 1 (VGLUT1) in Pichia pastoris and examined conditions for the efficient affinity purification, in-solution digestion, and analysis of the protein. Analysis of the intact purified protein without detergent was performed by MALDI-TOF mass spectrometry. The purified IMP was digested with trypsin, and the resulting peptides were identified. A method that utilizes differential solubility and ionization properties of hydrophobic and hydrophilic peptides was developed. Large hydrophobic peptides were only detected in solutions containing 50% formic acid. Ionization of hydrophilic peptides was suppressed in formic acid, but they produced a strong signal in 50% acetonitrile. Eighty-seven percent sequence coverage of the protein was obtained with only one large hydrophobic peptide that remained unidentified. The results demonstrate a simple method to purify and digest a recombinant IMP for analysis by mass spectrometry.  相似文献   

5.
The 5‐hydroxytryptamine 1A receptor (serotonin 1A receptor; 5‐HT1AR) is involved in a large series of brain functions, and roles in anxiety, depression, and cognition have been reported. So far, published information on mass spectrometrical characterization of 5‐HT1AR is limited to the presence of two 5‐HT1AR peptides in rat's whole brain as observed by in‐solution digestion followed by LC‐MS/MS. Knowledge about the protein sequence and PTMs, however, would have implications for generation of specific antibodies and designing studies on the 5‐HT1AR at the protein level. A rat recombinant 5‐HT1AR was extracted from the tsA201 cell line, run using several gel‐based principles with subsequent in‐gel digestion with several proteases, chymotrypsin, trypsin, AspN, proteinase K, and pepsin followed by nano‐LC‐ESI‐MS/MS analysis on a high capacity ion trap and an LTQ Orbitrap Velos. Using two search engines, Mascot and Modiro?, the recombinant 5‐HT1AR was identified showing 94.55% sequence coverage. A single phosphorylation at S301 was identified and verified by phosphatase treatment and a series of amino acid substitutions were detected. Characterization of 5‐HT1AR, a key player of brain functions and neurotransmission, was shown and may enable generation of specific antibodies, design of future, and interpretation of previous studies in the rat at the protein level.  相似文献   

6.
An N-terminal hexahistidine-tagged full-length human androgen receptor protein (His(6)-hAR) was overexpressed and purified to apparent homogeneity in the presence of dihydrotestosterone (DHT) in our previous studies. In-gel trypsin digestion of the purified DHT-bound His(6)-hAR, and tryptic peptide mapping using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI/TOF-MS), detected a total of 17 peptides (21% coverage of hAR) with 9 peptides originating from the ligand-binding domain (LBD, 31% coverage of LBD). Amino acid sequencing analysis of the tryptic peptides from a separate in-gel digestion of the His(6)-hAR, using HPLC-coupled electrospray ionization ion trap mass spectrometry (LC/ESI-ITMS and MS/MS), unambiguously confirmed 21 peptides with 19% coverage of the hAR, of which 11 peptides originated from the LBD (35% coverage of LBD). These 21 peptides included 11 out of the 17 peptides detected by MALDI/TOF-MS. In addition, a novel serine phosphorylation site (Ser(308)) within the N-terminal transactivation domain of hAR was identified.  相似文献   

7.
An efficient protocol for in-gel digestion of Coomassie-stained protein spots has been established for mass analysis by matrix-assisted laser desorption/ionization-mass spectrometry (MS) and for tandem mass spectrometry (MS/MS). Identification of Vigna mungo leaf proteome from two-dimensional gel electrophoresis was done employing the protocol. About 300 proteins spots were consistently detected in three replicate gels. Optimization of the destaining process, digestion using 25 ng/μl trypsin in 20 μl trypsin buffer, and omission of peptide extraction step significantly increased the number of matched peptides and sequence coverage. Reliable characterization of 109 proteins by MS as well as tandem sequencing by MS/MS (PRIDE Accession no. 15318) suggests the potential application of the modified protocol for high throughput proteome analysis to unravel disputes in characterization of plant proteins in fundamental or applied research.  相似文献   

8.
A "one-pot" alternative method for processing proteins and isolating peptide mixtures from bacterial samples is presented for liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis and data reduction. The conventional in-solution digestion of the protein contents of bacteria is compared to a small disposable filter unit placed inside a centrifuge vial for processing and digestion of bacterial proteins. Each processing stage allows filtration of excess reactants and unwanted byproduct while retaining the proteins. Upon addition of trypsin, the peptide mixture solution is passed through the filter while retaining the trypsin enzyme. The peptide mixture is then analyzed by LC-MS/MS with an in-house BACid algorithm for a comparison of the experimental unique peptides to a constructed proteome database of bacterial genus, specie, and strain entries. The concentration of bacteria was varied from 10 × 10(7) to 3.3 × 10(3) cfu/mL for analysis of the effect of concentration on the ability of the sample processing, LC-MS/MS, and data analysis methods to identify bacteria. The protein processing method and dilution procedure result in reliable identification of pure suspensions and mixtures at high and low bacterial concentrations.  相似文献   

9.
In the vast majority of bottom-up proteomics studies, protein digestion is performed using only mammalian trypsin. Although it is clearly the best enzyme available, the sole use of trypsin rarely leads to complete sequence coverage, even for abundant proteins. It is commonly assumed that this is because many tryptic peptides are either too short or too long to be identified by RPLC-MS/MS. We show through in silico analysis that 20-30% of the total sequence of three proteomes (Schizosaccharomyces pombe, Saccharomyces cerevisiae, and Homo sapiens) is expected to be covered by Large post-Trypsin Peptides (LpTPs) with M(r) above 3000 Da. We then established size exclusion chromatography to fractionate complex yeast tryptic digests into pools of peptides based on size. We found that secondary digestion of LpTPs followed by LC-MS/MS analysis leads to a significant increase in identified proteins and a 32-50% relative increase in average sequence coverage compared to trypsin digestion alone. Application of the developed strategy to analyze the phosphoproteomes of S. pombe and of a human cell line identified a significant fraction of novel phosphosites. Overall our data indicate that specific targeting of LpTPs can complement standard bottom-up workflows to reveal a largely neglected portion of the proteome.  相似文献   

10.
We compared detection sensitivity and protein sequence coverage of the adenovirus type 5 proteome achievable by liquid chromatography and tandem mass spectroscopy (LC/MS/MS) using three sample preparation and clean up methods. Tryptic digestion was performed on either purified viral proteins or whole virus, and followed by shotgun sequencing using tandem mass spectrometry for peptide identification. We used a recombinant adenovirus type 5 as a test system. The methods included separation of adenoviral proteins by reversed-phase high-performance liquid chromatography followed by tryptic digestion and analysis by LC/MS/MS. Alternatively, the purified whole virus was digested with trypsin and the peptides separated either by one-dimensional (reversed-phase) or by two-dimensional (cation exchange and reversed-phase) chromatography and analyzed by tandem mass spectrometry. A total of 11 protein species were identified from 154 peptides. All of the major viral proteins were found. In addition, two minor proteins, the 23 kDa viral protease and the late L1 protein, were identified for the first time by chromatography based assays. The 23 kDa viral protease, present at only 10 copies per virus, and representing 0.2% of the protein content of the virus, was detected by the 2D LC/MS/MS analysis of the whole virus digest from a sample containing only 70 fmols of the protein. This demonstrates the high sensitivity and selectivity of the method. The 2D LC/MS/MS analysis of the whole virus digest was also able to detect all viral proteins with copy numbers at or above 10/virus particle, with broad coverage of the amino acid sequences. Coverage ranged from 2 to 54%, a majority between 20 and 35%, suggesting the possibility of using this analysis to assess the purity of the virus preparations. This broad coverage may also provide a useful approach to identify posttranslational modifications on the structural proteins of the adenovirus.  相似文献   

11.
Here we present a matrix-assisted laser desorption/ionization tandem time-of-flight (MALDI–TOF/TOF)-based label-free relative protein quantification strategy that involves sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) separation of proteins followed by in-gel trypsin digestion. The main problem encountered in gel-based protein quantification is the difficulty in achieving complete and consistent proteolytic digestion. To solve this problem, we developed a high-pressure-assisted in-gel trypsin digestion method that is based on pressure cycling technology (PCT). The PCT approach performed at least as well as the conventional overnight in-gel trypsin digestion approach in parameters such as number of peaks detected, number of peptides identified, and sequence coverage, and the digestion time was reduced to 45 min. The gel/mass spectrometry (MS)-based label-free protein quantification method presented in this work proved the applicability of the signal response factor concept for relative protein quantification previously demonstrated by other groups using the liquid chromatography (LC)/MS platform. By normalizing the average signal intensities of the three most intense peptides of each protein with the average intensities of spiked synthetic catalase tryptic peptides, which we used as an internal standard, we observed spot-to-spot and lane-to-lane coefficients of variation of less than 10 and 20%, respectively. We also demonstrated that the method can be used for determining the relative quantities of proteins comigrating during electrophoretic separation.  相似文献   

12.
Standard biochemical techniques that are used for protein enrichments, such as affinity isolation and density gradient centrifugation, frequently yield high-nanogram to low-microgram quantities at a significant expenditure of resources and time. The characterization of selected protein enrichments by the "shotgun" mass spectrometry approach is often compromised by the lack of effective and efficient in-solution proteolysis protocols specifically tailored for these small quantities of proteins. This study compares the results of five different digestion protocols that were applied to 2.5 mug portions of protein isolates from two disparate sources: Rhodopseudomonas palustris 70S ribosomal proteins, and Bos taurus microtubule-associated proteins (MAPs). Proteolytic peptides produced according to each protocol in each type of protein isolate were analyzed by one-dimensional liquid chromatography-tandem mass spectrometry (LC-MS/MS). The effectiveness of each digestion protocol was assessed on the basis of three parameters: number of peptide identifications, number of protein identifications, and sequence coverage. The two protocols using a solvent containing 80% acetonitrile (CH3CN) for trypsin digestions performed as well as, and in some instances better than, protocols employing other solvents and chaotropes in both types of protein isolates. A primary advantage of the 80% CH3CN protocol is that it requires fewer sample manipulation steps.  相似文献   

13.
Plant seed oil bodies, subcellular lipoprotein inclusions providing storage reserves, are composed of a neutral lipid core surrounded by a phospholipid monolayer with several integrated proteins that play a significant role in stabilization of the particles and probably also in lipid mobilization. Oil bodies' proteins are generally very hydrophobic, due to the long uncharged sequences anchoring them into the lipid core, which makes them extremely difficult to handle and to digest successfully. Although oil bodies have been intensively studied during last decades, not all their proteins have been identified yet. To overcome the problems connected with their identification, a method based on SDS-PAGE, in-gel digestion and LC-MS/MS analysis was used. Digestion was carried out with trypsin and chymotrypsin, single or in combination, which increased significantly the number of identified peptides, namely the hydrophobic ones. Thanks to this methodology it was possible to achieve an extensive coverage of proteins studied, to analyze their N-terminal modifications and moreover, to detect four new oil bodies' protein isoforms, which demonstrates the complexity of oil bodies' protein composition.  相似文献   

14.
This study describes a new protein digestion protocol in which a variety of detergents can be used to solubilize membrane proteins and facilitate trypsin digestion with higher efficiency. In this protocol, proteins are dissolved in solutions containing various detergents and directly incorporated into a polyacrylamide gel matrix without electrophoresis. Detergents are subsequently eliminated from the gel matrix while proteins are still immobilized in the gel matrix. After in-gel digestion of proteins, LC-MS/MS is used to analyze the extracted peptides for protein identification. The uniqueness of the protocol is that it allows usage of a variety of detergents in the starting solution without interfering with LC-MS/MS analysis. We hereby demonstrate that different detergents, including ionic SDS, non-ionic Triton X-100 and n-octyl beta-d-glucopyranoside, and zwitterionic CHAPS, can be used to achieve maximum solubilization of membrane proteins with minimal interference with LC-MS/MS analysis. Enhanced digestions, i.e. improved number and intensity of detected peptides, are also demonstrated for digestion-resistant proteins such as myoglobin, ubiquitin, and bacteriorhodopsin. An additional advantage of the Tube-Gel digestion protocol is that, even without electrophoresis separation, it allows high throughput analysis of complex protein mixtures when coupled with LC-MS/MS. The protocol was used to analyze a complex membrane protein mixture prepared from prostate cancer cells. The protocol involves only a single digestion and 2.5 h of LC-MS/MS analysis and identified 178 membrane proteins. In comparison, the same membrane fraction was resolved by SDS-PAGE, and 20 gel slices were excised and individually digested and analyzed by LC-MS/MS. The more elaborate effort demanded more than 50 h of LC-MS/MS analysis and identified 268 proteins. The new Tube-Gel digestion protocol is an alternative method for high throughput analysis of membrane proteins.  相似文献   

15.
Granulocyte-colony stimulating factor stimulates production and antibacterial function of neutrophiles. Therapy using the recombinant protein drug represents a major step forward in oncology. The protein has not been, however, completely sequenced at the protein level and this formed the rationale of the current study. Recombinant G-CSF (filgrastim) was run on two-dimensional gel electrophoresis (2DE), the protein was in-gel digested with trypsin and chymotrypsin, and peptides were analysed on Nano-ESI-LC–MS/MS (high performance ion trap, HCT). Bioinformatic tools used were Mascot v2.2 and ModiroTM v1.1 softwares. A single spot was detected on 2DE and peptides resulting from in-gel digestion were unambiguously identified by the MS/MS approach leading to complete sequencing when both searching engines were applied. N-terminal methionine loss, N-terminal methionine oxidation and amidination were observed. Both softwares identified modifications. Complete sequencing by a non-sophisticated and rapid gel-based mass spectrometry approach confirmed the primary structure predicted from nucleic acid sequences. A chemical modification of glutamine 26 with the interim name PentylamineBiotin (Unimod accession number #800) compatible with biotinylation with 5-(biotinamido) pentylamine by the producer was detected by both softwares. Although there is some evidence that biotinylated G-CSF analogues are active, it remains open whether this modification may be responsible for the side effects observed or lead to changes of antigenicity.  相似文献   

16.
To reexamine the existing predictions about the general membrane topology of the high-affinity Na+/glucose cotransporter (SGLT1) and in particular of the large loop at the C-terminal region, a small 6 × Histidine-tag was introduced at different positions of the SGLT1 sequence by site-directed mutagenesis. Eleven His-SGLT1 mutants were constructed and were transiently transfected into COS-7 cells. As demonstrated by immunofluorescent labeling with antipeptide antibodies against SGLT1, all mutants were expressed and inserted into the plasma membrane. Only mutants with the tag in the N-terminal region and the C-terminal region retained Na+/glucose cotransport activity at 0.1 mm d-glucose. The arrangement of the His-tag in the membrane was analyzed by indirect immunofluorescence, using a monoclonal antihistidine antibody. In nonpermeabilized cells the His-tag could be detected at the N-terminal end (insertion at aa 5) and at the C-terminal end (replacement between aa 584-589 and between aa 622-627), suggesting that these portions of the polypeptide are accessible from the extracellular space. Furthermore, an epitope-specific antibody directed against aa 606-630 reacted strongly with the cell surface. To support this topology intact stably transfected SGLT1 competent CHO cells were partially digested with an immobilized trypsin and subsequently subjected to electrophoresis and Western blot analysis. The size of the digestion product suggests that extravesicular trypsin removed the extracellular loop that contains the amino acid residues 549-664. Thus our results indicate that the last large loop (about aa 541–aa 639) towards the C-terminal end faces the cell exterior where it might be involved in substrate recognition. Received: 29 January 1999/Revised: 26 February 1999  相似文献   

17.
The topology of beef heart Complex III has been studied by tryptic and chymotryptic digestion of isolated Complex III, Mg2+-ATP submitochondrial particles, and mitoplasts. Degradation products were detected by the immunoreplication technique using specific antibodies against core protein 1 (50 K) and core protein 2 (47 K). It can be shown that both peptides are digested from the matrix side of the inner membrane. However, no evidence was found that these peptides were digested by trypsin or chymotrypsin from the cytoplasmic side. It is concluded that the beef heart core proteins are membrane-bound peptides containing tryptic and chymotryptic digestion sites only on the matrix surface of the inner membrane. The data also suggest that beef heart core protein 2 contains multiple domains which are inserted into the membrane from the matrix surface. Proteolytic treatment of submitochondrial particles under conditions which digested at least 50% of the core proteins from the matrix surface did not, however, influence NADH oxidation rates or the respiratory control ratios.  相似文献   

18.
Plant virus nanoparticle (PVN) formulations constructed from Red clover necrotic mosaic virus by drug infusion and targeting peptide conjugation can be employed as drug delivery tools. In this investigation, we studied the cross-linked structures formed by application of sulfosuccinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate (sSMCC) and succinimidyl-[(N-maleimidopropionamido)-hexaethylene glycol] ester (SMPEG) as heterobifunctional linkers in the bioconjugation process. The plant virus formulations using several targeting peptides cross-linked to the plant virus capsid were characterized by LC/MS(E) analysis, which produced at least 69% sequence coverage using trypsin and chymotrypsin digestion. The results showed evidence for several types of modification located in three domains of the capsid protein. Extensive linker modifications on lysines or cysteines were detected in all the domains, including both intended peptide-capsid cross-links and unintended intracapsid cross-links. Surprisingly, the most extensive peptide modification was observed in the R domain, which is thought to be quite inaccessible to peptides and cross-linking reagents in solution, since it is on the interior of the virus. These results show that heterobifunctional linkers may not be the most efficient method for attachment of peptides to plant virus capsids. As an alternative conjugation strategy, maleimide peptides were used to conjugate with the virus in a one-step reaction. Analysis by LC/MS(E) showed that these one-step maleimide coupling reactions were more specific, such as modifications of C154 and to a lesser extent C267, and provide a means for achieving more effective PVN formulations.  相似文献   

19.
Protein phosphorylation regulates diverse cellular functions and plays a key role in the early development of plants. To complement and expand upon previous investigations of protein phosphorylation in Arabidopsis seedlings we used an alternative approach that combines protein extraction under non-denaturing conditions with immobilized metal-ion affinity chromatography (IMAC) enrichment of intact phosphoproteins in Rubisco-depleted extracts, followed by identification using two-dimensional gel electrophoresis (2-DE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). In-gel trypsin digestion and analysis of selected gel spots identified 144 phosphorylated peptides and residues, of which only18 phosphopeptides and 8 phosphosites were found in the PhosPhAt 4.0 and P3DB Arabidopsis thaliana phosphorylation site databases. More than half of the 82 identified phosphoproteins were involved in carbohydrate metabolism, photosynthesis/respiration or oxidative stress response mechanisms. Enrichment of intact phosphoproteins prior to 2-DE and LC-MS/MS appears to enhance detection of phosphorylated threonine and tyrosine residues compared with methods that utilize peptide-level enrichment, suggesting that the two approaches are somewhat complementary in terms of phosphorylation site coverage. Comparing results for young seedlings with those obtained previously for mature Arabidopsis leaves identified five proteins that are differentially phosphorylated in these tissues, demonstrating the potential of this technique for investigating the dynamics of protein phosphorylation during plant development.  相似文献   

20.
Sample preparation, especially protein and peptide fractionation prior to identification by mass spectrometry (MS), is typically applied to reduce sample complexity. The second key element in this process is proteolytic digestion, which is performed most often with trypsin. Optimization of this step is an important factor in order to achieve both speed and better performance of proteomic analysis, and tryptic digestion prior to the MS analysis has been a topic of many studies. To date, only a few studies have paid attention to the negative interaction between the proteolytic enzyme and sample components, and sample losses caused by these interactions. In this study, we demonstrated impaired activity after "in solution" tryptic digestion of plasma proteins caused by a potent trypsin inhibitor family, inter-alpha inhibitor proteins. Sample boiling followed by gel electrophoretic separation and "in-gel" digestion drastically improved both the number of identified proteins and the sequence coverage in subsequent LC-ESI-MS/MS. The present investigations show that a thorough validation is necessary when "in solution" digestion followed by LC-MS analysis of complex biological samples is performed. The parallel use of two or more different mass spectrometers can also yield additional information and contribute to further method validation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号