首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Population dynamics of ammonia-oxidizing bacteria (AOB) and uncultured Nitrospira-like nitrite-oxidizing bacteria (NOB) dominated in autotrophic nitrifying biofilms were determined by using real-time quantitative polymerase chain reaction (RTQ-PCR) and fluorescence in situ hybridization (FISH). Although two quantitative techniques gave the comparable results, the RTQ-PCR assay was easier and faster than the FISH technique for quantification of both nitrifying bacteria in dense microcolony-forming nitrifying biofilms. Using this RTQ-PCR assay, we could successfully determine the maximum specific growth rate (mu = 0.021/h) of uncultured Nitrospira-like NOB in the suspended enrichment culture. The population dynamics of nitrifying bacteria in the biofilm revealed that once they formed the biofilm, the both nitrifying bacteria grew slower than in planktonic cultures. We also calculated the spatial distributions of average specific growth rates of both nitrifying bacteria in the biofilm based on the concentration profiles of NH4+, NO2-, and O2, which were determined by microelectrodes, and the double-Monod model. This simple model estimation could explain the stratified spatial distribution of AOB and Nitrospira-like NOB in the biofilm. The combination of culture-independent molecular techniques and microelectrode measurements is a very powerful approach to analyze the in situ kinetics and ecophysiology of nitrifying bacteria including uncultured Nitrospira-like NOB in complex biofilm communities.  相似文献   

2.
Biofilms of selected bacteria strains were previously used on metal coupons as a protective layer against microbiologically influenced corrosion of metals. Unlike metal surfaces, concrete surfaces present a hostile environment for growing a protective biofilm. The main objective of this research was to investigate whether a beneficial biofilm can be successfully grown on mortar surfaces. Escherichia coli DH5α biofilm was grown on mortar surfaces for 8 days, and the structure and characteristics of the biofilm were studied using advanced microscopy techniques such as scanning electron microscopy and confocal laser scanning microscopy in combination with fluorescence in situ hybridization, live/dead, extracellular polymer staining, ATP analysis, and membrane filtration. A biofilm layer with a varying thickness of 20–40 μm was observed on the mortar surface. The distribution of live and dead bacteria and extracellular polymers varied with depth. The density of the live population near the mortar surface was the lowest. The bacteria reached their highest density at three fourths of the biofilm depth and then decreased again near the biofilm–liquid interface. Overall, the results indicated a healthy biofilm growth in the chosen growth period of 8 days, and it is expected that longer growth periods would lead to formation of a more resistant biofilm with more coverage of mortar surfaces.  相似文献   

3.
Cryosectioned biofilm from three depths (0.5, 3.0 and 6.0 m) in a full-scale nitrifying trickling filter (NTF) were studied using fluorescence in situ hybridization (FISH). A large number of sections were used to determine how the biofilm thickness, structure and community composition varied with depth along the ammonium concentration gradient in the NTF, and how the ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were distributed vertically within the biofilm. Both the biofilm thickness and relative biomass content of the biofilm decreased with depth, along with structural differences such as void size and surface roughness. Four AOB populations were found, with two Nitrosomonas oligotropha populations dominating at all depths. A smaller population of Nitrosomonas europaea was present only at 0.5 m, while a population of Nitrosomonas communis increased with depth. The two N. oligotropha populations showed different vertical distribution patterns within the biofilm, indicating different ecophysiologies even though they belong to the same AOB lineage. All NOB were identified as Nitrospira sp., and were generally more associated with the biofilm base than the surface-associated dominating AOB population. Additionally, a small population of anaerobic ammonia-oxidizers was found at 6.0 m, even though the biofilm was well aerated.  相似文献   

4.
A combination of fluorescence in situ hybridization (FISH), microprofiles, and denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified 16S rDNA fragments followed by hybridization analysis with specific probes was applied to investigate successional development of sulfate-reducing bacteria (SRB) community structure and in situ sulfide production activity within an activated sludge immobilized agar gel film. In this model biofilm system, since biases arising from biofilm heterogeneity can be ignored, the population dynamics of SRB in the agar gel is directly related to physiological capability and in situ activity of SRB. Microelectrode measurements showed that an anoxic zone was already developed at the beginning (0 day), a first sulfide production of 0.054 mumol H2S m(-2) x s(-1) was detected during the first week, and the rate increased gradually to 0.221 mumol H2S m(-2) x s(-1) in the fifth week. The most active sulfide production zone moved upward to the chemocline and intensified with time to form a narrow zone with high volumetric sulfide production rates. This result coincided with the shift of the spatial distributions of SRB populations determined by FISH. In situ hybridization with probe SRB385 for mainly general SRB of the delta Proteobacteria plus some gram-positive bacteria and probe 660 for Desulfobulbus indicated that the most abundant populations of SRB were primarily restricted to near the oxic/anoxic interface (chemocline). A close observation of the development of the vertical distributions of SRB populations revealed that the cell numbers of Desulfobulbus tripled (from 0.5 x 10(8) to 1.5 x 10(8) cells cm(-3)) near the oxic/anoxic interface. Similar growth (from 1.0 x10(8) to 4.5 x 10(8) cells cm(-3)) of Desulfovibrio-like SRB that hybridized with probe SRB385 was observed. PCR-DGGE followed by hybridization analysis revealed that one Desulfobulbus strain was detected from the beginning, and another strain appeared after 1 week, coinciding with the first detected sulfide production. In addition, three strains hybridizing with probe 687 (possibly Desulfovibrio) were also dominant SRB in the agar gel.  相似文献   

5.
In this study, ammonia-oxidizing bacteria present in biofilms resulting from a nitrifying reactor were detected by both a conventional FISH technique and an original in situ PCR technique. Both techniques showed that ammonia-oxidizing bacteria were found near the surface of the biofilms. However, after the biofilm had been exposed to 2 weeks of ammonia starvation, ammonia-oxidizing bacteria present in the biofilm could not be detected by fluorescence in situ hybridization (FISH) because they did not have sufficient copies of rRNA. In contrast, ammonia-oxidizing bacteria could be detected by in situ PCR with strong signal. It was thus demonstrated that a cell possessing a specific functional gene is detectable by in situ PCR regardless of its activity.  相似文献   

6.
We describe the combined application of microsensors and molecular techniques to investigate the development of sulfate reduction and of sulfate-reducing bacterial populations in an aerobic bacterial biofilm. Microsensor measurements for oxygen showed that anaerobic zones developed in the biofilm within 1 week and that oxygen was depleted in the top 200 to 400 μm during all stages of biofilm development. Sulfate reduction was first detected after 6 weeks of growth, although favorable conditions for growth of sulfate-reducing bacteria (SRB) were present from the first week. In situ hybridization with a 16S rRNA probe for SRB revealed that sulfate reducers were present in high numbers (approximately 108 SRB/ml) in all stages of development, both in the oxic and anoxic zones of the biofilm. Denaturing gradient gel electrophoresis (DGGE) showed that the genetic diversity of the microbial community increased during the development of the biofilm. Hybridization analysis of the DGGE profiles with taxon-specific oligonucleotide probes showed that Desulfobulbus and Desulfovibrio were the main sulfate-reducing bacteria in all biofilm samples as well as in the bulk activated sludge. However, different Desulfobulbus and Desulfovibrio species were found in the 6th and 8th weeks of incubation, respectively, coinciding with the development of sulfate reduction. Our data indicate that not all SRB detected by molecular analysis were sulfidogenically active in the biofilm.  相似文献   

7.
High nitrogen losses were observed in a rotating biological contactor (RBC) treating ammonium-rich (up to 500 mg NH4(+)-N/L) but organic-carbon-poor leachate from a hazardous waste landfill in K?lliken, Switzerland. The composition and spatial structure of the microbial community in the biofilm on the RBC was analyzed with specific attention for the presence of aerobic ammonium and nitrite oxidizing bacteria and anaerobic ammonium oxidizers. Anaerobic ammonium oxidation (anammox) involves the oxidation of ammonium with nitrite to N2. First the diversity of the biofilm community was determined from sequencing cloned PCR-amplified 16S rDNA fragments. This revealed the presence of a number of very unusual 16S rDNA sequences, but very few sequences related to known ammonium or nitrite oxidizing bacteria. From analysis of biofilm samples by fluorescence in situ hybridization with known phylogenetic probes and by dot-blot hybridization of the same probes to total RNA purified from biofilm samples, the main groups of microorganisms constituting the biofilm were found to be ammonium-oxidizing bacteria from the Nitrosomonas europaea/eutropha group, anaerobic ammonium-oxidizing bacteria of the "Candidatus Kuenenia stuttgartiensis" type, filamentous bacteria from the phylum Bacteroidetes, and nitrite-oxidizing bacteria from the genus Nitrospira. Aerobic and anaerobic ammonium-oxidizing bacteria were present in similar amounts of around 20 to 30% of the biomass, whereas members of the CFB phylum were present at around 7%. Nitrite oxidizing bacteria were only present in relatively low amounts (less than 5% determined with fluorescence in situ hybridization). Data from 16S rRNA dot-blot and in situ hybridization were not in all cases congruent. FISH analysis of thin-sliced and fixed biofilm samples clearly showed that the aerobic nitrifiers were located at the top of the biofilm in an extremely high density and in alternating clusters. Anammox bacteria were exclusively present in the lower half of the biofilm, whereas CFB-type filamentous bacteria were present throughout the biofilm. The structure and composition of these biofilms correlated very nicely with the proposed physiological functional separations in ammonium conversion.  相似文献   

8.
Pseudomonas putida BN210, carrying the self- transferable clc-element encoding degradation of 3-chlorobenzoate on the chromosome, was used as inoculum in different membrane biofilm reactors treating 3-chlorobenzoate-contaminated model wastewater. Analysis of the bacterial population in the effluent and in the biofilm showed the loss of BN210 beyond detection from the reactors and the appearance of several novel 3-chlorobenzoate mineralizing bacteria mainly belonging to the beta-proteobacteria. In contrast, in non-inoculated reactors, no 3-chlorobenzoate degradation was observed and no 3-chlorobenzoate degraders could be recovered. Southern blots hybridization of genomic DNA using clc-element-specific probes and FIGE analysis indicated the presence of the complete clc-element in one or more copies in the isolates. Moreover, the isolates could transfer the clc genes to Ralstonia metallidurans recipients. Two representative reactor isolates, Ralstonia sp. strains KP3 and KP9 demonstrated a higher growth rate on 3-chlorobenzoate than strain BN210 in batch cultures. When BN210, KP3 and KP9 were simultaneously inoculated in a membrane reactor supplied with 3-chlorobenzoate, strain KP3 outcompeted the two other strains and remained the major 3-chlorobenzoate degrading population in the reactor. Our data suggest that in situ horizontal transfer of the clc-element from the inoculum to contaminant bacteria in the reactors was involved in the establishment of novel 3-chlorobenzoate degrading populations that were more competitive under the defined reactor conditions than the inoculum strain.  相似文献   

9.
N.D. BENBOUZID-ROLLET, M. CONTE, J. GUEZENNEC AND D. PRIEUR. 1991. In an aerobic bulk environment sulphate-reducing bacteria (SRB) can find suitable growth conditions on surfaces where other micro-organisms have developed an extensive biofilm. On metal surfaces they may induce or enhance corrosion. A laboratory tubular flow system was designed to study this phenomenon by creating a biofilm on stainless steel under dynamic conditions with Vibrio natriegens and Desulfovibrio vulgaris. The sulphate reducer colonized the surface, constituting approximately 5% of the total population. Its in situ growth rate, calculated by a simplified mathematical model, showed that the attached SRB multiplied at their settling locations. No significant difference with respect to corrosion enhancement was found in the electrochemical reactions of the metal betwen the control and the reactor, where D. vulgaris was present in the biofilm.  相似文献   

10.
A combination of fluorescence in situ hybridization, microprofiles, denaturing gradient gel electrophoresis of PCR-amplified 16S ribosomal DNA fragments, and 16S rRNA gene cloning analysis was applied to investigate successional development of sulfate-reducing bacteria (SRB) community structure and in situ sulfide production activity within a biofilm growing under microaerophilic conditions (dissolved oxygen concentration in the bulk liquid was in the range of 0 to 100 microM) and in the presence of nitrate. Microelectrode measurements showed that oxygen penetrated 200 microm from the surface during all stages of biofilm development. The first sulfide production of 0.32 micromol of H(2)S m(-2) s(-1) was detected below ca. 500 microm in the 3rd week and then gradually increased to 0.70 micromol H(2)S m(-2) s(-1) in the 8th week. The most active sulfide production zone moved upward to the oxic-anoxic interface and intensified with time. This result coincided with an increase in SRB populations in the surface layer of the biofilm. The numbers of the probe SRB385- and 660-hybridized SRB populations significantly increased to 7.9 x 10(9) cells cm(-3) and 3.6 x 10(9) cells cm(-3), respectively, in the surface 400 microm during an 8-week cultivation, while those populations were relatively unchanged in the deeper part of the biofilm, probably due to substrate transport limitation. Based on 16S rRNA gene cloning analysis data, clone sequences that related to Desulfomicrobium hypogeium (99% sequence similarity) and Desulfobulbus elongatus (95% sequence similarity) were most frequently found. Different molecular analyses confirmed that Desulfobulbus, Desulfovibrio, and Desulfomicrobium were found to be the numerically important members of SRB in this wastewater biofilm.  相似文献   

11.
This study presents a new coupon sampling device that can be inserted directly into the pipes within water distribution systems (WDS), maintaining representative near wall pipe flow conditions and enabling simultaneous microscopy and DNA-based analysis of biofilms formed in situ. To evaluate this sampling device, fluorescent in situ hybridization (FISH) and denaturing gradient gel electrophoresis (DGGE) analyses were used to investigate changes in biofilms on replicate coupons within a non-sterile pilot-scale WDS. FISH analysis demonstrated increases in bacterial biofilm coverage of the coupon surface over time, while the DGGE analysis showed the development of increasingly complex biofilm communities, with time-specific clustering of these communities. This coupon design offers improvements over existing biofilm sampling devices in that it enables simultaneous quantitative and qualitative compositional characterization of biofilm assemblages formed within a WDS, while importantly maintaining fully representative near wall pipe flow conditions. Hence, it provides a practical approach that can be used to capture the interactions between biofilm formation and changing abiotic conditions, boundary shear stress, and turbulent driven exchange within WDS.  相似文献   

12.
In situ hybridization with rRNA-targeted oligonucleotide probes has become a widely applied tool for direct analysis of microbial population structures of complex natural and engineered systems. In such studies probe EUB338 (AMANN et al., 1990) is routinely used to quantify members of the domain Bacteria with a sufficiently high cellular ribosome content. Recent reevaluations of probe EUB338 coverage based on all publicly available 16S rRNA sequences, however, indicated that important bacterial phyla, most notably the Planctomycetales and Verrucomicrobia, are missed by this probe. We therefore designed and evaluated two supplementary versions (EUB338-II and EUB338-III) of probe EUB338 for in situ detection of most of those phyla not detected with probe EUB338. In situ dissociation curves with target and non-target organisms were recorded under increasing stringency to optimize hybridization conditions. For that purpose a digital image software routine was developed. In situ hybridization of a complex biofilm community with the three EUB338 probes demonstrated the presence of significant numbers of probe EUB338-II and EUB338-III target organisms. The application of EUB338, EUB338-II and EUB338-III should allow a more accurate quantification of members of the domain Bacteria in future molecular ecological studies.  相似文献   

13.
The formation, structure, and biodiversity of a multispecies anaerobic biofilm inside an Upflow Anaerobic Sludge Bed (UASB) reactor fed with brewery wastewater was examined using complementary microbial ecology methods such us fluorescence in situ hybridization (FISH), denaturing gradient gel electrophoresis (DGGE), and cloning. The biofilm development can be roughly divided into three stages: an initial attachment phase (0-36 h) characterized by random adhesion of the cells to the surface; a consolidation phase (from 36 h to 2 weeks) defined by the appearance of microcolonies; and maturation phase (from 2 weeks to 2 months). During the consolidation period, proteobacteria with broad metabolic capabilities, mainly represented by members of alpha-Proteobacteria class (Oleomonas, Azospirillum), predominated. Beta-, gamma-, delta- (both syntrophobacteria and sulfate-reducing bacteria) and epsilon- (Arcobacter sp.) Proteobacteria were also noticeable. Archaea first appeared during the consolidation period. A Methanospirillum-like methanogen was detected after 36 h, and this was followed by the detection of Methanosarcina, after 4 days of biofilm development. The mature biofilm displayed a hill and valley topography with cells embedded in a matrix of exopolymers where the spatial distribution of the microorganisms became well-established. Compared to the earlier phases, the biodiversity had greatly increased. Although alpha-Proteobacteria remained as predominant, members of the phyla Firmicutes, Bacteroidete, and Thermotogae were also detected. Within the domain Archaea, the acetoclastic methanogen Methanosaeta concilii become dominant. This study provides insights on the trophic web and the shifts in population during biofilm development in an UASB reactor.  相似文献   

14.
Knowledge of bacterial transport through, and biofilm growth in, porous media is vitally important in numerous natural and engineered environments. Despite this, porous media systems are generally oversimplified and the local complexity of cell transport, biofilm formation and the effect of biofilm accumulation on flow patterns is lost. In this study, cells of the sulphate-reducing bacterium, Desulfovibrio sp. EX265, accumulated primarily on the leading faces of obstructions and developed into biofilm, which grew to narrow and block pore throats (at a rate of 12 micro m h(-1) in one instance). This pore blocking corresponded to a decrease in permeability from 9.9 to 4.9 Darcy. Biofilm processes were observed in detail and quantitative data were used to describe the rate of biofilm accumulation temporally and spatially. Accumulation in the inlet zone of the micromodel was 10% higher than in the outlet zone and a mean biofilm height of 28.4 micro m was measured in a micromodel with an average pore height of 34.9 microm. Backflow (flow reversal) of fluid was implemented on micromodels blocked with biofilm growth. Although biofilm surface area cover did immediately decrease (approximately 5%), the biofilm quickly re-established and permeability was not significantly affected (9.4 Darcy). These results demonstrate that the glass micromodel used here is an effective tool for in situ analysis and quantification of bacteria in porous media.  相似文献   

15.
16.
The vertical distribution of sulfate-reducing bacteria (SRB) in aerobic wastewater biofilms grown on rotating disk reactors was investigated by fluorescent in situ hybridization (FISH) with 16S rRNA-targeted oligonucleotide probes. To correlate the vertical distribution of SRB populations with their activity, the microprofiles of O(2), H(2)S, NO(2)(-), NO(3)(-), NH(4)(+), and pH were measured with microelectrodes. In addition, a cross-evaluation of the FISH and microelectrode analyses was performed by comparing them with culture-based approaches and biogeochemical measurements. In situ hybridization revealed that a relatively high abundance of the probe SRB385-stained cells (approximately 10(9) to 10(10) cells per cm(3) of biofilm) were evenly distributed throughout the biofilm, even in the oxic surface. The probe SRB660-stained Desulfobulbus spp. were found to be numerically important members of SRB populations (approximately 10(8) to 10(9) cells per cm(3)). The result of microelectrode measurements showed that a high sulfate-reducing activity was found in a narrow anaerobic zone located about 150 to 300 microm below the biofilm surface and above which an intensive sulfide oxidation zone was found. The biogeochemical measurements showed that elemental sulfur (S(0)) was an important intermediate of the sulfide reoxidation in such thin wastewater biofilms (approximately 1,500 microm), which accounted for about 75% of the total S pool in the biofilm. The contribution of an internal Fe-sulfur cycle to the overall sulfur cycle in aerobic wastewater biofilms was insignificant (less than 1%) due to the relatively high sulfate reduction rate.  相似文献   

17.
A method was developed to detect a specific strain of bacteria in wheat root rhizoplane using fluorescence in situ hybridization and confocal microscopy. Probes targeting both 23S rRNA and messenger RNA were used simultaneously to achieve detection of recombinant Pseudomonas putida (TOM20) expressing toluene o-monooxygenase (tom) genes and synthetic phytochelatin (EC20). The probe specific to P. putida 23S rRNA sequences was labeled with Cy3 fluor, and the probe specific to the tom genes was labeled with Alexa647 fluor. Probe specificity was first determined, and hybridization temperature was optimized using three rhizosphere bacteria pure cultures as controls, along with the P. putida TOM20 strain. The probes were highly specific to the respective targets, with minimal non-specific binding. The recombinant strain was inoculated into wheat seedling rhizosphere. Colonization of P. putida TOM20 was confirmed by extraction of root biofilm and growth of colonies on selective agar medium. Confocal microscopy of hybridized root biofilm detected P. putida TOM20 cells emitting both Cy3 and Alexa647 fluorescence signals.  相似文献   

18.
Identification of early microbial colonizers in human dental biofilm   总被引:5,自引:0,他引:5  
AIMS: To elucidate the first colonizers within in vivo dental biofilm and to establish potential population shifts that occur during the early phases of biofilm formation. METHODS AND RESULTS: A 'checkerboard' DNA-DNA hybridization assay was employed to identify 40 different bacterial strains. Dental biofilm samples were collected from 15 healthy subjects, 0, 2, 4 and 6 h after tooth cleaning and the composition of these samples was compared with that of whole saliva collected from the same individuals. The bacterial distribution in biofilm samples was distinct from that in saliva, confirming the selectivity of the adhesion process. In the very early stages, the predominant tooth colonizers were found to be Actinomyces species. The relative proportion of streptococci, in particular Streptococcus mitis and S. oralis, increased at the expense of Actinomyces species between 2 and 6 h while the absolute level of Actinomyces remained unaltered. Periodontal pathogens such as Tannerella forsythensis(Bacteroides forsythus), Porphyromonas gingivalis and Treponema denticola as well as Actinobacillus actinomycetemcomitans were present in extremely low levels at all the examined time intervals in this healthy group of subjects. CONCLUSION: The data provide a detailed insight into the bacterial population shifts occurring within the first few hours of biofilm formation and show that the early colonizers of the tooth surface predominantly consist of beneficial micro-organisms. SIGNIFICANCE AND IMPACT OF THE STUDY: The early colonizers of dental plaque are of great importance in the succession stages of biofilm formation and its overall effect on the oral health of the host.  相似文献   

19.
The identification of bacteria in oil production facilities has previously been based on culture techniques. However, cultivation of bacteria from these often-extreme environments can lead to errors in identifying the microbial community members. In this study, molecular techniques including fluorescence in situ hybridization, PCR, denaturing gradient gel electrophoresis, and sequencing were used to track changes in bacterial biofilm populations treated with nitrate, nitrite, or nitrate + molybdate as agents for the control of sulfide production. Results indicated that nitrite and nitrate + molybdate reduced sulfide production, while nitrate alone had no effect on sulfide generation. No long-term effect on sulfide production was observed. Initial sulfate-reducing bacterial numbers were not influenced by the chemical treatments, although a significant increase in sulfate-reducing bacteria was observed after termination of the treatments. Molecular analysis showed a diverse bacterial population, but no major shifts in the population due to treatment effects were observed.  相似文献   

20.
The seasonal dynamics of river biofilm communities in two German rivers, the Elbe and one of its tributaries, the Spittelwasser, were investigated for the first time by using fluorescence in situ hybridization and a standardized biofilm sampling procedure. We show the importance of members of the beta subclass of the class Proteobacteria, which formed the largest single group in the massively polluted Spittelwasser at all times. Clear seasonal peaks of abundance were observed for the planctomycetes and the Cytophaga-Flavobacterium cluster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号