共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial glycogen/starch synthases are retaining GT-B glycosyltransferases that transfer glucosyl units from ADP-Glc to the non-reducing end of glycogen or starch. We modeled the Escherichia coli glycogen synthase based on the coordinates of the inactive form of the Agrobacterium tumefaciens glycogen synthase and the active form of the maltodextrin phosphorylase, a retaining GT-B glycosyltransferase belonging to a different family. In this model, we identified a set of conserved residues surrounding the sugar nucleotide substrate, and we replaced them with different amino acids by means of site-directed mutagenesis. Kinetic analysis of the mutants revealed the involvement of these residues in ADP-Glc binding. Replacement of Asp21, Asn246 or Tyr355 for Ala decreased the apparent affinity for ADP-Glc 18-, 45-, and 31-fold, respectively. Comparison with other crystallized retaining GT-B glycosyltransferases confirmed the striking similarities among this group of enzymes even though they use different substrates. 相似文献
2.
Immunological characterization of Escherichia coli B glycogen synthase and branching enzyme and comparison with enzymes from other bacteria. 总被引:1,自引:2,他引:1 下载免费PDF全文
Escherichia coli B glycogen synthase and branching enzyme, although similar in amino acid composition, had no significant immunological cross-reactivity. The N-terminal sequences of the glycogen synthase were rich in hydrophobic residues, whereas branching enzyme had a higher content of acidic and basic residues. However, residues 21 to 28 of glycogen synthase and 7 to 14 of branching enzyme shared six of eight residues in common. Two fractions of branching enzyme, branching enzymes I and II, which can be isolated from E. coli B cell extracts, have been shown to be immunologically identical, suggesting that only one type of branching enzyme activity is present in E. coli B. Evidence has been obtained which indicates that E. coli B glycogen synthase and branching enzyme are antigenically very similar to glycogen synthases and branching enzymes from other enteric bacteria. No cross-reactivity with either enzyme was observed in cell extracts from photosynthetic bacteria. 相似文献
3.
Results presented indicate that two distinct essential sulfhydryl residues are present in the Escherichia coli B glycogen synthase. One residue is modified by iodoacetic acid and can be protected by ADP or ADPglucose. The other site can be modified by 5,5′-dithiobis (2-nitrobenzoic acid) and is protected by glycogen. Each reagent appears to be specific for a given site and thus allows the two sites to be distingushed. 相似文献
4.
Previous reports implicate UDPglucose as an active glucosyl donor for the unprimed reaction and “glucoprotein” formation in glycogen biosynthesis in Escherichia coli. Results presented here indicate that UDPglucose and GDPglucose are glucosyl donors in the primed and unprimed reactions catalyzed by purified E. coli B glycogen synthase at less than 5% the rate observed when ADPglucose is the donor. The unprimed reaction is stimulated by 0.25 m citrate and a high molecular weight product is formed similar to that produced when ADPglucose is the glucosyl donor. Physiological amounts of branching enzyme and high concentrations of glycogen inhibit transfer from UDPglucose and GDPglucose. In addition, transfer from UDPglucose is inhibited by ADPglucose. These results strongly suggest that ADPglucose is the physiological donor in both the primed and unprimed reactions. Furthermore, these and previously reported results suggest that one enzyme is involved in the catalysis of the primed, unprimed, and TCA-insoluble product formation reactions. Antiserum prepared against purified E. coli B glycogen synthase inactivates transfer of glucose from either ADPglucose or UDPglucose in the above reactions catalyzed by E. coli B crude extracts. Purified E. coli B glycogen synthase preparations contain significant amounts of α-glucan primer. Evidence shows that this glucan is not covalently attached to the enzyme. Results presented show that formation of material insoluble in TCA and previously considered to be due to “glucoprotein” formation, is in fact due to the generation of long chain length glucan molecules intrinsically acid insoluble. The data suggest that previous results purported to be de novo synthesis of glycogen are due to glucan associated with the glycogen synthase and not to formation of a “glucoprotein” intermediate which then acts as primer for further oligosaccharide synthesis. 相似文献
5.
Deng MD Grund AD Wassink SL Peng SS Nielsen KL Huckins BD Burlingame RP 《Biochimie》2006,88(5):419-429
Glucosamine synthase (GlmS) converts fructose-6-phosphate to glucosamine-6-phosphate. Overexpression of GlmS in Escherichia coli increased synthesis of glucosamine-6-P, which was dephosphorylated and secreted as glucosamine into the growth medium. The E. coli glmS gene was improved through error-prone polymerase chain reaction (PCR) in order to develop microbial strains for fermentation production of glucosamine. Mutants producing higher levels of glucosamine were identified by a plate cross-feeding assay and confirmed in shake flask cultures. Over 10 mutants were characterized and all showed significantly reduced sensitivity to inhibition by glucosamine-6-phosphate. Ki of mutants ranged from 1.4 to 4.0 mM as compared to 0.56 mM for the wild type enzyme. Product resistance resulted from single mutations (L468P, G471S) and/or combinations of mutations in the sugar isomerase domain. Most overexpressed GlmS protein was found in the form of inclusion bodies. Cell lysate from mutant 2123-72 contained twice as much soluble GlmS protein and enzyme activity as the strain overexpressing the wild type gene. Using the product-resistant mutant, glucosamine production was increased 60-fold. 相似文献
6.
Hwang TS Hung CH Teo CF Chen GT Chang LS Chen SF Chen YJ Lin CH 《Biochemical and biophysical research communications》2002,293(1):167-173
Wnt-1, the vertebrate counterpart of the Drosophila wingless gene, plays an important role in the early morphogenesis of neural tissues. In this report, we have shown that overexpression of Wnt-1 can direct embryonic carcinoma P19 cells to differentiate into neuron-like cells in the absence of retinoic acid. Immunocytochemistry showed that these cells expressed neuronal markers, such as the neurofilament (NF) and microtubule-associated protein 2 (MAP2), but failed to express the glial cell marker, glial fibrillary acidic protein (GFAP). RT-PCR revealed that two basic helix-loop-helix (bHLH) genes, Mash-1 and Ngn-1, were up-regulated during the differentiation stage of Wnt-1-overexpressing P19 cells. These results suggest that the Wnt-1 gene promotes neuronal differentiation and inhibits gliogenesis during the neural differentiation of P19 cells, and that neural bHLH genes might be involved in this process. 相似文献
7.
8.
Kinetic characterization of 4-amino 4-deoxychorismate synthase from Escherichia coli. 总被引:2,自引:0,他引:2 下载免费PDF全文
The metabolic fate of p-aminobenzoic acid (PABA) in Escherichia coli is its incorporation into the vitamin folic acid. PABA is derived from the aromatic branch point precursor chorismate in two steps. Aminodeoxychorismate (ADC) synthase converts chorismate and glutamine to ADC and glutamate and is composed of two subunits, PabA and PabB. ADC lyase removes pyruvate from ADC, aromatizes the ring, and generates PABA. While there is much interest in the mechanism of chorismate aminations, there has been little work done on the ADC synthase reaction. We report that PabA requires a preincubation with dithiothreitol for maximal activity as measured by its ability to support the glutamine-dependent amination of chorismate by PabB. PabB glutamine enhances the protective effect of PabA. Incubation with fresh dithiothreitol reverses the inactivation of PabB. We conclude that both PabA and PabB have cysteine residues which are essential for catalytic function and/or for subunit interaction. Using conditions established for maximal activity of the proteins, we measured the Km values for the glutamine-dependent and ammonia-dependent aminations of chorismate, catalyzed by PabB alone and by the ADC synthase complex. Kinetic studies with substrates and the inhibitor 6-diazo-5-oxo-L-norleucine were consistent with an ordered bi-bi mechanism in which chorismate binds first. No inhibition of ADC synthase activity was observed when p-aminobenzoate, sulfanilamide, sulfathiazole, and several compounds requiring folate for their biosynthesis were used. 相似文献
9.
10.
Elizabeth Fraser Neville Young Rana Dajani Jonathan Franca-Koh Jonathan Ryves Robin S B Williams Margaret Yeo Marie-Therese Webster Chris Richardson Matthew J Smalley Laurence H Pearl Adrian Harwood Trevor C Dale 《The Journal of biological chemistry》2002,277(3):2176-2185
Glycogen synthase kinase-3 (GSK-3) is a key component of several signaling pathways including those regulated by Wnt and insulin ligands. Specificity in GSK-3 signaling is thought to involve interactions with scaffold proteins that localize GSK-3 regulators and substrates. This report shows that GSK-3 forms a low affinity homodimer that is disrupted by binding to Axin and Frat. Based on the crystal structure of GSK-3, we have used surface-scanning mutagenesis to identify residues that differentially affect GSK-3 interactions. Mutations that disrupt Frat and Axin cluster at the dimer interface explaining their effect on homodimer formation. Loss of the Axin binding site blocks the ability of dominant negative GSK-3 to cause axis duplication in Xenopus embryos. The Axin binding site is conserved within all GSK-3 proteins, and its loss affects both cell motility and gene expression in the nonmetazoan, Dictyostelium. Surprisingly, we find no genetic interaction between a non-Axin-binding GSK-3 mutant and T-cell factor activity, arguing that Axin interactions alone cannot explain the regulation of T-cell factor-mediated gene expression. 相似文献
11.
Cobalamin-independent methionine synthase (MetE) from Escherichia coli catalyzes the transfer of a methyl group from methyltetrahydrofolate to homocysteine to form tetrahydrofolate and methionine. It contains 1 equiv of zinc that is essential for its catalytic activity. Extended X-ray absorption fine structure analysis of the zinc-binding site has suggested tetrahedral coordination with two sulfur (cysteine) and one nitrogen or oxygen ligands provided by the enzyme and an exchangeable oxygen or nitrogen ligand that is replaced by the homocysteine thiol group in the enzyme-substrate complex [González, J. C., Peariso, K., Penner-Hahn, J. E., and Matthews, R. G. (1996) Biochemistry 35, 12228-34]. Sequence alignment of MetE homologues shows that His641, Cys643, and Cys726 are the only conserved residues. We report here the construction, expression, and purification of the His641Gln, Cys643Ser, and Cys726Ser mutants of MetE. Each mutant displays significantly impaired activity and contains less than 1 equiv of zinc upon purification. Furthermore, each mutant binds zinc with lower binding affinity (K(a) approximately 10(14) M(-)(1)) compared to the wild-type enzyme (K(a) > 10(16) M(-)(1)). All the MetE mutants are able to bind homocysteine. X-ray absorption spectroscopy analysis of the zinc-binding sites in the mutants indicates that the four-coordinate zinc site is preserved but that the ligand sets are changed. Our results demonstrate that Cys643 and Cys726 are two of the zinc ligands in MetE from E. coli and suggest that His641 is a third endogenous ligand. The effects of the mutations on the specific activities of the mutant proteins suggest that zinc and homocysteine binding alone are not sufficient for activity; the chemical nature of the ligands is also a determining factor for catalytic activity in agreement with model studies of the alkylation of zinc-thiolate complexes. 相似文献
12.
Dehydrodolichyl diphosphate synthase (DDPPs) catalyzes the sequential condensation of isopentenyl diphosphate with farnesyl diphosphate to synthesize long-chain dehydrodolichyl diphosphate, which serves as a precursor of glycosyl carrier in glycoprotein biosynthesis in eukaryotes. To perform kinetic and structural studies of DDPPs, we have expressed yeast DDPPs using Escherichia coli as the host cell. Thioredoxin and His tag were utilized to increase the solubility of the recombinant protein and facilitate its purification using Ni-nitrilotriacetic acid (NTA) column. The protein was overexpressed in E. coli but mostly existed in pellet in the absence of detergent. The low quantity of soluble DDPPs was purified using Ni-NTA, Mono Q anion-exchange, and size-column chromatographies. The protein in the pellet was solubilized with 7 M urea and purified using Ni-NTA under denaturing condition. The protein refolding was achieved via the stepwise dialysis to remove the denaturant in the presence of 6 mM beta-mercaptoethanol. Detergent n-octyl-beta-d-glucopyranoside and Triton X-100 increased the solubility of the DDPPs so that refolding can be performed at higher protein concentration. Alternatively, on-column refolding was carried out in a single step to obtain the active protein in large quantities. beta-Mercaptoethanol and Triton were both required in this quick refolding process. The kinetic studies indicated that the soluble and refolded DDPPs have comparable activities (k(cat) = 2 x 10(-4) s(-1)). Unlike its bacterial homologue, undecaprenyl diphosphate synthase, yeast DDPPs activity was not enhanced by Triton. 相似文献
13.
Threonine synthase (TS) catalyzes the hydrolysis of O-phospho-L-homoserine (OPHS) to produce L-threonine (L-Thr) and inorganic phosphate. Here, we report a simplified purification protocol for the OPHS substrate and a continuous, coupled-coupled, spectrophotometric TS assay. The sequential actions of threonine deaminase (TD) and hydroxyisocaproate dehydrogenase (HO-HxoDH) convert the L-Thr product of TS to α-ketobutyrate (α-KB) and then to 2-hydroxybutyrate, respectively, and are monitored as the decrease in absorbance at 340 nm resulting from the concomitant oxidation of β-nicotinamide adenine dinucleotide (NADH) to NAD(+) by HO-HxoDH. The effect of pH on the activities of Escherichia coli TD and Lactobacillus delbrueckii HO-HxoDH was determined to establish this continuous assay as suitable for steady-state characterization and to facilitate the optimization of coupling enzyme concentrations under different assay conditions to enable studies of TS across phyla. To validate this assay, TS from E. coli was characterized. The kinetic parameters (k(cat)=4s(-1) and K(m)=0.34 mM) and the pH optimum of 8.7, determined using the continuous assay, are consistent with values reported for this enzyme based on the discontinuous malachite green assay. The k(cat)/K(m)(OPHS) versus pH profile of E. coli TS is bell-shaped, and the apparent pK(a) values for the acidic and basic limbs are 7.1 and 10.4, respectively. 相似文献
14.
15.
The isolated and membrane-bound forms of the adenosinetriphosphatase of Escherichia coli (ECF1 and ECF1F0, respectively) have been reacted with two lysine-specific reagents, sodium hexadecyl 4-[3H]formylphenyl phosphate (HFPP) and sodium methyl 4-[3H]formylphenyl phosphate (MFPP), and with the photoreactive reagent 1,2-[3H]dipalmitoyl-sn-glycerol 3-[[[(4-azido-2-nitrophenyl)amino]ethyl]-phosphate] (arylazidoPE). HFPP and arylazidoPE are amphipathic molecules, inserting by their hexadecyl moieties (one and two chains, respectively) into the lipid bilayer, with the reactive groups intercalated among the phospholipid head groups. MFPP is the water-soluble analogue of HFPP. The labeling patterns of ECF1F0 obtained with HFPP and arylazidoPE were very similar; in both cases the a and b subunits of the F0 part were the most heavily labeled polypeptides of the complex. Models of subunit a, arranged in six transmembrane helices, place most of the lysines in the head-group region, available for reaction with HFPP. Subunits alpha and beta of the ECF1 part were very poorly labeled in comparison to the a and b subunits, together incorporating only 4% as much HFPP and 7.5% as much arylazidoPE as the two F0 subunits together on a protein mass basis. Trypsin cleavage studies localized any labeling of the alpha subunit by arylazidoPE to the N-terminal 15 residues of this polypeptide. When MFPP was used, the alpha and beta subunits were very much more reacted than the F0 subunits. This implies that most of the mass of the alpha and beta subunits in ECF1F0 is above the membrane and not in contact with the bilayer surface.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
16.
17.
NAD-specific pig heart isocitrate dehydrogenase is composed of three distinct types of subunits: α, β, and γ, which have molecular weights of about 40,000 but differ in amino acid composition and in isoelectric points. When the native enzyme is subjected to polyacrylamide gel electrophoresis under nondenaturing conditions, two major protein bands with Mr values of about 360,000 (band 1) and 100,000 (band 2) and two minor bands (bands 3 and 4) with Mr values of about 40,000 are consistently present. Enzymatic activity, as detected from NADH fluorescence, is distributed throughout the protein-staining region. Analytical isoelectric focusing in urea reveals that band 1 is composed of all three subunits in roughly the normal ratio of 2α:1β:1γ, and is probably an octamer, band 2 of an equal amount of α and β and is probably dimer, while bands 3 and 4 each consist of only the monomeric α subunit. The highest enzymatic specific activity is associated with a region intermediate between octamer and dimer, which includes the 160,000 tetramer. The protein pattern resulting from isoelectric focusing under nondenaturing conditions consists of protein bands comparable in pattern to those in the presence of urea along with bands of intermediate pI values, many of which are associated with enzymatic activity. Analysis of the subunit composition of these bands supports the activity of the α species in isolation and establishes the activity of the separated β component. No activity of the isolated γ subunit species has thus far been demonstrated. However, the highest apparent specific activity is observed when at least two types of subunits are present. These studies indicate that a range of oligomeric species of the enzyme are enzymatically active and that at least three of the four subunit chains comprising the minimum complete enzyme molecule (2α:1β:1γ) possess an active site. 相似文献
18.
K Furukawa M Tagaya M Inouye J Preiss T Fukui 《The Journal of biological chemistry》1990,265(4):2086-2090
Glycogen synthases from Escherichia coli and mammalian muscle differ in many respects including regulation, sugar nucleotide specificity, and primary sequence. To compare the structure of the active sites in these enzymes, the affinity-labeling study of the E. coli enzyme was carried out using adenosine diphosphopyridoxal as the reagent. The E. coli enzyme was inactivated in a time- and dose-dependent manner when incubated with the reagent followed by sodium borohydride reduction. The inactivation was markedly protected by ADP-glucose and ADP, suggesting that the reagent was bound to the substrate-binding site. The stoichiometry of the bound reagent to the enzyme was approximately 1:1. Sequence analysis of the labeled peptide isolated from a proteolytic digest of the modified protein revealed that Lys15 is labeled. Based on the geometry of the reagent, the epsilon-amino group of this residue might be located close to the pyrophosphate moiety of ADP-glucose bound to the E. coli enzyme, like that of Lys38 in the rabbit muscle enzyme, which is labeled by uridine diphosphopyridoxal (Tagaya, M., Nakano, K., and Fukui, T. (1986) J. Biol. Chem. 260, 6670-6676; Mahrenholz, A. M., Wang, Y., and Roach, P. J. (1988) J. Biol. Chem. 263, 10561-10567). The importance of the conserved sequence of Lys-X-Gly-Gly is discussed in connection with the glycine-rich region found in many nucleotide-binding proteins. 相似文献
19.
Purification and characterization of glycogen synthase from a glycogen-deficient strain of Saccharomyces cerevisiae 总被引:8,自引:0,他引:8
Chromatography of wild-type yeast extracts on DEAE-cellulose columns resolves two populations of glycogen synthase I (glucose-6-P-independent) and D (glucose-6-P-dependent) (Huang, K. P., Cabib, E. (1974) J. Biol. Chem. 249, 3851-3857). Extracts from a glycogen-deficient mutant strain, 22R1 (glc7), yielded only the D form of glycogen synthase. Glycogen synthase D purified from either wild-type yeast or from this glycogen-deficient mutant displayed two polypeptides with molecular masses of 76 and 83 kDa on sodium dodecyl sulfate-gel electrophoresis in a protein ratio of about 4:1. Phosphate analysis showed that glycogen synthase D from either strain of yeast contained approximately 3 phosphates/subunit. The 76- and 83-kDa bands of the mutant strain copurified through a variety of procedures including nondenaturing gel electrophoresis. These two polypeptides showed immunological cross-reactivity and similar peptide maps indicating that they are structurally related. The relative amounts of these two forms remained constant during purification and storage of the enzyme and after treatment with cAMP-dependent protein kinase or with protein phosphatases. The two polypeptides were phosphorylated to similar extent in vitro by the catalytic subunit of mammalian cyclic AMP-dependent protein kinase. Phosphorylation of the enzyme in the presence of labeled ATP followed by tryptic digestion and reversed phase high performance liquid chromatography yielded two labeled peptides from each of the 76- and 83-kDa subunits. Treatment of wild-type yeast with Li+ increased the glycogen synthase activity, measured in the absence of glucose-6-P, by approximately 2-fold, whereas similar treatment of the glc7 mutant had no effect. The results of this study indicate that the GLC7 gene is involved in a pathway that regulates the phosphorylation state of glycogen synthase. 相似文献