首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
As reports on G protein-coupled receptor signal transduction mechanisms continue to emphasize potential differences in signaling due to relative receptor levels and cell type specificities, the need to study endogenously expressed receptors in appropriate model systems becomes increasingly important. Here we examine signal transduction mechanisms mediated by endogenous kappa-opioid receptors in C6 glioma cells, an astrocytic model system. We find that the kappa-opioid receptor-selective agonist U69,593 stimulates phospholipase C activity, extracellular signal-regulated kinase 1/2 phosphorylation, PYK2 phosphorylation, and DNA synthesis. U69,593-stimulated extracellular signal-regulated kinase 1/2 phosphorylation is shown to be upstream of DNA synthesis as inhibition of signaling components such as pertussis toxin-sensitive G proteins, L-type Ca2+ channels, phospholipase C, intracellular Ca2+ release, protein kinase C, and mitogen-activated protein or extracellular signal-regulated kinase kinase blocks both of these downstream events. In addition, by overexpressing dominant-negative or sequestering mutants, we provide evidence that extracellular signal-regulated kinase 1/2 phosphorylation is Ras-dependent and transduced by Gbetagamma subunits. In summary, we have delineated major features of the mechanism of the mitogenic action of an agonist of the endogenous kappa-opioid receptor in C6 glioma cells.  相似文献   

3.
4.
These studies were performed to determine the intracellular pathways involved in regulating gastrin gene expression. The inclusion of 10(-4) M forskolin or 10(-4) M dibutyryl cyclic AMP (DBcAMP) in incubation medium containing dog antral mucosa resulted in 249% and 323% increases, respectively, in gastrin mRNA levels. The stimulatory effects of forskolin and DBcAMP were both inhibited significantly by 10(-6) M somatostatin. Preincubation of antral mucosa with pertussis toxin nearly abolished the inhibitory effects of somatostatin on gastrin mRNA stimulated by forskolin, but had no effect following DBcAMP. To examine whether calcium-dependent pathways might be involved in regulating gastrin gene expression, antral mucosa was incubated with increasing concentrations of calcium or the ionophore ionomycin. Both agents produced only modest increases in gastrin mRNA, which were abolished by the addition of somatostatin to the incubation medium. These studies indicate that somatostatin appears to inhibit gastrin gene expression through mechanisms involving both pertussis toxin-sensitive and -insensitive pathways.  相似文献   

5.
Protein C activation is catalyzed on endothelium by a complex between thrombin and thrombomodulin. Ca2+ stimulates protein C activation in the presence, and inhibits in the absence, of thrombomodulin. Protein C has Asp residues at the P3 and P3' positions relative to the scissile bond at Arg169-Leu. To determine the contribution of these residues to the Ca2+ effect on activation, we have expressed human 4-carboxyglutamic acid (Gla)-domainless protein C and 3 mutants with Asp-->Gly substitutions at P3, P3', and both positions. Ca2+ interaction with the protein C derivatives was monitored by changes in intrinsic fluorescence, and the Ca2+ dependence of activation by thrombin and a complex of thrombin-thrombomodulin with a soluble thrombomodulin derivative (the fourth through sixth epidermal growth factor domains). The affinity for Ca2+ of the mutants was reduced 3-6-fold, which was reflected by a comparable change in the Ca2+ concentration required for the half-maximal rate of activation by the thrombin-thrombomodulin complex. However, Ca2+ no longer effectively inhibited activation of the mutants by thrombin alone. We conclude that 1) the Asp residues play a specific role in the Ca(2+)-dependent inhibition of protein C activation by thrombin; 2) these mutations alter the affinity of Ca2+ for the high affinity binding site; and 3) the Asp residues in the P3 and P3' sites do not contribute in a positive fashion to rapid activation by the thrombin-thrombomodulin complex.  相似文献   

6.
Stress-activated protein kinase (SAPK) signaling plays essential roles in eliciting adequate cellular responses to stresses and proinflammatory cytokines. SAPK pathways are composed of three successive protein kinase reactions. The phosphorylation of SAPK signaling components on Ser/Thr or Thr/Tyr residues suggests the involvement of various protein phosphatases in the negative regulation of these systems. Accumulating evidence indicates that three families of protein phosphatases, namely the Ser/Thr phosphatases, the Tyr phosphatases and the dual specificity Ser/Thr/Tyr phosphatases regulate these pathways, each mediating a distinct function. Differences in substrate specificities and regulatory mechanisms for these phosphatases form the molecular basis for the complex regulation of SAPK signaling. Here we describe the properties of the protein phosphatases responsible for the regulation of SAPK signaling pathways.  相似文献   

7.
The phospholipase C-mediated hydrolysis of phosphatidylcholine has been shown recently to be activated by a number of agonists. Muscarinic receptors, which trigger various signal transduction mechanisms including inhibition of adenylate cyclase through Gi, have been shown to be potent stimulants of this novel phospholipid degradative pathway. We demonstrate here, by exogenous addition of Bacillus cereus phosphatidylcholine-hydrolyzing phospholipase C, that phosphatidylcholine breakdown mimics the ability of carbachol to inhibit adenylate cyclase. This effect is sensitive to pertussis toxin and is entirely dependent on the presence of protein kinase C. This kinase is also required for the inhibition by carbachol of adenylate cyclase. These results suggest that the activation of phosphatidylcholine breakdown by phospholipase C may play an important role linking or favoring the coupling muscarinic receptors to Gi. Results presented here also show that phospholipase C-mediated hydrolysis of phosphoinositides by exogenous addition of Bacillus thuringiensis phosphoinositide-hydrolyzing phospholipase C does not affect adenylate cyclase, despite the fact that protein kinase C is translocated to an extent similar to that produced by the hydrolysis of phosphatidylcholine. According to the results shown here, both phospholipases also differ in their ability to down-regulate protein kinase C as well as to phosphorylate p80 and to transmodulate the binding of epidermal growth factor, two well established effects of protein kinase C in Swiss 3T3 fibroblasts. This emphasizes the complexity, from a functional point of view, of protein kinase C activation "in vivo."  相似文献   

8.
Although many functions of phagocytes are known to be regulated by guanosine triphosphate (GTP)-binding proteins, phagocytosis itself has not been considered one of these. However, previous studies have examined only unstimulated neutrophil phagocytosis. Motivated by our previous work, which showed that stimulated neutrophil phagocytosis is regulated by GTP-binding proteins (H. D. Gresham, M. G. Peters, and E. J. Brown. 1986. J. Cell Biol. 103:215a), we have examined the effect of pertussis toxin (PT) on monocyte receptor-mediated phagocytosis. PT inhibited unstimulated and fibronectin-stimulated IgG-mediated phagocytosis and also inhibited C3b-mediated phagocytosis stimulated by fibronectin or phorbol dibutyrate. Cholera toxin (CT) had no effect on unstimulated or stimulated phagocytosis mediated by IgG or C3b. PT inhibition of phagocytosis was not mediated via increases in cellular cAMP levels or by inhibition of the respiratory burst. Inhibition of phagocytosis did not result from decreased numbers of plasma membrane opsonin receptors nor decreased ability to bind opsonized targets. Although phorbol ester-stimulated phagocytosis was inhibited by PT, ligand-independent internalization of CR1 stimulated by phorbol dibutyrate proceeded normally in PT-intoxicated cells. We conclude that a PT-sensitive GTP-binding protein does regulate phagocytic function in monocytes. This protein operates on a molecular mechanism specific to the process of ingestion in both unstimulated monocytes and in cells stimulated to increase phagocytosis. Because unstimulated neutrophil phagocytosis is unaffected by PT or CT, and stimulated neutrophil phagocytosis is inhibited by both PT and CT, our data also demonstrate that monocytes and neutrophils have distinct mechanisms for regulation of phagocytic function.  相似文献   

9.
Exposure of growing neurons to thrombin or semaphorin 3A stimulates a receptor-mediated signaling cascade that results in collapse of their growth cones. This collapse response necessitates eicosanoid production, as we have shown earlier. The present report investigates whether and which protein kinase C (PKC) isoforms may be activated by such eicosanoids. To examine these questions, we isolated growth cones from fetal rat brain and tested whether thrombin or the eicosanoid, 12(S)-hydroxyeicosatetraenoic acid (12(S)-HETE), could activate endogenous growth cone PKC. We show that both thrombin and 12(S)-HETE stimulate the phosphorylation of the myristoylated alanine-rich protein kinase C substrate, an 87-kDa adhesion site protein. Furthermore, we show both with immunoprecipitated and with recombinant PKC that 12(S)-HETE activation is selective for the epsilon isoform and does not require accessory proteins. Last, we demonstrate that PKC activation is necessary for thrombin-induced growth cone collapse. These data indicate that eicosanoid-mediated repellent effects result from the direct and selective activation of PKCepsilon and suggest the involvement of myristoylated alanine-rich protein kinase C substrate phosphorylation in growth cone collapse.  相似文献   

10.
Glycosylphosphatidylinositol (GPI) structures are attached to many cell surface glycoproteins in lower and higher eukaryotes. GPI structures are particularly abundant in trypanosomatid parasites where they can be found attached to complex phosphosaccharides, as well as to glycoproteins, and as mature surface glycolipids. The high density of GPI structures at all life-cycle stages of African trypanosomes and Leishmania suggests that the GPI biosynthetic pathway might be a reasonable target for the development of anti-parasite drugs. In this paper we show that synthetic analogues of early GPI intermediates having the 2-hydroxyl group of the D-myo-inositol residue methylated are recognized and mannosylated by the GPI biosynthetic pathways of Trypanosoma brucei and Leishmania major but not by that of human (HeLa) cells. These findings suggest that the discovery and development of specific inhibitors of parasite GPI biosynthesis are attainable goals. Moreover, they demonstrate that inositol acylation is required for mannosylation in the HeLa cell GPI biosynthetic pathway, whereas it is required for ethanolamine phosphate addition in the T.brucei GPI biosynthetic pathway.  相似文献   

11.
Regulation of Smad signaling by protein kinase C.   总被引:9,自引:0,他引:9  
  相似文献   

12.
13.
In rabbit peritoneal neutrophils prelabeled with [3H] lyso platelet-activating factor, a protein kinase C inhibitor, staurosporine (> 1 microM), increased [3H]phosphatidylethanol ([3H]PEt) level in the presence of ethanol in a concentration- and time-dependent manner, providing evidence for staurosporine activation of phospholipase D (PLD). The staurosporine activation of the enzyme absolutely required both extracellular calcium and cytochalasin B, and was almost completely inhibited by pretreatment of the cells with pertussis toxin (IAP). In a reconstituted system where the purified Gi1 had been incorporated into phospholipid vesicles, staurosporine activated GTPase activity of Gi1 in a concentration-dependent fashion, with a maximal 4-5-fold effect. ADP-ribosylation by IAP of Gi1 in vesicles significantly suppressed the staurosporine activation. As with the GTPase activity of Gi1, GTPase activities of other purified IAP-sensitive G proteins, such as Gi2 and G(o), were significantly stimulated by staurosporine, but the cholera toxin substrate Gs was appreciably less sensitive to the staurosporine stimulation. The staurosporine activation of GTPase was also observed in rabbit neutrophil membranes from control cells, but not in membranes from IAP-treated neutrophils. From these results, we conclude that the staurosporine activation of PLD in rabbit neutrophils is attributed to the direct activation of an IAP-sensitive G protein in a similar manner to receptors occupied by agonists. By contrast, staurosporine failed to activate phosphoinositide-specific phospholipase C (PI-PLC) under the conditions in which it activated PLD, indicating that there exists a PLD activation pathway independent of PI-PLC. Furthermore, it was found that N-acetyl-beta-glucosaminidase release from the granules of intact neutrophils was evoked by staurosporine to almost the same extent as by fMLP (100 nM), but O2- generation was not affected. These results suggest a possibility that PLD pathway plays an important role in enzyme release, but is not sufficient for O2- generation, in rabbit peritoneal neutrophils.  相似文献   

14.
15.
In the preceding report (Kelvin, D.J., G. Simard, H.H. Tai, T.P. Yamaguchi, and J.A. Connolly. 1989. J. Cell Biol. 108:159-167) we demonstrated that pertussis toxin (PT) blocked proliferation and induced differentiation in BC3H1 muscle cells. In the present study, we have used PT to examine specific growth factor signaling pathways that may regulate these processes. Inhibition of [3H]thymidine by PT in 20% FBS was reversed in a dose-dependent fashion by purified fibroblast growth factor (FGF). In 0.5% FBS, the normally induced increase in creatine kinase (CK) activity was blocked by FGF in both the presence and absence of PT. Similar results were obtained with purified epidermal growth factor (EGF). We subsequently examined the effect of a family of growth factors linked to inositol lipid hydrolysis and found that thrombin, like FGF, would increase [3H]thymidine incorporation and block CK synthesis. However, PT blocked thymidine incorporation induced by thrombin, and blocked the inhibition of CK turn-on in 0.5% FBS by thrombin. The ras oncogene, a G protein homologue, has previously been shown to block muscle cell differentiation in C2 muscle cells (Olson, E.N., G. Spizz, and M.A. Tainsky. 1987. Mol. Cell. Biol. 7:2104-2111); we have characterized a BC3H1 cell line, BCT31, which we transfected with the val12 oncogenic Harvey ras gene. This cell line did not express CK in response to serum deprivation. Whereas [3H]thymidine incorporation was inhibited by 70-80% by increasing doses of PT in control cells, BCT31 cells were only inhibited by 15-20%. ADP ribosylation studies indicate this PT-insensitivity is not because of the lack of a PT substrate in this cell line. Furthermore, PT could not induce CK expression in BCT31 cells as it did in parental cells. We conclude that there are at least two distinct growth factor pathways that play a key role in regulating proliferation and differentiation in BC3H1 muscle cells, one of which is PT sensitive, and postulate that a G protein is involved in transducing signals from the thrombin receptor. We believe that ras functions in the transduction of growth factor signals in the nonPT-sensitive pathway or downstream from the PT substrate in the second pathway.  相似文献   

16.
17.
AMP-activated protein kinase (AMPK) has been implicated in anti-proliferative actions in a range of cell systems. Recently, it was observed that Compound C, an inhibitor of AMPK, also reduced the cell viability in human diploid fibroblasts (HDFs). Compound C-induced growth arrest was associated with a decrease in the cell cycle regulatory proteins, such as proliferating cell nuclear antigen, phosphorylated pRB, cyclin-dependent protein kinases (Cdk 2 and 4), cyclins (D and E), and the Cdk inhibitors (p21, p16, and p27). Therefore, the present study examined the molecular mechanism of the antiproliferative effects of Compound C. Although Compound C inhibited serum-induced phosphorylation of Akt and its substrate, glycogen synthase kinase-3β, it did not affect the Akt activity in vitro. Compound C significantly inhibited the receptor tyrosine phosphorylation and the activity of downstream signaling molecules, such as p85 phosphoinositide 3-kinase, phospholipase C-γ1, and extracellular signal-regulated kinase 1/2, induced by platelet-derived growth factor (PDGF) but not by epidermal growth factor- and insulin-like growth factor. In vitro growth factor receptor tyrosine kinase activity profiling revealed the IC50 for PDGF receptor-β (PDGFRβ) to be 5.07 μM, whereas the IC50 for the epidermal growth factor receptor and insulin-like growth factor receptor was ≥ 100 μM. The inhibitory effect of Compound C on PDGFRβ and Akt was also observed in AMPKα12-knockout mouse embryonic fibroblasts, indicating that its inhibitory effect is independent of the AMPK activity. The inhibitory effect of Compound C on cell proliferation and PDGFRβ tyrosine phosphorylation was also demonstrated in various PDGFR-expressing cells, including MRC-5, BEAS-2B, rat aortic vascular smooth muscle cells, and A172 glioblastoma cells. These results indicate that Compound C can be used as a potential antiproliferative agent for PDGF- or PDGFR-associated diseases, such as cancer, atherosclerosis, and fibrosis.  相似文献   

18.
19.
20.
Crosstalk between the cyclic AMP-dependent protein kinase (PKA) and growth factor receptor signaling is one of many emerging concepts of crosstalk in signal transduction. Understanding of PKA crosstalk may have important implications for studies of crosstalk between other, less well known, signaling pathways. This review focuses on PKA crosstalk in arterial smooth muscle. Proliferation and migration of arterial smooth muscle cells (SMCs) contribute to the thickening of the blood vessel wall that occurs in many types of cardiovascular disease. PKA potently inhibits SMC proliferation by antagonizing the major mitogenic signaling pathways induced by growth factors in SMCs. PKA also inhibits growth factor-induced SMC migration. An intricate crosstalk between PKA and the mitogen-activated protein kinase (MAPK/ERK) pathway, the p70 S6 kinase pathway and cyclin-dependent kinases has been described. Further, PKA regulates expression of growth regulatory molecules. The result of PKA activation in SMCs is the potent inhibition of cell cycle traverse and SMC migration. In this review, we discuss recent advances in our understanding of the crosstalk between PKA and signaling pathways induced by growth factor receptors in SMCs, and where relevant, in other cell types in which interesting examples of PKA crosstalk have been described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号