首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The amino acid sequence of a protease inhibitor isolated from the hemolymph of Sarcophaga bullata larvae was determined by tandem mass spectrometry. Homology considerations with respect to other protease inhibitors with known primary structures assisted in the choice of the procedure followed in the sequence determination and in the alignment of the various peptides obtained from specific chemical cleavage at cysteines and enzyme digests of the S. bullata protease inhibitor. The resulting sequence of 57 residues is as follows: Val Asp Lys Ser Ala Cys Leu Gln Pro Lys Glu Val Gly Pro Cys Arg Lys Ser Asp Phe Val Phe Phe Tyr Asn Ala Asp Thr Lys Ala Cys Glu Glu Phe Leu Tyr Gly Gly Cys Arg Gly Asn Asp Asn Arg Phe Asn Thr Lys Glu Glu Cys Glu Lys Leu Cys Leu.  相似文献   

2.
青杨脊虎天牛的危害与杨树氨基酸组成和含量的相关性   总被引:8,自引:0,他引:8  
为了研究不同品种杨树上青杨脊虎天牛Xylotrechus rusticus L.的危害与树木氨基酸组成和含量之间的相关性,利用HPLC柱前AccQ·Tag衍生法,分析35 a小青杨、24 a 小青×黑杨、24 a 小黑杨、16 a 香杨、27 a和40 a小叶杨的韧皮部和木质部中氨基酸的组成及相对含量。在各杨树品系主干2.5 m高处,韧皮部共检测出15种氨基酸:丙氨酸、精氨酸、天冬氨酸、半胱氨酸、胱氨酸、谷氨酸、甘氨酸、异亮氨酸、亮氨酸、赖氨酸、苯丙氨酸、脯氨酸、丝氨酸、苏氨酸和组氨酸;木质部氨基酸种类与韧皮部的相近,区别在于木质部缺少组氨酸,多了缬氨酸。各杨树品系韧皮部同种氨基酸的相对含量差异显著,但与青杨脊虎天牛危害株率无紧密相关性;木质部中同种氨基酸相对含量差异显著,且与青杨脊虎天牛危害株率呈显著正相关。结果提示杨树木质部氨基酸相对含量越高,越利于天牛幼虫的生长发育。小青杨中氨基酸种类齐全、含量均衡,其株被害率高达84%;小黑杨木质部氨基酸种类和相对含量都较贫乏,香杨的氨基酸种类不全,且相对含量不均衡,二者均不受青杨脊虎天牛危害。不同部位株被害率的差异与氨基酸的相对含量无关,可能与青杨脊虎天牛只在老树皮裂缝处产卵的习性有关。  相似文献   

3.
The amino acid sequences of both the alpha and beta subunits of human chorionic gonadotropin have been determined. The amino acid sequence of the alpha subunit is: Ala - Asp - Val - Gln - Asp - Cys - Pro - Glu - Cys-10 - Thr - Leu - Gln - Asp - Pro - Phe - Ser - Gln-20 - Pro - Gly - Ala - Pro - Ile - Leu - Gln - Cys - Met - Gly-30 - Cys - Cys - Phe - Ser - Arg - Ala - Tyr - Pro - Thr - Pro-40 - Leu - Arg - Ser - Lys - Lys - Thr - Met - Leu - Val - Gln-50 - Lys - Asn - Val - Thr - Ser - Glu - Ser - Thr - Cys - Cys-60 - Val - Ala - Lys - Ser - Thr - Asn - Arg - Val - Thr - Val-70 - Met - Gly - Gly - Phe - Lys - Val - Glu - Asn - His - Thr-80 - Ala - Cys - His - Cys - Ser - Thr - Cys - Tyr - Tyr - His-90 - Lys - Ser. Oligosaccharide side chains are attached at residues 52 and 78. In the preparations studied approximately 10 and 30% of the chains lack the initial 2 and 3 NH2-terminal residues, respectively. This sequence is almost identical with that of human luteinizing hormone (Sairam, M. R., Papkoff, H., and Li, C. H. (1972) Biochem. Biophys. Res. Commun. 48, 530-537). The amino acid sequence of the beta subunit is: Ser - Lys - Glu - Pro - Leu - Arg - Pro - Arg - Cys - Arg-10 - Pro - Ile - Asn - Ala - Thr - Leu - Ala - Val - Glu - Lys-20 - Glu - Gly - Cys - Pro - Val - Cys - Ile - Thr - Val - Asn-30 - Thr - Thr - Ile - Cys - Ala - Gly - Tyr - Cys - Pro - Thr-40 - Met - Thr - Arg - Val - Leu - Gln - Gly - Val - Leu - Pro-50 - Ala - Leu - Pro - Gin - Val - Val - Cys - Asn - Tyr - Arg-60 - Asp - Val - Arg - Phe - Glu - Ser - Ile - Arg - Leu - Pro-70 - Gly - Cys - Pro - Arg - Gly - Val - Asn - Pro - Val - Val-80 - Ser - Tyr - Ala - Val - Ala - Leu - Ser - Cys - Gln - Cys-90 - Ala - Leu - Cys - Arg - Arg - Ser - Thr - Thr - Asp - Cys-100 - Gly - Gly - Pro - Lys - Asp - His - Pro - Leu - Thr - Cys-110 - Asp - Asp - Pro - Arg - Phe - Gln - Asp - Ser - Ser - Ser - Ser - Lys - Ala - Pro - Pro - Pro - Ser - Leu - Pro - Ser-130 - Pro - Ser - Arg - Leu - Pro - Gly - Pro - Ser - Asp - Thr-140 - Pro - Ile - Leu - Pro - Gln. Oligosaccharide side chains are found at residues 13, 30, 121, 127, 132, and 138. The proteolytic enzyme, thrombin, which appears to cleave a limited number of arginyl bonds, proved helpful in the determination of the beta sequence.  相似文献   

4.
The complete amino acid sequence of the β-subunit of protocatechuate 3,4-dioxygenase was determined. The β-subunit contained four methionine residues. Thus, five peptides were obtained after cleavage of the carboxymethylated β-subunit with cyanogen bromide, and were isolated on Sephadex G-75 column chromatography. The amino acid sequences of the cyanogen bromide peptides were established by characterization of the peptides obtained after digestion with trypsin, chymotrypsin, thermolysin, or Staphylococcus aureus protease. The major sequencing techniques used were automated and manual Edman degradations. The five cyanogen bromide peptides were aligned by means of the amino acid sequences of the peptides containing methionine purified from the tryptic hydrolysate of the carboxymethylated β-subunit. The amino acid sequence of all the 238 residues was as follows: ProAlaGlnAspAsnSerArgPheValIleArgAsp ArgAsnTrpHis ProLysAlaLeuThrPro-Asp — TyrLysThrSerIleAlaArg SerProArgGlnAla LeuValSerIleProGlnSer — IleSerGluThrThrGly ProAsnPheSerHisLeu GlyPheGlyAlaHisAsp-His — AspLeuLeuLeuAsnPheAsn AsnGlyGlyLeu ProIleGlyGluArgIle-Ile — ValAlaGlyArgValValAsp GlnTyrGlyLysPro ValProAsnThrLeuValGluMet — TrpGlnAlaAsnAla GlyGlyArgTyrArg HisLysAsnAspArgTyrLeuAlaPro — LeuAspProAsn PheGlyGlyValGly ArgCysLeuThrAspSerAspGlyTyrTyr — SerPheArg ThrIleLysProGlyPro TyrProTrpArgAsnGlyProAsnAsp — TrpArgProAla HisIleHisPheGlyIle SerGlyProSerIleAlaThr-Lys — LeuIleThrGlnLeuTyr PheGluGlyAspPro LeuIleProMetCysProIleVal — LysSerIleAlaAsn ProGluAlaValGlnGln LeuIleAlaLysLeuAspMetAsnAsn — AlaAsnProMet AsnCysLeuAlaTyr ArgPheAspIleValLeuArgGlyGlnArgLysThrHis PheGluAsnCys. The sequence published earlier in summary form (Iwaki et al., 1979, J. Biochem.86, 1159–1162) contained a few errors which are pointed out in this paper.  相似文献   

5.
Amino compounds representative of the major N solutes of xylem sap were pulse-fed (10 to 20 minutes) singly in 14C-labeled form to cut transpiring shoots of white lupin (Lupinus albus L.). 14C distribution was studied by autoradiography and radioassays of phloem sap, leaflet tissues, and shoot parts harvested at intervals after labeling. Primary distribution of N by xylem was simulated using a 20-minute labeling pulse followed by a 30-minute chase in unlabeled xylem sap. Shoots fed 14C-labeled asparagine, glutamine, valine, serine, or arginine showed intense labeling of leaflet veins and marked retention (35 to 78%) of 14C by stem + petioles. Shoots fed 14C-labeled aspartic acid or glutamic acid showed heaviest 14C accumulation in interveinal regions of leaflets and low uptake (11 to 20%) of 14C by stem + petioles. Departing leaf traces were major sites of uptake of all amino compounds, and the implications of this were evaluated. Fruits acquired only 1 to 5% of the fed label directly from xylem, but more than doubled their intake during the period 30 to 160 minutes after feeding through receipt of 14C transferred from xylem to phloem in stem and leaves. 14C-Labeled asparagine and valine transferred directly from xylem to phloem, but the 14C of 14C-labeled aspartic acid and arginine appeared in phloem mainly as metabolic products of the fed compound. The labeling of the soluble pool of leaflets reflected these differences. The significance of heterogeneity in distribution and metabolism of xylem amino compounds in the shoot was discussed.  相似文献   

6.
The Na+/H+ exchanger isoform 1 is an integral membrane protein that regulates intracellular pH. It extrudes 1 intracellular H+ in exchange for 1 extracellular Na+. It has 2 large domains, an N-terminal membrane domain of 12 transmembrane segments and an intracellular C-terminal regulatory domain. We characterized the cysteine accessibility of amino acids of the critical transmembrane segment TM VII. Residues Leu 255, Leu 258, Glu 262, Leu 265, Asn 266, Asp 267, Val 269, Val 272, and Leu 273 were all mutated to cysteine residues in the cysteineless NHE1 isoform. Mutation of amino acids E262, N266, and D267 caused severe defects in activity and targeting of the intact full length protein. The balance of the active mutants were examined for sensitivity to the sulfhydryl reactive reagents, positively charged MTSET ((2- (trimethylammonium)ethyl)methanethiosulfonate) and negatively charged MTSES ((2-sulfonatoethyl)methanethiosulfonate). Leu 255 and Leu 258 were sensitive to MTSET but not to MTSES. The results suggest that these amino acids are pore-lining residues. We present a model of TM VII that shows that residues Leu 255, Leu 258, Glu 262, Asn 266, and Asp 267 lie near the same face of TM VII, lining the ion transduction pore.  相似文献   

7.
Water and solute flows in the coupled system of xylem and phloem were modeled together with predictions for xylem and whole stem diameter changes. With the model we could produce water circulation between xylem and phloem as presented by the Münch hypothesis. Viscosity was modeled as an explicit function of solute concentration and this was found to vary the resistance of the phloem sap flow by many orders of magnitude in the possible physiological range of sap concentrations. Also, the sensitivity of the predicted phloem translocation to changes in the boundary conditions and parameters such as sugar loading, transpiration, and hydraulic conductivity were studied. The system was found to be quite sensitive to the sugar-loading rate, as too high sugar concentration, (approximately 7 MPa) would cause phloem translocation to be irreversibly hindered and soon totally blocked due to accumulation of sugar at the top of the phloem and the consequent rise in the viscosity of the phloem sap. Too low sugar loading rate, on the other hand, would not induce a sufficient axial water pressure gradient. The model also revealed the existence of Münch “counter flow”, i.e., xylem water flow in the absence of transpiration resulting from water circulation between the xylem and phloem. Modeled diameter changes of the stem were found to be compatible with actual stem diameter measurements from earlier studies. The diurnal diameter variation of the whole stem was approximately 0.1 mm of which the xylem constituted approximately one-third.  相似文献   

8.
Deracemization of a 50/50 mixture of enantiomers of aliphatic amino acids (Ala, Leu, Pro, Val) can be achieved by a simple sublimation of a pre-solubilized solid mixture of the racemates with a huge amount of a less-volatile optically active amino acid (Asn, Asp, Glu, Ser, Thr). The choice of chirality correlates with the handedness of the enantiopure amino acids—Asn, Asp, Glu, Ser, and Thr. The deracemization, enantioenrichment and enantiodepletion observed in these experiments clearly demonstrate the preferential homochiral interactions and a tendency of natural amino acids to homochiral self-organization. These data may contribute toward an ultimate understanding of the pathways by which prebiological homochirality might have emerged.  相似文献   

9.
Mutational analyses of the secreted recombinant insulin receptor extracellular domain have identified a ligand binding site composed of residues located in the L1 domain (amino acids 1-470) and at the C terminus of the alpha subunit (amino acids 705-715). To evaluate the physiological significance of this ligand binding site, we have transiently expressed cDNAs encoding full-length receptors with alanine mutations of the residues forming the functional epitopes of this binding site and determined their insulin binding properties. Insulin bound to wild-type receptors with complex kinetics, which were fitted to a two-component sequential model; the Kd of the high affinity component was 0.03 nM and that of the low affinity component was 0.4 nM. Mutations of Arg14, Phe64, Phe705, Glu706, Tyr708, Asn711, and Val715 inactivated the receptor. Alanine mutation of Asn15 resulted in a 20-fold decrease in affinity, whereas mutations of Asp12, Gln34, Leu36, Leu37, Leu87, Phe89, Tyr91, Lys121, Leu709, and Phe714 all resulted in 4-10-fold decreases. When the effects of the mutations were compared with those of the same mutations of the secreted recombinant receptor, significant differences were observed for Asn15, Leu37, Asp707, Leu709, Tyr708, Asn711, Phe714, and Val715, suggesting that the molecular basis for the interaction of each form of the receptor with insulin differs. We also examined the effects of alanine mutations of Asn15, Gln34, and Phe89 on insulin-induced receptor autophosphorylation. They had no effect on the maximal response to insulin but produced an increase in the EC50 commensurate with their effect on the affinity of the receptor for insulin.  相似文献   

10.
Liao  M. T.  Hedley  M. J.  Woolley  D. J.  Brooks  R. R  Nichols  M. A. 《Plant and Soil》2000,223(1-2):245-254
The effect of rooting media Cu concentration (0.05–20 mg Cu L-1) on amino acid concentrations and copper speciation in the xylem sap of chicory and tomato plants was measured using 6 week old plants grown in a nutrient film technique system (NFT). Irrespective of the Cu concentration in the nutrient solutions, more than 99.68% and 99.74% of total Cu in tomato and chicory xylem sap was in a bound form. When exposed to high Cu concentrations in the rooting media, amino acid concentrations in the sap increased. Relative to other amino acids, the concentrations of glutamine (Gln), histidine (His), asparagine (Asn), valine (Val), nicotianamine (NA) and proline (Pro) in tomato xylem saps, and His, γ-aminobutyric acid (Gaba), glutamic acid (Glu), leucine (Leu), NA and phenylalanine (Phe) in chicory xylem saps showed the greatest increases. The data indicate that induced synthesis of some free amino acids as a specific and proportional response to Cu treatment. For a single complexation amino acid, the solution Cu2+concentration vs pH titration curve for NA at 0.06–0.07 mM was most similar, closely followed by His at 0.5–0.6 mM, to the solution Cu2+concentration behaviour in both tomato and chicory xylem sap. It is concluded that increased Cu concentrations in the rooting media induced selective synthesis of certain amino acid which include NA, His, Asn and Gln which have high stability constants with Cu. NA and His have the highest binding constants for Cu and the concentrations of NA and His in chicory and tomato xylem saps can account for all the bound Cu carried in the sap. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
Major amino acids and organic acids in xylem exudates of tomato plants were separated by reversed phase high performance liquid chromatography (RP-HPLC) and quantified by UV detection. Before separation, amino acids were converted into their phenylisothiocyanate (PITC) derivatives. In a single run, Asp, Glu, Ser, Gln, His, Thr, Ala, Tyr, Val, Met, Cys, Ile, Leu, Phe, and Lys could be separated and detected down to the pmol level. Unresolved peaks were obtained for Asn and Gly and for Arg and Pro. For organic acid analysis, exudates were pre-treated by perfusion over a prepacked Adsorbex SCX cation exchange column, to eliminate exudate amino acids. Elution recoveries for organic acids were close to 100%. The exudate organic acids were separated by ion suppression RP-HPLC chromatography, and peaks could be resolved for L-malic acid, malonic acid, maleic acid, citric acid and fumaric acid, down to the pmol level. UV signals for exudate ascorbic acid, and succinic acid were below the limits of detection. Determination of oxalic acid and tartaric acid was impossible, due to the presence of the exudate salt peak in the chromatogram. The results indicate the potential of the methods applied, and show the applicability of RP-HPLC analysis for the determination of both amino acids and organic acids in xylem exudates.  相似文献   

12.
Tan Q  Zhang L  Grant J  Cooper P  Tegeder M 《Plant physiology》2010,154(4):1886-1896
Seeds of grain legumes are important energy and food sources for humans and animals. However, the yield and quality of legume seeds are limited by the amount of sulfur (S) partitioned to the seeds. The amino acid S-methylmethionine (SMM), a methionine derivative, has been proposed to be an important long-distance transport form of reduced S, and we analyzed whether SMM phloem loading and source-sink translocation are important for the metabolism and growth of pea (Pisum sativum) plants. Transgenic plants were produced in which the expression of a yeast SMM transporter, S-Methylmethionine Permease1 (MMP1, YLL061W), was targeted to the phloem and seeds. Phloem exudate analysis showed that concentrations of SMM are elevated in MMP1 plants, suggesting increased phloem loading. Furthermore, expression studies of genes involved in S transport and metabolism in source organs, as well as xylem sap analyses, support that S uptake and assimilation are positively affected in MMP1 roots. Concomitantly, nitrogen (N) assimilation in root and leaf and xylem amino acid profiles were changed, resulting in increased phloem loading of amino acids. When investigating the effects of increased S and N phloem transport on seed metabolism, we found that protein levels were improved in MMP1 seeds. In addition, changes in SMM phloem loading affected plant growth and seed number, leading to an overall increase in seed S, N, and protein content in MMP1 plants. Together, these results suggest that phloem loading and source-sink partitioning of SMM are important for plant S and N metabolism and transport as well as seed set.  相似文献   

13.
We examined the effects of orally administrated amino acids on myfibrillar proteolysis in food-deprived chicks. Plasma N(tau)-methylhistidine concentration, as an index of myofibrillar proteolysis, was decreased by the administration of Glu, Gly, Ala, Leu, Ile, Ser, Thr, Met, Trp, Asn, Gln, Pro, Lys and Arg but not by Asp, Val, Phe, Tyr or His to chicks. Orally administrated Cys was fatal to chicks. These results indicate that oral Glu, Gly, Ala, Leu, Ile, Ser, Thr, Met, Trp, Asn, Gln, Pro, Lys and Arg administration suppressed myofibrillar proteolysis in chicks.  相似文献   

14.
Fluctuations in mineral elements id xylem (tracheal) sap, fruitphloem sap, leaflets and dmloping fruits were studied in a fieldpopulation of Lupinus angustifolius L. by three-hourly samplingover a 39 h period. Elements usually reached maximum contentsor concentrations at or near noon, minimum levels during thenight. Amplitudes of diurnal fluctuations in minerals lay withinthe range ±4–33 per cent of the mean content ofleaflets, and ±17–157 per cent of the mean concentrationsin xylem and phloem sap. Most minerals elements fluctuatcd inphase with daily changes in sugar level of phloem sap and drymatter and carbohydrate fluctuations of leaflets, suggestinga coupling of translocation of photosynthate and minerals fromthe leaflets. Rates of import of minerals by shoots wereestimatedfrom shoot transpiration and mineral concentrations in trachealsap. Average day time rates of import of most elements were12–25 times those at night. Translocation of minerals,nitrogen and carbon to fruits also exhibited diurnal periodicity,average rates of import king three to seven times higher inthe day than at night. A model of transport based on the carbonand water economy of the fruit suggested that P, K, Fe, Zn,Mn and Cu were imported predominantly by phloem. Estimates ofvascular import accounted for 87–104 per cent of the fruit'sactual increment of these elements. Na and Ca were gauged tobe imported mainly by xylem, Mg almost equally by xylem andphloem. However, large discrepancies existed for these threeelements between estimated vascular import and actual intakeby the fruit. Lupinus angustifolius L., mineral transport, accumulation, fruits, xylem sap, phloem sap, transpiration  相似文献   

15.
Prunus avium trees were grown in sand culture for one vegetative season with contrasting N supplies, in order to precondition their N storage capacities. During the spring of the second year a constant amount of 15N was supplied to all the trees, and the recovery of unlabelled N in the new biomass production was used as a direct measure of N remobilization. Destructive harvests were taken during spring to determine the pattern of N remobilization and uptake. Measurements of both xylem sap amino acid profiles and whole tree transpiration rates were taken, to determine whether specific amino acids are translocated as a consequence of N remobilization and if remobilization can be quantified by calculating the flux of these amino acids in the xylem. Whereas remobilization started immediately after bud burst, N derived from uptake by root appeared in the leaves only 3 weeks later. The tree internal N status affected both the amount of N remobilization and its dynamics. The concentration of xylem sap amino acids peaked shortly after bud burst, concurrently with the period of fastest remobilization. Few amino acids and amides (Gln, Asn and Asp) were responsible for most of N translocated through the xylem; however, their relative concentration varied over spring, demonstrating that the transport of remobilized N occurred mainly with Gln whereas transport of N taken up from roots occurred mainly with Asn. Coupling measurements of amino acid N in the xylem sap with transpiration values was well correlated with the recovery of unlabelled N in the new biomass production. These results are discussed in relation to the possibility of measuring the spring remobilization of N in field‐grown trees by calculating the flux of N translocation in the xylem.  相似文献   

16.
14C-Gln, (14)C-Asp, (15)N-Gln, and (15)N-Asp were fed to cut tips of 2- or 3-year-old needles of spruce twigs, still attached to the tree. After incubation, distribution of the radiolabel and (15)N enrichment was studied in needles, bark and wood tissues of girdled twigs and untreated controls. Analysis of the twig tissues showed that between 22% and 26% of the total amount of the tracers applied had been taken up. Since export out of the application segment and distribution between needles, bark and wood was comparable for (14)C and (15)N tracer, it was concluded that, mainly the amino compounds that had been fed were subject to long- distance transport within the plant and supplied the new sprout with nitrogen. Asp was exported to a greater extent to developing needles compared with Gln. This difference in export between the two amino compounds applied may be explained by the different pool sizes of Gln and Asp in xylem and phloem or differences in xylem and phloem loading. Girdling of the stem showed that the transport of reduced nitrogen compounds from older needle generations to current-year needles proceeded in both xylem and phloem. In addition, an intensive bidirectional exchange of Gln and Asp between xylem and phloem was observed during long-distance transport.  相似文献   

17.
The interaction of amino acid residues with polyribonucleotides was characterized by measurements of melting temperatures (tm) for poly(A).poly(U) and poly(I).poly(C) as functions of the concentrations of various amino acid amides. The amides of hydrophilic amino acids lead to a continuous increase of tm with increasing concentration, whereas amides of hydrophobic amino acids induce a decrease of tm at low concentrations (approximately 1 mM) followed by an increase at higher concentrations. Analysis of the data by a simple site model provides the affinity of each ligand for the double helix relative to that for the single strands. This parameter decreases in the order Ala greater than Gly greater than Ser greater than Asn greater than Pro greater than Met, Val greater than Ile, Leu for poly(A).poly(U) and Ala, Gly, Ser greater than Asn greater than Pro greater than Val greater than Ile, Met, Leu for poly(I).poly(C). The special effects of hydrophobic amino acids may be related to the similarity of the codons for these amino acids. A simple model for assignment of codons to amino acids is proposed.  相似文献   

18.
Numata T  Suzuki A  Yao M  Tanaka I  Kimura M 《Biochemistry》2001,40(2):524-530
The ribonuclease MC1 (RNase MC1), isolated from seeds of bitter gourd (Momordica charantia), consists of 190 amino acids and is characterized by specific cleavage at the 5'-side of uridine. Site-directed mutagenesis was used to evaluate the contribution of four amino acids, Asn71, Val72, Leu73, and Arg74, at the alpha4-alpha5 loop between alpha4 and alpha5 helices for recognition of uracil base by RNase MC1. Four mutants, N71T, V72L, L73A, and R74S, in which Asn71, Val72, Leu73, and Arg74 in RNase MC1 were substituted for the corresponding amino acids, Thr, Leu, Ala, and Ser, respectively, in a guanylic acid preferential RNase NW from Nicotiana glutinosa, were prepared and characterized with respect to enzymatic activity. Kinetic analysis with a dinucleoside monophosphate, CpU, showed that the mutant N71T exhibited 7.0-fold increased K(m) and 2.3-fold decreased k(cat), while the mutant L73A had 14.4-fold increased K(m), although it did retain the k(cat) value comparable to that of the wild-type. In contrast, replacements of Val72 and Arg74 by the corresponding amino acids Leu and Ser, respectively, had little effect on the enzymatic activity. This observation is consistent with findings in the crystal structure analysis that Asn71 and Leu73 are responsible for a uridine specificity for RNase MC1. The role of Asn71 in enzymatic reaction of RNase MC1 was further investigated by substituting amino acids Ala, Ser, Gln, and Asp. Our observations suggest that Asn71 has at least two roles: one is base recognition by hydrogen bonding, and the other is to stabilize the conformation of the alpha4-alpha5 loop by hydrogen bonding to the peptide backbone, events which possibly result in an appropriate orientation of the alpha-helix (alpha5) containing active site residues. Mutants N71T and N71S showed a remarkable shift from uracil to guanine specificity, as evaluated by cleavage of CpG, although they did exhibit uridine specificity against yeast RNA and homopolynucleotides.  相似文献   

19.
To determine amino acid sequences of the epitopes recognized by monoclonal antibodies (mAbs) 3C8 and 5C3 directed against Yersinia enterocolitica heat-shock protein (HSP60), a dot blot analysis was perfomed using synthesized peptides of Y. enterocolitica HSP60 such as peptides p316-342, p327-359, p340-366, p316-326, p316-321, p319-323, and p321-326 which represent positions of amino acids in Y. enterocolitica HSP60. The dot blot analysis revealed that 5C3 mAb reacted with p316-342, p316-326 and p321-326, and 3C8 mAb p316-342 and p316-326. These results indicate that the epitopes recognized by the mAbs were associated with eleven amino acids, Asp Leu Gly Gln Ala Lys Arg Val Val Ile Asn, of p316-326. The sequence homology between p316-326 of Y. enterocolitica HSP60 and the rest of the HSP60 family suggests that the five amino acids of Lys, Arg, Val, Ile and Asn, which are highly conserved in the HSP60 family, might be related with the epitope recognized by 3C8. In contrast, it was also demonstrated that three amino acids of Leu, Gly and Val, which are not well conserved in the HSP60 family, might be related to the epitope recognized by 5C3.  相似文献   

20.
Adachi K  Ding M  Wehrli S  Reddy KS  Surrey S  Horiuchi K 《Biochemistry》2003,42(15):4476-4484
Hb S (alpha(2)beta(2)(6Glu-->Val)) forms polymers, while Hb C-Harlem (alpha(2)beta(2)(6Glu-->Val,73Asp-->Asn)) forms crystals upon oversaturation. Since the only difference between the two is the beta73 amino acid, it follows that this site is a critical determinant in promoting either polymerization or crystallization. Beta73 Asp in Hb S forms a hydrogen bond with beta4 Thr, while beta73 Asn in Hb C-Harlem may inhibit this interaction as well as increase the hydrophobicity at the EF helix beta6 Val acceptor sites. Two new beta73 Hb S variants (beta73 His and Leu) were constructed and analyzed to define other amino acids facilitating formation of Hb S-like polymers versus Hb C-Harlem-like crystals. The two variants that were chosen were expected to either (1) enhance formation of the beta73-beta4 hydrogen bond (beta73 His) or (2) inhibit it and increase the hydrophobicity of the EF helix beta6 Val acceptor sites (beta73 Leu). beta73 His Hb S formed fibers but at a lower concentration than Hb S, while beta73 Leu Hb S formed crystals but at a higher concentration than Hb C-Harlem. The solubility of beta73 His Hb S was (1)/(7) of that of Hb S, while the solubility of beta73 Leu Hb S was similar to that of Hb C-Harlem. The delay time prior to polymer or crystal formation depended on Hb concentration. The delay time for beta73 His Hb S was 10(5)-fold shorter than that for Hb S, while that for beta73 Leu Hb S was 10(5)-fold longer in 1.0 M phosphate buffer. NMR results indicate beta73 amino acid changes induce alteration in the beta-chain heme pocket region, while CD results indicate no change in the helical content of the variants. These results suggest that enhancing the beta73-beta4 hydrogen bond and/or induced changes in the heme pocket by the beta73 Asp to His change facilitate formation of Hb S-like fibers. Our results also suggest that removal of the beta73-beta4 hydrogen bond and enhancing the hydrophobicity of the EF helix beta6 Val acceptor sites by the beta73 Asp to Leu or Asn changes delay nuclei formation and facilitate formation of Hb C-Harlem-like crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号