首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The narwhal (Monodon monoceros) is a deep diving cetacean with a strictly Arctic distribution. The challenges associated with the remoteness of narwhals have resulted in a lack of knowledge of its social behaviour requiring direct, systematic observations. Bruce Head, a peninsula at the mouth of Koluktoo Bay (Nunavut), provides an exceptional site in Canada for nearshore observation of narwhals during the summer. In this study, we document the movement, timing and grouping patterns of narwhals observed from Bruce Head and how they relate to environmental factors such as the tide and the circadian cycle. Narwhals travelled in clusters of 1–25 individuals of mixed sex and age class. Narwhals entered the bay in bigger clusters than when they exited it. The clusters were part of herds that comprised up to 642 clusters. Narwhal movement patterns were not randomly distributed in time but did not consistently follow the tidal or circadian cycles across years. Bruce Head could host long-term behavioural studies of narwhals to unravel several unanswered aspects of narwhal biology.  相似文献   

2.
We analyzed variation in nine non-metric and eight metric variables in the skulls of 132 narwhals (Monodon monoceros) from five localities in Greenland (Inglefield Bredning, Melville Bay, Uummannaq, Disko Bay, and Scoresby Sound) and one in the eastern Canadian Arctic (Eclipse Sound). Metric variables were used to compare the combined Disko Bay and Uummannaq samples with the samples from Inglefield Bredning and Scoresby Sound using three different multivariate techniques for each sex. None of the results were significant. Seven of the non-metric variables were independent of age and sex and were used in comparing samples from the six localities. No differences were found among the four localities in West Greenland, but differences were found in two of the non-metric variables between the combined West Greenland sample and the one from Scoresby Sound. A major shortcoming of the analysis based on metric data was the small sample size from several of the areas, which resulted in low statistical power. Genetic as well as environmental factors could explain the differences detected here between narwhals living along the west and the east coasts of Greenland.  相似文献   

3.
Twenty-one narwhals tagged in 2003 and 2004 in Admiralty Inlet showed a different summer distributional pattern than previous narwhal-tracking studies from Somerset Island, Eclipse Sound and Melville Bay. The migration of the narwhals tracked from Admiralty Inlet moved out through Lancaster Sound 15 days earlier (P < 0.0001) than the narwhals summering around Eclipse Sound, whereas the Admiralty Inlet narwhals reached the mouths of Eclipse Sound 18 days later (P < 0.0001) than the Eclipse Sound summering population. The winter range of the Admiralty Inlet narwhals overlapped with the winter range of narwhals from Melville Bay and Eclipse Sound in central southern Baffin Bay and Northern Davis Strait, but not with the winter range of narwhals from Somerset Island that wintered further north. Distribution size of range, and population size did not appear to be related. An example of considerable year to year variation between area of summer and winter distribution in the 2 years was believed to be related to the sample size and number of pods of whales tagged, rather than to differences in sex or age classes.  相似文献   

4.
Stomach contents from 121 narwhals ( Monondon monoceros ) harvested in the eastern Canadian High Arctic and West Greenland were used to quantify seasonal changes in feeding activity and prey selection. Stomachs collected from summer harvests were mostly empty with little evidence of recent feeding. Stomachs collected in late fall and winter harvests had considerable amounts of undigested material with evidence of recent feeding. In summer, Arctic cod ( Arctogadus glacialis ), polar cod ( Boreogadus saida ), and Gonatus squid spp. constituted the narwhal diet. In fall, Gonatus fabricii was the only prey item observed. In late fall and winter, Greenland halibut ( Reinhardtius hippoglossoides ) and G. fabricii were the dominant prey items, observed in 51% and 73% of stomachs collected, respectively. Greenland halibut taken by narwhals were on average 39 cm (SD 8) and 556 g (306) and G. fabricii were on average 23 g (15) with mean mantle lengths of 85 mm (24). The low diversiry of prey species indicates narwhals have a restricted diet across all seasons. This study presents the first information on the winter diet of the narwhal and suggests Baffin Bay and Davis Strait are heavily utilized for feeding, in contrast to limited food intake during the summer period.  相似文献   

5.
The narwhal (Monodon monoceros) is a high‐Arctic species inhabiting areas that are experiencing increases in sea temperatures, which together with reduction in sea ice are expected to modify the niches of several Arctic marine apex predators. The Scoresby Sound fjord complex in East Greenland is the summer residence for an isolated population of narwhals. The movements of 12 whales instrumented with Fastloc‐GPS transmitters were studied during summer in Scoresby Sound and at their offshore winter ground in 2017–2019. An additional four narwhals provided detailed hydrographic profiles on both summer and winter grounds. Data on diving of the whales were obtained from 20 satellite‐linked time‐depth recorders and 16 Acousonde? recorders that also provided information on the temperature and depth of buzzes. In summer, the foraging whales targeted depths between 300 and 850 m where the preferred areas visited by the whales had temperatures ranging between 0.6 and 1.5°C (mean = 1.1°C, SD = 0.22). The highest probability of buzzing activity during summer was at a temperature of 0.7°C and at depths > 300 m. The whales targeted similar depths at their offshore winter ground where the temperature was slightly higher (range: 0.7–1.7°C, mean = 1.3°C, SD = 0.29). Both the probability of buzzing events and the spatial distribution of the whales in both seasons demonstrated a preferential selection of cold water. This was particularly pronounced in winter where cold coastal water was selected and warm Atlantic water farther offshore was avoided. It is unknown if the small temperature niche of whales while feeding is because prey is concentrated at these temperature gradients and is easier to capture at low temperatures, or because there are limitations in the thermoregulation of the whales. In any case, the small niche requirements together with their strong site fidelity emphasize the sensitivity of narwhals to changes in the thermal characteristics of their habitats.  相似文献   

6.
Narwhals (Monodon monoceros) are sentinel species in the Arctic and to investigate marine food web changes from 1982–2011 we examined diet using fatty acids, δ15N, and δ13C, in narwhals from Baffin Bay (BB) and northern Hudson Bay (NHB). We predicted temporal changes would be greater in NHB due to a significant reduction in summer ice cover. In NHB, δ15N significantly increased, δ13C displayed a parabolic trend, and fatty acids gradually shifted, albeit not significantly, over time. δ15N was stable, δ13C decreased, and fatty acids significantly changed over time in BB. Stable isotope mixing models indicated a dietary reduction in capelin and increase in Greenland halibut from 1994–2000 to 2006–2011 in BB, while capelin was an important dietary component for narwhals in NHB in recent years (2006–2011). These dietary changes may be attributed to changes in sea ice and narwhal migration. Seasonal dietary changes, as evidenced by changes in blubber fatty acids and skin and muscle stable isotopes, were not as apparent in the NHB population, which may be indicative of a reduced migratory distance. Long‐term monitoring of narwhal diet and migratory patterns associated with reduced sea ice provides invaluable information about how the marine ecosystem will redistribute with global warming.  相似文献   

7.
Genetic variation at the Major Histocompatibility Complex locus DQ beta was analyzed in 233 beluga whales (Delphinapterus leucas) from seven populations: St. Lawrence Estuary, eastern Beaufort Sea, eastern Chukchi Sea, western Hudson Bay, eastern Hudson Bay, southeastern Baffin Island, and High Arctic and in 12 narwhals (Monodon monoceros) sympatric with the High Arctic beluga population. Variation was assessed by amplification of the exon coding for the peptide binding region via the polymerase chain reaction, followed by either cloning and DNA sequencing or single-stranded conformation polymorphism analysis. Five alleles were found across the beluga populations and one in the narwhal. Pairwise comparisons of these alleles showed a 5:1 ratio of nonsynonymous to synonymous substitutions per site leading to eight amino acid differences, five of which were nonconservative substitutions, centered around positions previously shown to be important for peptide binding. Although the amount of allelic variation is low when compared with terrestrial mammals, the nature of the substitutions in the peptide binding sites indicates an important role for the DQ beta locus in the cellular immune response of beluga whales. Comparisons of allele frequencies among populations show the High Arctic population to be different (P < or = .005) from the other beluga populations surveyed. In these other populations an allele, Dele-DQ beta*0101-2, was found in 98% of the animals, while in the High Arctic it was found in only 52% of the animals. Two other alleles were found at high frequencies in the High Arctic population, one being very similar to the single allele found in narwhal.   相似文献   

8.
Narwhal and beluga whales are important species to Arctic ecosystems, including subsistence hunting by Inuit, and little is understood about their mating ecology. Reproductive tract metrics vary across species in relation to mating strategy, and have been used to infer mating ecology. Reproductive tracts from beluga and narwhal were collected between 1997 and 2008 from five beluga stocks and two narwhal stocks across the Canadian Arctic. Tract length for males and females, relative testes mass for males, and tusk length for male narwhal were measured. We assessed variation relative to species, body size, stock, maturity, and season. Significant variation was found in testes mass across month and stock for beluga, and no significant difference between stock or date of harvest for narwhal. Beluga had significantly larger testes relative to body size than narwhal, suggesting they were more promiscuous than narwhal. A significant relationship was found between narwhal tusk length and testes mass, indicating the tusk may be important in female mate choice. No significant differences were found between narwhal and beluga reproductive tract length for males or females. The mating systems suggested for narwhal and belugas by our results mean the two species may respond differently to climate change.  相似文献   

9.
Anthropogenic activities are increasing in the Arctic, posing a threat to niche-conservative species with high seasonal site fidelity, such as the narwhal Monodon monoceros. In this controlled sound exposure study, six narwhals were live-captured and instrumented with animal-borne tags providing movement and behavioural data, and exposed to concurrent ship noise and airgun pulses. All narwhals reacted to sound exposure with reduced buzzing rates, where the response was dependent on the magnitude of exposure defined as 1/distance to ship. Buzzing rate was halved at 12 km from the ship, and whales ceased foraging at 7–8 km. Effects of exposure could be detected at distances > 40 km from the ship.At only a few kilometres from the ship, the received high-frequency cetacean weighted sound exposure levels were below background noise indicating extreme sensitivity of narwhals towards sound disturbance and demonstrating their ability to detect signals embedded in background noise. The narwhal''s reactions to sustained disturbance may have a plethora of consequences both at individual and population levels. The observed reactions of the whales demonstrate their auditory sensitivity but also emphasize, that anthropogenic activities in pristine narwhal habitats needs to be managed carefully if healthy narwhal populations are to be maintained.  相似文献   

10.
Rapid changes in sea ice cover associated with global warming are poised to have marked impacts on polar marine mammals. Here we examine skeletal muscle characteristics supporting swimming and diving in one polar species, the narwhal, and use these attributes to further document this cetacean's vulnerability to unpredictable sea ice conditions and changing ecosystems. We found that extreme morphological and physiological adaptations enabling year‐round Arctic residency by narwhals limit behavioral flexibility for responding to alternations in sea ice. In contrast to the greyhound‐like muscle profile of acrobatic odontocetes, the longissimus dorsi of narwhals is comprised of 86.8%± 7.7% slow twitch oxidative fibers, resembling the endurance morph of human marathoners. Myoglobin content, 7.87 ± 1.72 g/100 g wet muscle, is one of the highest levels measured for marine mammals. Calculated maximum aerobic swimming distance between breathing holes in ice is <1,450 m, which permits routine use of only 2.6%–10.4% of ice‐packed foraging grounds in Baffin Bay. These first measurements of narwhal exercise physiology reveal extreme specialization of skeletal muscles for moving in a challenging ecological niche. This study also demonstrates the power of using basic physiological attributes to predict species vulnerabilities to environmental perturbation before critical population disturbance occurs.  相似文献   

11.
The composition of predator adipose stores can provide important insights into foraging patterns and the ecological relationships among species. We determined the fatty acid (FA) composition of 843 blubber samples from 80 bearded seals (Erignathus barbatus), 33 harbor seals (Phoca vitulina), 239 harp seals (Pagophilus groenlandicus), 32 hooded seals (Cystophora cristata), 281 ringed seals (Phoca hispida), 53 walruses (Odobenus rosmarus rosmarus), 105 beluga whales (Delphinapterus leucas), and 20 narwhals (Monodon monoceros) across the Canadian Arctic to examine patterns of variability among and within species. FA signatures accurately distinguished phocid seals, walruses, and whales. Belugas and narwhals had the most similar FA signatures of any two species, suggesting substantial overlap in their diets, especially in the narwhal‐wintering area off eastern Baffin Island. Among phocid seals, harp and hooded seals had the most similar FA signatures. Bearded seals were most similar to walruses, which was consistent with the benthic feeding habits of both species. Within species, geographic differences in FA signatures were found over both large (>4,000 km) and small (<100 km) spatial scales. Overall, within‐species differences were smaller than among‐species differences. In general, FA signature patterns were consistent with previous studies of the ecology and diets of arctic marine mammals.  相似文献   

12.
Counting growth-layer groups (GLGs) in teeth is one of the most precise and widely accepted methods for aging marine mammals. Male narwhals have a large erupted tusk that can be used for aging, but this tusk is often difficult or expensive to obtain from hunters and most females do not display the tusk; thus, alternative methods for narwhal aging are needed. In this study, we aged narwhals by counting annual GLGs in embedded tusks and by measuring the change in the ratio of D- and L-enantiomers of aspartic acid in the eye lens nucleus that occurs as the animal ages (the aspartic acid racemization [AAR] technique). Absolute age estimates were estimated for seven tusks aged ≤15 yr. Estimated age was a significant predictor of aspartic acid D/L ratios with a racemization rate (Kasp) of 9.72 × 10−4/year ± 2.28 × 10−4 and a (D/L)0 of 3.46 × 10−2 ± 1.78 × 10−3 (r2 = 0.74). Results from our study, which included more younger GLG-aged animals than previously evaluated, confirms AAR can be used to generate age estimates for narwhals.  相似文献   

13.
Recordings of narwhal (Monodon monoceros) echolocation signals were made using a linear 16 hydrophone array in the pack ice of Baffin Bay, West Greenland in 2013 at eleven sites. An average -3 dB beam width of 5.0° makes the narwhal click the most directional biosonar signal reported for any species to date. The beam shows a dorsal-ventral asymmetry with a narrower beam above the beam axis. This may be an evolutionary advantage for toothed whales to reduce echoes from the water surface or sea ice surface. Source level measurements show narwhal click intensities of up to 222 dB pp re 1 μPa, with a mean apparent source level of 215 dB pp re 1 μPa. During ascents and descents the narwhals perform scanning in the vertical plane with their sonar beam. This study provides valuable information for reference sonar parameters of narwhals and for the use of acoustic monitoring in the Arctic.  相似文献   

14.
Range expansions and increases in the frequency of killer whale (Orcinus orca) sightings have been documented in the eastern Canadian Arctic, presumably the result of climate change‐related sea‐ice declines. However, the effects of increased predator occurrence on this marine ecosystem remain largely unknown. We explore the consequences of climate change‐related range expansions by a top predator by estimating killer whale abundance and their possible consumptive effects on narwhal (Monodon monoceros) in the Canadian Arctic. Individual killer whales can be identified using characteristics such as acquired scars and variation in the shape and size of their dorsal fins. Capture–mark–recapture analysis of 63 individually identifiable killer whales photographed between 2009 and 2018 suggests a population size of 163 ± 27. This number of killer whales could consume >1,000 narwhal during their seasonal residency in Arctic waters. The effects of such mortality at the ecosystem level are uncertain, but trophic cascades caused by top predators, including killer whales, have been documented elsewhere. These findings illustrate the magnitude of ecosystem‐level modifications that can occur with climate change‐related shifts in predator distributions.  相似文献   

15.
Assessments of fine-scale population structure in natural populations are important for understanding aspects of ecology, life history variation and evolutionary history and can provide novel insights into resource management. Although Arctic char, Salvelinus alpinus, represent one of the most culturally and commercially important salmonids in the Canadian Arctic, fine-scale assessments of genetic structure in northern populations of this species are rare. In this study, we assessed population structure in anadromous Arctic char from Cumberland Sound in Canada’s Nunavut territory using 18 microsatellite loci. Specifically, we aimed at identifying potential habitat and landscape/geographic features influencing genetic variation and population structure and resolving potential barriers to gene flow. Overall population structure was moderate (global FST and Jost’s D of 0.042 and 0.236 respectively) and significant among all sampling locations. Habitat and landscape/geographic features, with the exception of fluvial (shoreline) distance, appeared to have little influence on genetic variation and population structure. Bayesian clustering revealed a hierarchical model of population structure, in which the 14 sampling locations were nested within two distinct clusters corresponding to the north and south shores of Cumberland Sound. Both isolation-by-distance analysis and calculations of mean dispersal distance suggest dispersal and gene flow is highest among proximate locations. Finally, several putative barriers to gene flow were identified and one, a putative barrier separating north and south Cumberland Sound, was consistent with the hierarchical STRUCTURE results. Our results suggest that the current river-specific management of commercially harvested Arctic char is appropriate. Overall, we provide further insights into the evolution of genetic variation and population structure in iteroparous, Arctic salmonids.  相似文献   

16.
Genetic structure of the world's polar bear populations   总被引:9,自引:0,他引:9  
We studied genetic structure in polar bear (Ursus maritimus) populations by typing a sample of 473 individuals spanning the species distribution at 16 highly variable microsatellite loci. No genetic discontinuities were found that would be consistent with evolutionarily significant periods of isolation between groups. Direct comparison of movement data and genetic data from the Canadian Arctic revealed a highly significant correlation. Genetic data generally supported existing population (management unit) designations, although there were two cases where genetic data failed to differentiate between pairs of populations previously resolved by movement data. A sharp contrast was found between the minimal genetic structure observed among populations surrounding the polar basin and the presence of several marked genetic discontinuities in the Canadian Arctic. The discontinuities in the Canadian Arctic caused the appearance of four genetic clusters of polar bear populations. These clusters vary in total estimated population size from 100 to over 10 000, and the smallest may merit a relatively conservative management strategy in consideration of its apparent isolation. We suggest that the observed pattern of genetic discontinuities has developed in response to differences in the seasonal distribution and pattern of sea ice habitat and the effects of these differences on the distribution and abundance of seals.  相似文献   

17.
Sea ice entrapments of narwhals (Monodon monoceros) occur when rapid changes in weather and wind conditions create a formation of fast ice in bays or passages used by whales. Between 2008 and 2010, four entrapments of narwhals were reported in Canada and Greenland. In each case, large groups (40–600 individuals) succumbed in the sea ice at three separate summering localities, two of these where entrapments had never before been reported. We examined long-term trends in autumn freeze-up timing (date when sea ice concentration rises above some threshold) on the 6 largest narwhal summering areas using sea ice concentration from satellite passive microwave data (1979–2009). We found strongly positive and significant trends (P < 0.001) in progressively later dates of autumn freeze-up in all summering areas. Autumn freeze-up occurs between 0.5 and 1 day later per year, or roughly 2–4 weeks later, over the 31-year time series. This indicates that sea ice conditions on narwhal summering areas are changing rapidly. The question remains whether entrapment events on summering areas are random or whether narwhals are adapting to changes in sea ice freeze-up by prolonging their summer residence time.  相似文献   

18.
Abstract: In 1986, we recorded the MV Arctic , CCGS des Groseilliers and MV Lady Franklin during routine icebreaking operations and travel to and from the mine at Nanisivik, Baffin Island, Northwest Territories, Canada. We found that the Arctic generated more high frequency noise than did the other vessels we recorded. Monitoring of vessel noise levels indicated that belugas and, probably, narwhals should be able to detect the high frequency components of Arctic noise at least as far as 25 to 30 km from the source. The ability of whales to detect the MV Arctic at long distances may explain why belugas and narwhals in Lancaster Sound seem to react to ships at longer distances than do other stocks of arctic whales.  相似文献   

19.
The narwhal is a hunted species for which we have many knowledge gaps. Photo-identification, which uses photographs of natural markings to identify individuals, is widely used in cetacean studies and can address a broad range of biological questions. However, it has not been developed for narwhals. The marks used for other cetaceans are inappropriate for this species either because narwhals lack the body part on which these marks are found or because the marks are known to change with time. We investigated the marks apparent in photographs of narwhals. Nicks and notches on the dorsal ridge are the mark types most promising for photo-identification. They are found on 91%–98% of the individuals, thus allowing the identification of a large part of the population. They can be used to differentiate between individuals, in part because they are variable in their location, numbers, shape, and size. Although our results suggest that nicks and notches are relatively stable over time, rates of change should be formally measured to assess the probability of photographic matches over multiple years. However, we are confident that these marks can be used in studies spanning at least a field season.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号