首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Agriculture is a primary factor underlying world-wide declines in biodiversity. However, different agricultural systems vary in their effects depending on their resemblance to the natural ecosystem, coverage across the landscape, and operational intensity. We combined data from the North American Breeding Bird Survey with remotely sensed measures of crop type and linear woody feature (LWF) density to study how agricultural type, woody structure and crop heterogeneity influenced the avian community at landscape scales across a broad agricultural region of eastern Canada. Specifically, we examined whether 1) avian diversity and abundance differed between arable crop agriculture (e.g., corn, soy) and forage (e.g., hay) and pastoral agriculture, 2) whether increasing the density of LWF enhances avian diversity and abundance, and 3) whether increasing the heterogeneity of arable crop types can reduce negative effects of arable crop amount. Avian diversity was lower in landscapes dominated by arable crop compared to forage agriculture likely due to a stronger negative correlation between arable cropping and the amount of natural land cover. In contrast, total avian abundance did not decline with either agricultural type, suggesting that species tolerant to agriculture are compensating numerically for the loss of non-tolerant species. This indicates that bird diversity may be a more sensitive response than bird abundance to crop cover type in agricultural landscapes. Higher LWF densities had positive effects on the diversity of forest and shrub bird communities as predicted. Higher crop heterogeneity did not reduce the negative effects of high crop amount as expected except for wetland bird abundance. In contrast, greater crop heterogeneity actually strengthened the negative effects of high crop amount on forest bird abundance, shrub-forest edge bird diversity and total bird diversity. We speculate that this was due to negative correlations between crop heterogeneity and the amount of shrub and forest habitat patches in crop-dominated landscapes in our study region. The variable response to crop heterogeneity across guilds suggests that policies aimed at crop diversification may not enhance avian diversity on their own and that management efforts aimed at the retention of natural forest and shrub patches, riparian corridors, and hedge-rows would be more directly beneficial.  相似文献   

2.
Habitat heterogeneity is a key driver of the diversity and distribution of species. African savannas are experiencing changes in their vegetation structure causing shifts towards increased woody plant cover, which results in vegetation structure homogenization. Given the impact that increasing woody plant cover has on patterns of animal use, resource managers across Africa are implementing habitat management practices that are intended to reduce woody plant cover. To understand the ecological implications of various habitat management practices on arthropod and bird communities, we leveraged large‐scale tree clearing and subsequent mowing in an African savanna to understand how changes in both the herbaceous layer and woody plant cover (i.e., structural heterogeneity) may shape arthropod and bird communities at the local scale. We focused on four replicated treatments: (1) annual summer mow, (2) annual winter mow, (3) >5 years since last mow (rest), and (4) an adjacent unmanipulated savanna to act as a control. We found that the mowing treatments significantly influenced vegetation structure both with respect to tree density and herbaceous layer. Both arthropod and bird community composition varied across treatments. Grass biomass was the best predictor of arthropod richness and abundance, with arthropods selecting for areas with high biomass. Insectivorous bird richness and abundance was driven by tree density (i.e., perching locations) and not arthropod abundance. Our results suggest that vegetation management practices contribute to habitat heterogeneity at the landscape scale and increase bird species richness through species turnover. However, we caution that if a single vegetation management practice dominates the landscape, it is plausible that it could lead to the simplification of the avian community.  相似文献   

3.
Species distribution models are often used to study the biodiversity of ecosystems. The modelling process uses a number of parameters to predict others, such as the occurrence of determinate species, population size, habitat suitability or biodiversity. It is well known that the heterogeneity of landscapes can lead to changes in species’ abundance and biodiversity. However, landscape metrics depend on maps and spatial scales when it comes to undertaking a GIS analysis.We explored the goodness of fit of several models using the metrics of landscape heterogeneity and altitude as predictors of bird diversity in different landscapes and spatial scales. Two variables were used to describe biodiversity: bird richness and trophic level diversity, both of which were obtained from a breeding bird survey by means of point counts. The relationships between biodiversity and landscape metrics were compared using multiple linear regressions. All of the analyses were repeated for 14 different spatial scales and for cultivated, forest and grassland environments to determine the optimal spatial scale for each landscape typology.Our results revealed that the relationships between species’ richness and landscape heterogeneity using 1:10,000 land cover maps were strongest when working on a spatial scale up to a radius of 125–250 m around the sampled point (circa 4.9–19.6 ha). Furthermore, the correlation between measures of landscape heterogeneity and bird diversity was greater in grasslands than in cultivated or forested areas. The multi-spatial scale approach is useful for (a) assessing the accuracy of surrogates of bird diversity in different landscapes and (b) optimizing spatial model procedures for biodiversity mapping, mainly over extensive areas.  相似文献   

4.
Grazing management recommendations often sacrifice the intrinsic heterogeneity of grasslands by prescribing uniform grazing distributions through smaller pastures, increased stocking densities, and reduced grazing periods. The lack of patch-burn grazing in semi-arid landscapes of the western Great Plains in North America requires alternative grazing management strategies to create and maintain heterogeneity of habitat structure (e.g., animal unit distribution, pasture configuration), but knowledge of their effects on grassland fauna is limited. The lesser prairie-chicken (Tympanuchus pallidicinctus), an imperiled, grassland-obligate, native to the southern Great Plains, is an excellent candidate for investigating effects of heterogeneity-based grazing management strategies because it requires diverse microhabitats among life-history stages in a semi-arid landscape. We evaluated influences of heterogeneity-based grazing management strategies on vegetation structure, habitat selection, and nest and adult survival of lesser prairie-chickens in western Kansas, USA. We captured and monitored 116 female lesser prairie-chickens marked with very high frequency (VHF) or global positioning system (GPS) transmitters and collected landscape-scale vegetation and grazing data during 2013–2015. Vegetation structure heterogeneity increased at stocking densities ≤0.26 animal units/ha, where use by nonbreeding female lesser prairie-chickens also increased. Probability of use for nonbreeding lesser prairie-chickens peaked at values of cattle forage use values near 37% and steadily decreased with use ≥40%. Probability of use was positively affected by increasing pasture area. A quadratic relationship existed between growing season deferment and probability of use. We found that 70% of nests were located in grazing units in which grazing pressure was <0.8 animal unit months/ha. Daily nest survival was negatively correlated with grazing pressure. We found no relationship between adult survival and grazing management strategies. Conservation in grasslands expressing flora community composition appropriate for lesser prairie-chickens can maintain appropriate habitat structure heterogeneity through the use of low to moderate stocking densities (<0.26 animal units/ha), greater pasture areas, and site-appropriate deferment periods. Alternative grazing management strategies (e.g., rest-rotation, season-long rest) may be appropriate in grasslands requiring greater heterogeneity or during intensive drought. Grazing management favoring habitat heterogeneity instead of uniform grazing distributions will likely be more conducive for preserving lesser prairie-chicken populations and grassland biodiversity. © 2021 The Wildlife Society.  相似文献   

5.
Determinants of avian species richness at different spatial scales   总被引:10,自引:1,他引:9  
ABSTRACT. Studies of factors influencing avian biodiversity yield very different results depending on the spatial scale at which species richness is calculated. Ecological studies at small spatial scales (plot size 0.0025–0.4 km2) emphasize the importance of habitat diversity, whereas biogeographical studies at large spatial scales (quadrat size 400–50,000 km2) emphasize variables related to available energy such as temperature. In order to bridge the gap between those two approaches the bird atlas data set of Lake Constance was used to study factors determining avian species diversity at the intermediate spatial scales of landscapes (quadrat size 4–36 km2). At these spatial scales bird species richness was influenced by habitat diversity and not by variables related to available energy probably because, at the landscape scale, variation in available energy is small. Changing quadrat size between 4 and 36 km2, but keeping the geographical extension of the study constant resulted in profound changes in the degree to which the amount of different habitat types was correlated with species richness. This suggests that high species diversity is achieved by different management regimes depending on the spatial scale at which species richness is calculated. However, generally, avian species diversity seems to be determined by spatial heterogeneity at the corresponding spatial scale. Thus, protecting the diversity of landscapes and ecosystems appears to ensure also high levels of species diversity.  相似文献   

6.
Questions: What are the relative roles of abiotic and grazing management factors on plant community distribution in landscapes? How are livestock type and stocking rate related to changes in vegetation structure and composition? Location: Sub‐alpine grasslands in the central and eastern Pyrenees. Methods: Multivariate analysis and variance partitioning methods were used to evaluate the relative roles of environmental factors in structuring vegetation composition and diversity patterns in three surveys on differently managed grasslands. Results: Vegetation composition within a region was affected by environmental factors hierarchically, changing first according to abiotic factors and then to grazing management. At landscape scales, abiotic factors explained two‐fold more variation in vegetation composition than grazing factors. Within landscape units, cattle grazing increased vegetation heterogeneity at landscape and patch scales, while sheep grazing favoured the presence of a specific set of species with high conservation value. Species composition was highly responsive to management variables compared to diversity components. Conclusions: The combination of sheep and cattle grazing at various stocking rates is an effective tool to preserve the diversity of plant species and communities within a region with a long tradition of livestock management, through the scaling up of effects by local processes occurring in patches at smaller scales.  相似文献   

7.
It has been suggested that organic farming may benefit farmland biodiversity more in landscapes that have lost a significant part of its former landscape heterogeneity. We tested this hypothesis by comparing bird species richness and abundance during the breeding season in organic and conventional farms, matched to eliminate all differences not directly linked to the farming practice, situated in either homogeneous plains with only a little semi-natural habitat or in heterogeneous farmland landscapes with abundant field borders and semi-natural grasslands. The effect of farm management on species richness interacted with landscape structure, such that there was a positive relationship between organic farming and diversity only in homogeneous landscapes. This pattern was mainly dependent on the species richness of passerine birds, in particular those that were invertebrate feeders. Species richness of non-passerines was positively related to organic farming independent of the landscape context. Bird abundance was positively related to landscape heterogeneity but not to farm management. This was mainly because the abundance of passerines, particularly invertebrate feeders, was positively related to landscape heterogeneity. We suggest that invertebrate feeders particularly benefit from organic farming because of improved foraging conditions through increased invertebrate abundances in otherwise depauperate homogeneous landscapes. Although many seed-eaters also benefit from increased insect abundance, they may also utilize crop seed resources in homogeneous landscapes and conventional farms. The occurrence of an interactive effect of organic farming and landscape heterogeneity on bird diversity will have consequences for the optimal allocation of resources to restore the diversity of farmland birds.  相似文献   

8.
The relative effects of tree clearing, increased livestock densities and nutrient enrichment have rarely been compared across markedly different organism types, but negative effects are generally predicted. In contrast, adoption of rotational grazing is thought to benefit biodiversity in pastures but there are few supporting data. We examined the response of native plants, birds and reptiles to livestock management in south‐eastern Australia. We selected 12 pairs of rotationally and continuously grazed farms. Two 1‐ha plots were established in native pastures on each farm, one cleared and the second still retaining woodland tree cover. Stocking rates, fertilizer histories and landscape tree cover varied among farms. The abundance and richness of all taxa was lower in cleared pastures. The less mobile organisms (reptiles and plants) were positively correlated with tree cover at landscape scales, but only when trees were present at the plot scale. This pattern was driven by a few observations in landscapes with approximately 50% tree canopy cover. Neither bird abundance nor richness was correlated with stocking rates or nutrient enrichment, but plant richness responded negatively to both. The response of reptiles varied, declining with nutrient enrichment but positively correlated with livestock densities. These responses may be partly interpreted within the context of prior filtering of species pools through long‐term grazing pressure. No taxa responded positively to rotational grazing management. We predict that reductions in livestock density and soil nutrients will directly benefit plants and less so reptiles, but not birds. Indirect benefits are predicted for birds and reptiles if management increases persistence of trees within paddocks. Although some forms of rotational grazing can increase woodland tree recruitment, rotational grazing in itself is unlikely to enhance diversity.  相似文献   

9.
Agroecosystems represent a large geographical footprint in most terrestrial landscapes, and management decisions within these systems affect their function in species conservation. We evaluated the effects that rangeland management systems (based on stocking density, rotation frequency, and the number of avermectin applications) have on conserving the dung arthropod community in the Northern Great Plains of North America. Comprehensive bioinventories of arthropods were collected from 16 rangelands using core samples of dung pats. Ivermectin was quantified in pats from each ranch using enzyme-linked immunosorbant assay (ELISA). Arthropods in dung were abundant (116,244 specimens) and diverse in eastern South Dakota (172 morphospecies). Rangelands managed with more regenerative practices (frequent rotation at high stocking densities and lack of ivermectin applications) had greater species richness, diversity, predator species abundance, and dung beetle abundance than more conventionally managed rangelands. Ivermectin quantity in cattle pats was negatively correlated with dung beetle abundance and diversity. This work shows that herd management (specifically high-intensity, frequent rotational grazing and eliminating prophylactic ivermectin use) that aims to mimic intensive grazing of large migrating herds of ruminants can foster dung arthropod community structure, a key trait correlated with nutrient cycling, pest suppression, and productivity of cattle-grazed rangelands.  相似文献   

10.
The influence of resource availability on ecosystem function varies spatially and temporally, among and within ecosystems. Dramatic shifts in moisture-driven resources can drive bottom-up effects on animal behaviours and distributions. Further, complexity arises when landscapes are influenced by large mammalian grazers and predator-induced trophic cascades, such as those mediated by the dingo (Canis familiaris (Dingo)) in the eastern arid Strzelecki Desert in Australia. During the driest two-year period on record for this region, we investigated the persistence of avian communities associated with structurally distinct dunes and swale habitats, and across two different land management regimes (pastoral land with livestock and dingoes, and Sturt National Park managed for conservation without these animals). We grouped all birds into dietary functional groups to infer patterns of habitat use associated with available resources. We also compared incidental observations of the ‘winter’ bird community in part of the study region between the extended dry period of 2018/2019 and wet period of 2020/2021. Despite habitat partitioning, the avian community did not differ between land management regimes except in species richness during the dry period, likely driven by the low numbers of birds present during the surveys. Incidental observations indicated that insectivorous and omnivorous species dominated the bird community in the dry period, with granivorous species forming a greater proportion of the bird community during wet times. Birds with completely or partially insectivorous diets dominated avian species composition on surveys in the dry period, but there were distinct structural vegetation associations among functional groups, indicating that heterogeneity in vegetation structure was likely important for the conservation of refuges, which enable the persistence of avifauna during extended dry periods. Distinct habitat type, structure and available resources shaped avian communities in this landscape, during the extremely resource-limited extended dry period, with implications for conservation and management, particularly given the increasing drying effects of climate change.  相似文献   

11.
Farmland birds are of conservation concerns around the world. In China, conservation management has focused primarily on natural habitats, whereas little attention has been given to agricultural landscapes. Although agricultural land use is intensive in China, environmental heterogeneity can be highly variable in some regions due to variations in crop and noncrop elements within a landscape. We examined how noncrop heterogeneity, crop heterogeneity, and noncrop features (noncrop vegetation and water body such as open water) influenced species richness and abundance of all birds as well as three functional groups (woodland species, agricultural land species, and agricultural wetland species) in the paddy‐dominated landscapes of Erhai water basin situated in northwest Yunnan, China. Birds, crop, and noncrop vegetation surveys in twenty 1 km × 1 km landscape plots were conducted during the winter season (from 2014 to 2015). The results revealed that bird community compositions were best explained by amounts of noncrop vegetation and compositional heterogeneity of noncrop habitat (Shannon–Wiener index). Both variables also had a positive effect on richness and abundance of woodland species. Richness of agricultural wetland species increased with increasing areas of water bodies within the landscape plot. Richness of total species was also greater in the landscapes characterized by larger areas of water bodies, high proportion of noncrop vegetation, high compositional heterogeneity of noncrop habitat, or small field patches (high crop configurational heterogeneity). Crop compositional heterogeneity did not show significant effects neither on the whole community (all birds) nor on any of the three functional groups considered. These findings suggest that total bird diversity and some functional groups, especially woodland species, would benefit from increases in the proportion of noncrop features such as woody vegetation and water bodies as well as compositional heterogeneity of noncrop features within landscape.  相似文献   

12.
The Conservation Reserve Program (CRP) is a primary tool for restoring grassland in the United States, in part as wildlife habitat, which has benefited declining grassland bird populations. Among potential mid-contract management practices used to maintain early-successional CRP grasslands, cattle grazing had been prohibited and is currently disincentivized during the primary nesting season for birds (much of the growing season), despite the important role that large herbivores historically played in structuring grassland ecosystems. Conservative grazing of CRP grasslands could increase spatial heterogeneity in vegetation structure and plant diversity, potentially supporting higher densities of some grassland bird species and higher bird diversity. Our objective was to determine the effect of experimental cattle grazing on species-specific relative abundance and occupancy, species diversity, and community dissimilarity of grassland birds on CRP grasslands across the longitudinal extent of Kansas, USA (a 63.5-cm precipitation gradient) during the 2017–2019 avian breeding seasons. Fifty-three of 108 fields were grazed by cattle during the growing seasons of 2017 and 2018 and all fields were rested from grazing in 2019. For all analyses, we examined separate model sets for semiarid western versus more mesic eastern Kansas. Using data from line transect surveys, we modeled relative abundances of 5 songbird species: grasshopper sparrow (Ammodramus savannarum), dickcissel (Spiza americana), eastern meadowlark (Sturnella magna), western meadowlark (Sturnella neglecta), and brown-headed cowbird (Molothrus ater). Grazing had delayed yet positive effects on abundances of grasshopper sparrow in western Kansas, and eastern meadowlark in eastern Kansas, but negative effects on dickcissel abundance in western Kansas and especially on burned fields in eastern Kansas. Somewhat counterintuitively, brown-headed cowbirds in western Kansas were more abundant on ungrazed versus grazed fields in the years after grazing began. In addition, we modeled multi-season occupancy of 3 gamebird species (ring-necked pheasant [Phasianus colcicus], northern bobwhite [Colinus virginianus], mourning dove [Zenaida macroura]) and Henslow's sparrow (Centronyx henslowii); grazing did not affect occupancy of these species. In eastern Kansas, species diversity was highest in grazed, unburned fields. In western Kansas, bird communities in grazed and ungrazed fields were dissimilar, as determined from multivariate analysis. Though regionally variable, conservative stocking of cattle on CRP grasslands during the nesting season as a mid-contract management tool might increase bird species diversity by restructuring habitat that accommodates a greater variety of species and decreasing abundances of species associated with taller, denser stands of vegetation.  相似文献   

13.
Land use intensification drives biodiversity loss worldwide. In heterogeneous landscape mosaics, both overall forest area and anthropogenic matrix structure induce changes in biological communities in primary habitat remnants. However, community changes via cross‐habitat spillover processes along forest–matrix interfaces remain poorly understood. Moreover, information on how landscape attributes affect spillover processes across habitat boundaries are embryonic. Here, we quantify avian α‐ and β‐diversity (as proxies of spillover rates) across two dominant types of forest–matrix interfaces (forest–pasture and forest–eucalyptus plantation) within the Atlantic Forest biodiversity hotspot in southeast Brazil. We also assess the effects of anthropogenic matrix type and landscape attributes (forest cover, edge density and land‐use diversity) on bird taxonomic and functional β‐diversity across forest–matrix boundaries. Alpha taxonomic richness was higher in forest edges than within both matrix types, but between matrix types, it was higher in pastures than in eucalyptus plantations. Although significantly higher in forests edges than in the adjacent eucalyptus, bird functional richness did not differ between forest edges and adjacent pastures. Community changes (β‐diversity) related to species and functional replacements (turnover component) were higher across forest–pasture boundaries, whereas changes related to species and functional loss (nested component) were higher across forest–eucalyptus boundaries. Forest edges adjacent to eucalyptus had significant higher species and functional replacements than forest edges adjacent to pastures. Forest cover negatively influenced functional β‐diversity across both forest–pasture and forest–eucalyptus interfaces. We show the importance of matrix type and the structure of surrounding landscapes (mainly forest cover) on rates of bird assemblage spillover across forest‐matrix boundaries, which has profound implications to biological fluxes, ecosystem functioning and land‐use management in human‐modified landscapes.  相似文献   

14.
Federal mandates to increase biofuel production in North America will require large new tracts of land with potential to negatively impact biodiversity, yet empirical information to guide implementation is limited. Because the temperate grassland biome will be a production hotspot for many candidate feedstocks, production is likely to impact grassland birds, a group of major conservation concern. We employed a multiscaled approach to investigate the relative importance of arthropod food availability, microhabitat structure, patch size and landscape‐scale habitat structure and composition as factors shaping avian richness and abundance in fields of one contemporary (corn) and two candidate cellulosic biomass feedstocks (switchgrass and mixed‐grass prairie) not currently managed as crops. Bird species richness and species density increased with patch size in prairie and switchgrass, but not in corn, and was lower in landscapes with higher forest cover. Perennial plantings supported greater diversity and biomass of arthropods, an important food for land birds, but neither metric was important in explaining variation in the avian community. Avian richness was higher in perennial plantings with greater forb content and a more diverse vegetation structure. Maximum bird species richness was commonly found in fields of intermediate vegetation density and grassland specialists were more likely to occur in prairies. Our results suggest that, in contrast to corn, perennial biomass feedstocks have potential to provide benefits to grassland bird populations if they are cultivated in large patches within relatively unforested landscapes. Ultimately, genetic improvement of feedstock genets and crop management techniques that attempt to maximize biomass production and simplify crop vegetation structure will be likely to reduce the value of perennial biomass plantings to grassland bird populations.  相似文献   

15.
Urbanisation affects indigenous fauna in many ways; some species persist and even increase in urban areas, whereas others are lost. The causative mechanisms determining changes in distributions and community structure remain elusive. We investigated three hypothesized mechanisms, which influence success or failure of the insectivorous bat assemblage across the urban landscape of Sydney, Australia; landscape heterogeneity (diversity of land uses), productivity (as indexed by landscape geology) and trait diversity. We present data on species richness and activity (bat passes per night) collected systematically using ultrasonic bat detectors from randomly selected landscapes (each 25 km2). Landscapes were categorized into classes including ‘urban’, ‘suburban’ and ‘vegetated’, where suburban sites were additionally stratified based on geology, as a proxy for productivity. Four landscape elements were sampled within each landscape, including remnant bushland (>2 ha), riparian areas, open space/parkland and residential/built space. We found that there was significantly greater bat activity and more species of bat in areas on fertile shale geologies (p<0.05), supporting the productivity, rather than the heterogeneity hypothesis. Within landscapes, there was no significant effect of the landscape element sampled, although bushland and riparian sites recorded greater bat activity than open space or backyard sites. Using general linear mixed models we found bat activity and species richness were sensitive to landscape geology and increasing housing density at a landscape scale. Using an RLQ analysis a significant relationship was found between these variables and species traits in structuring the community present (p<0.01). Specifically, open‐adapted bats were associated with areas of greater housing density, while clutter‐adapted bats were uncommon in urban areas and more associated with greater amounts of bushland in the landscape. Overall we found greater support for the productivity and traits hypotheses, rather than the heterogeneity hypothesis. The degree of urbanisation and amount of bushland remaining, in combination with landscape geology, influenced bat activity and mediated the trait response. Our findings reflect global trends of species diversity and abundance in urban landscapes, suggesting that processes affecting bat species distribution in urban ecosystems may be predictable at a landscape scale.  相似文献   

16.
Sand shinnery oak (Quercus havardii) communities are a unique component of grassland bird habitat in eastern New Mexico and have been impacted by human activities for decades. These communities are frequently managed with livestock grazing and herbicide application for shrub control, strategies that potentially can be used to restore the historical shrub–grass composition of this plant community. During spring migration and the breeding seasons of 2004 and 2005, we compared density and community structure of grassland bird species among four combinations of tebuthiuron application and grazing treatments that were being evaluated for restoration of shinnery oak communities. We performed biweekly point transects on sixteen 65‐ha study plots in these communities. Density of all avian species combined did not differ between grazed and ungrazed plots. Tebuthiuron‐treated plots had a 40% higher average density for combined species than untreated plots. There was a 41% higher average density of all species during spring 2005 than 2004, but density was similar during the breeding season of both years. These trends were predominantly influenced by densities of migratory Cassin’s Sparrow (Aimophila cassinii), which were greater in tebuthiuron‐treated plots in both years. Densities of resident Meadowlarks (Sturnella spp.) exhibited little response to tebuthiuron or grazing treatments. Avian species richness, evenness, and diversity were only minimally affected by the tebuthiuron and grazing treatments. This study occurred over a period of highly variable precipitation, so future assessments, spanning longer wet–dry cycles and maturing plant communities, may be necessary to completely determine avian response to these restoration efforts.  相似文献   

17.
Aim We investigated how current and historical land use and landscape structure affect species richness and the processes of extinction, immigration and species turnover. Location The northern part of the Stockholm archipelago, Baltic Sea, Sweden. We resurveyed 27 islands ranging from 0.3 to 33 ha in area. Methods We compared current plant survey data, cadastral maps and aerial photographs with records obtained from a survey in 1908, using databases and a digital elevation model to examine changes in plant community dynamics in space and time. We examined the effects of local and landscape structure and land use changes on plant species dynamics by using stepwise regression in relation to eight local and three landscape variables. The eight local variables were area, relative age, shape, soil heterogeneity, bedrock ratio, number of houses, forest cover change, and grazing 100 years ago. The three landscape variables were distance to mainland, distance to closest island with a farm 100 years ago, and structural connectivity. Hanski’s connectivity measure was modified to incorporate both connectivity and fragmentation. Results The investigated islands have undergone drastic changes, with increasing forest cover, habitation, and abandonment of grassland management. Although the total species richness increased by 31% and mean island area by 23%, we found no significant increase in species richness per unit area. Local variables explain past species richness (100 years ago), whereas both local and landscape variables explain current species richness, extinctions, immigrations and species turnover. Grazing that occurred 100 years ago still influences species richness, even though grazing management was abandoned several decades ago. The evidence clearly shows an increase in nitrophilous plant species, particularly among immigrant species. Main conclusions This study highlights the importance of including land use history when interpreting current patterns of species richness. Furthermore, local environment and landscape patterns affect important ecological processes such as immigration, extinction and species turnover, and hence should be included when assessing the impact of habitat fragmentation and land use change. We suggest that our modified structural connectivity measure can be applied to other types of landscapes to investigate the effects of fragmentation and habitat loss.  相似文献   

18.
Question: How is grazing intensity associated with species and morpho‐functional traits (MFTs) composition, productivity and richness of annual dominated grasslands? Have native and exotic species similar associations to this gradient? Location: Anthropogenic grassland in the Espinal vegetation in the sub‐humid area of the mediterranean type climate region of Chile (35°58’ S, 72°17’ W). Methods: Data were obtained from a long‐term (eight years) experiment with six stocking rates (1 to 3.5 sheep/ha). Detrended Correspondence Analysis (DCA) and regression analysis were used to determinate the relationship between grazing intensity and biomass, richness, abundance and traits of the species. Results: The first DCA axis was related to grazing intensity and explained most of the floristic variation (69.3%); the abundance of some non‐native species, e.g. Vulpia megalura were highly correlated with this axis. In the DCA for MFTs the first axis explained 87% of the variance and was also related to grazing intensity; the abundance of small size plants and shallow roots increased with grazing intensity. The relative abundance of grasses and composites, but not of legumes, changed with stocking rate: as grazing intensity increased composites became the predominant species to the detriment of grasses. The above‐ground biomass measured in exclusion cages declined with increasing grazing pressure. The richness of exotic species was greater compared to native ones at low stocking rates, but they converge to similar values at higher stocking rates. However, the relative abundance of exotic species was greater than 75% in all stocking rates. Conclusions: Grazing intensification has large effects in the structure of grassland in central Chile. With grazing intensities greater than 1 sheep/ha species characteristics change; evolving in a few years (6–8) towards a similar community regardless of the stocking rate. The overgrazed community has more native than exotic species richness, possibly due to greater defence traits against herbivory of this group of species.  相似文献   

19.
Large tracts of natural habitat are being replaced by agriculture and urban sprawl in Mediterranean regions worldwide. We have limited knowledge about the effects of human activities on native species in these landscapes and which, if any, management practices might enhance the conservation of native biodiversity within them. Through a citizen volunteer bird-monitoring project, we compared bird abundance and species richness in northern Californian riparian zones surrounded by vineyards, urban areas, and natural areas. We assessed both local and landscape-level variables that may enhance native bird diversity in each land use type. We also demonstrate a new statistical approach, generalized estimating equations, to analyze highly variable data, such as that collected by volunteers. Avian abundance was highly correlated with both landscape context and local habitat variables, while avian richness was correlated with local habitat variables, specifically shrub richness, and percent of tree cover. In particular, shrub species richness has a strong positive correlation with riparian-preferring bird species. This suggests that active local management of riparian zones in human-dominated landscapes can increase our ability to retain native bird species in these areas.  相似文献   

20.
Improving biodiversity conservation in fragmented agricultural landscapes has become an important global issue. Vegetation at the patch and landscape-scale is important for species occupancy and diversity, yet few previous studies have explored multi-scale associations between vegetation and community assemblages. Here, we investigated how patch and landscape-scale vegetation cover structure woodland bird communities. We asked: (1) How is the bird community associated with the vegetation structure of woodland patches and the amount of vegetation cover in the surrounding landscape? (2) Do species of conservation concern respond to woodland vegetation structure and surrounding vegetation cover differently to other species in the community? And (3) Can the relationships between the bird community and the woodland vegetation structure and surrounding vegetation cover be explained by the ecological traits of the species comprising the bird community? We studied 103 woodland patches (0.5 - 53.8 ha) over two time periods across a large (6,800 km2) agricultural region in southeastern Australia. We found that both patch vegetation and surrounding woody vegetation cover were important for structuring the bird community, and that these relationships were consistent over time. In particular, the occurrence of mistletoe within the patches and high values of woody vegetation cover within 1,000 ha and 10,000 ha were important, especially for bird species of conservation concern. We found that the majority of these species displayed similar, positive responses to patch and landscape vegetation attributes. We also found that these relationships were related to the foraging and nesting traits of the bird community. Our findings suggest that management strategies to increase both remnant vegetation quality and the cover of surrounding woody vegetation in fragmented agricultural landscapes may lead to improved conservation of bird communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号