首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
ABSTRACT Declining bat populations and increasing demands on forest resources have prompted researchers to investigate tree roost selection of forest bats. Few studies, however, have investigated different spatial scales and landscape pattern as criteria for selection of tree roosts. In 1999 and 2000, we radiotracked 23 eastern red bats (Lasiurus borealis) to 64 day roosts. Using univariate and multivariate comparisons, we tested roost tree variables with random tree data at 3 circular spatial scales: roost tree, plot, and landscape. We found 15 variables that were entered in a stepwise discriminant analysis to best differentiate between the roost and random samples; 11 (73.3%) were landscape variables measured with a geographic information system. On average (x̄ ± SE), red bats roosted in deciduous trees (42.0 ± 2.1 cm dbh) that were located in plots with more (3.1 ± 0.1 m2) basal area, higher (84.0 ± 1.3) percentage of canopy closure, and lower (27.2 ± 2.2) percentage of groundcover than random plots. At the landscape scale (by percent magnitude), red bat buffers (1,000-m-radius circle) had significantly less development (81.6%), less feeding operations (70.4%), more deciduous (52.9%) and pine forest (63.8%), and fewer local roads (5.4%) but more trails (94.1%), open water (61.4%), wetland areas (80.4%), and stream areas (63.1%) than random buffers. Red bat roost trees were significantly closer (χ2 = 22.0088, df = 1, P < 0.001) to trails (106.2 ± 13.3 m) than to streams (279.4 ± 28.5 m). Our results suggest that red bats in our study area select roosts in mature riparian forests near trails, open water, and wetlands. The high percentage of landscape values in the discriminant analysis lends support to using landscape metrics as an investigative technique of resource selection. We recommend that managers consider landscape factors when protecting red bat day-roost habitat.  相似文献   

2.
Abstract: Understanding year-round roost-site selection is essential for managing forest bat populations. From January to March, 2004 to 2006, we used radiotelemetry to investigate winter roost-site selection by Seminole bats (Lasiurus seminolus) on an intensively managed landscape with forested corridors in southeastern South Carolina, USA. We modeled roost-site selection with logistic regression and used Akaike's Information Criterion for small samples (AICc) and Akaike weights to select models relating roost-site selection to plot- and landscape-level variables. We tracked 20 adult male bats to 71 individual roosts. Bats used a variety of roosting structures, including the canopy of overstory trees, understory vegetation, pine (Pinus spp.) needle clusters, and leaf litter. Roost height, structure type, and habitat type were influenced by changes in minimum nightly temperature. On warmer nights, bats selected taller trees in mature forest stands, but when minimum nightly temperatures were <4° C, bats typically were found roosting on or near the forest floor in mid-rotation stands. We recommend avoiding prescribed burning in mid-rotation stands on days when the previous night's temperature is <4 °C to minimize potential disturbance and direct mortality of bats roosting on or near the forest floor. We encourage forest managers to incorporate seasonal changes in roost-site selection to create year-round management strategies for forest bats in managed landscapes.  相似文献   

3.
ABSTRACT In Arizona, USA, Allen's lappet-browed bat (Idionycteris phyllotis) forms maternity colonies in ponderosa pine (Pinus ponderosa) snags. There is little information on the roosting habitat of males. We used radiotelemetry to locate 16 maternity, 3 postlactating, and 2 bachelor roosts and combined data with unpublished data for maternity roosts (n = 11) located in 1993–1995. Most (96%) maternity roosts were in large-diameter ( ± SE: 64 ± 2.7 cm) ponderosa pine snags under sloughing bark. Models that best predicted the probability of a snag's use as a maternity roost indicated bats selected taller snags closer to forest roads than comparison snags. Maternity roosts averaged 11 bats per roost (SE = 2, n = 15; from exit counts) and were an average distance of 1.6 km from capture sites (SE = 0.3, n = 17). Bachelor roosts were in vertical sandstone cliff faces in pinyon-juniper (Pinus edulis-Juniperus spp.) woodlands approximately 12 km from capture sites; these and other capture records in Arizona indicated sexual segregation may have occurred during the maternity season. Of 11 maternity snag roosts located in 1993–1995, only one continued to function as a roost. Resource managers should maintain patches of large-diameter ponderosa pine snags with peeling bark to provide maternity roosting habitat for Allen's lappet-browed bat.  相似文献   

4.
Abstract: Forest management affects the quality and availability of roost sites for forest-dwelling bats, but information on roost selection beyond the scale of individual forest stands is limited. We evaluated effects of topography (elevation, slope, and proximity of roads and streams), forest habitat class, and landscape patch configuration on selection of summer diurnal roosts by 6 species of forest-dwelling bats in a diverse forested landscape of the Ouachita Mountains, Arkansas, USA. Our objectives were to identify landscape attributes that potentially affect roost placement, determine whether commonalities exist among species in their response to landscape attributes, and evaluate the effects of scale. We modeled roost selection at 2 spatial scales (250- and 1,000-m radius around each roost). For each species, parameters included in models differed between the 2 scales, and there were no shared parameters for 2 species. Average coefficients of determination (R2) for small-scale models were generally higher than for large-scale models. Abundance of certain forest habitat classes were included more often than patch configuration or topography in differentiating roost from random locations, regardless of scale, and most species were more likely to roost in areas containing abundant thinned forest. Among topographic metrics, big brown bats (Eptesicus fuscus) were more likely to roost at higher elevations; roosts of big brown bats, northern long-eared bats (Myotis septentrionalis), and Seminole bats (Lasiurus seminolus) were influenced by slope; and big brown bats, evening bats (Nycticeius humeralis), and Seminole bats were more likely to roost closer to water than random. Northern long-eared bats and red bats (Lasiurus borealis) were more likely to roost closer to roads, whereas eastern pipistrelles (Perimyotis subflavus) were more likely to roost further from roads than random. Common parameters in most models included 1) positive associations with group selection (5 of 6 species) and thinned mature forest (4 species) at the small scale; 2) negative associations with unmanaged mixed pine-hardwood forest 50–99 years old at the large scale (4 species); 3) negative association with stands of immature pine 15–29 years old at the small scale (3 species); and 4) a positive association with largest patch index at the large scale (3 species). Our results suggest that, in a completely forested landscape, a variety of stand types, seral stages, and management conditions, varying in size and topographic location throughout the landscape, would likely provide the landscape components for roosting required to maintain a diverse community of forest bats in the Ouachita Mountains.  相似文献   

5.
Abstract: We derived a method of estimating the direction and magnitude of cover changes for potentially maximizing wildlife abundance on an area. We illustrate the method with data on cover selection by northern bobwhites (Colinus virginianus) collected in the Texas Panhandle from 2000 to 2003. We used radiotelemetry to determine use of cover associations, Geographic Information System analysis to determine their availability, and logic related to use-availability analysis to collapse 95% kernel home ranges to usable space. Bobwhites selected mixed-shrub cover consisting of sand plum (Prunus angustifolia) and fragrant sumac (Rhus aromatica), and they avoided or neutrally used 8 other cover associations. However, grass upland and sand sagebrush (Artemisia filifolia) associations occurred in ≥86% of home ranges (n = 96 bobwhites with ≥30 radiolocations). Usable space averaged 54.2% ± 1.72 SE of kernel home ranges. The data indicated that adding about 226 ha of mixed-shrub cover or a structural homologue while simultaneously reducing the quantity of most other cover associations would maximize bobwhite abundance. An area with 30–60% mixed-shrub cover, with the balance in grass upland and sand sagebrush, and with cover dispersed such that no point was >30 m from mixed-shrub cover was hypothetically optimal for bobwhites in our region. Within certain constraints (e.g., financial, social, edaphic), managers can apply this method by manipulating cover types through relevant management practices (e.g., planting, prescribed burning, mechanical removal of vegetation). This method, with minor modification, could also be used to decrease usable space on an area, and thus decrease wildlife densities, should that be the manager's objective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号