首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite several secretive marsh bird (SMB) species being listed as critically imperiled throughout the mid-continent of North America, limited information on SMB distribution and habitat use within primary migratory corridors results in uncertainty on contributions of wetlands in mid-latitude states toward their annual cycle needs. Our objectives were to quantify temporal patterns of SMB wetland occupancy during spring migration at a mid-latitude state and evaluate the relationships between SMB colonization probability and water-level management practices, and the resulting habitat conditions during spring migration. We conducted a 2-year, dynamic occupancy study (2013–2014) that included 6 rounds of repeated call-back surveys to detect the presence of 5 SMB species (i.e., Virginia rail [Rallus limicola], sora [Porzana carolina], king rail [R. elegans], least bittern [Ixobrychus exilis], and American bittern [Botaurus lentiginosus]) during spring (Apr–Jun) on 107 wetlands across 8 conservation areas and 4 national wildlife refuges throughout Missouri, USA. We detected sora most frequently, followed by least bittern, American bittern, Virginia rail, and king rail. Coefficient estimates indicated colonization probability for all species was positively associated with emergent vegetation cover and negatively associated with amount of open water. Open water was the only variable in the best supported model explaining American bittern site colonization, to which they were negatively associated. Virginia rail colonization had a strong positive association with vegetation height, whereas least bittern and sora site colonization were influenced positively by water depth and agriculture, respectively. Based on the habitat associations within and among SMB species identified in this study, wetland managers can tailor management strategies to optimize spring migration habitat for single- or multi-species objectives.  相似文献   

2.
Stable isotopes have been used to estimate migratory connectivity in many species. Estimates are often greatly improved when coupled with species distribution models (SDMs), which temper estimates in relation to occurrence. SDMs can be constructed using point locality data from a variety of sources including extensive monitoring data typically collected by citizen scientists. However, one potential issue with SDM is that these data often have sampling bias. To avoid this potential bias, we created SDMs based on marsh bird monitoring program data collected by citizen scientists and other participants following protocols specifically designed to maximize detections of species of interest at locations representative of larger areas of inference. We then used the SDMs to refine isotopic assignments of breeding areas of autumn‐migrating and wintering sora Porzana carolina, Virginia rail Rallus limicola, and yellow rail Coturnicops noveboracensis based on feathers collected from individuals caught at various locations in the United States from Minnesota south to Louisiana and South Carolina. Sora were assigned to an area that included much of the western U.S. and prairie Canada, covering parts of the Pacific, Central, and Mississippi waterfowl Flyways. Yellow rails were assigned to a broad area along Hudson and James Bay in northern Manitoba and Ontario, as well as smaller parts of Québec, Minnesota, Wisconsin, and Michigan, including parts of the Mississippi and Atlantic Flyways. Virginia rails were from several discrete areas, including parts of Colorado, New Mexico, the central valley of California, and southern Saskatchewan and Manitoba in the Pacific and Central Flyways. Our study demonstrates extensive data from organized citizen science monitoring programs are especially useful for improving isotopic assignments of migratory connectivity in birds, which can ultimately lead to better informed management decisions and conservation actions.  相似文献   

3.
Understanding habitat selection by breeding birds and their newly fledged young can be an essential aspect of the conservation of vulnerable species. During 2015–2017, we examined nest site selection of Worthington's marsh wren (Cistothorus palustris griseus) and MacGillivray's seaside sparrow (Ammospiza maritima macgillivraii), and fledgling habitat use by Worthington's marsh wren, 2 imperiled species in northeast Florida, USA. We compared vegetation at unused points to vegetation at nests of both subspecies and at locations used by radio-tagged marsh wren fledglings. Vegetation was taller and stem counts were greater at nest sites compared to unused points. Worthington's marsh wrens also used nest sites with a greater proportion of tall-form smooth cordgrass (Spartina alterniflora) than was observed at unused points. Worthington's marsh wren fledglings also used locations with taller, denser vegetation, but vegetation use changed with fledgling age and tidal stage; older fledglings more frequently used areas with short-form smooth cordgrass and bare ground (and more so during low tides). In contrast, so few nests and nestlings were in black needlerush (Juncus roemerianus) that we could not consider it in our analysis despite its prevalence within our study sites. Our results indicate that tall, dense cordgrass is an important habitat component for these subspecies during the nesting and fledgling life stages in southeastern Atlantic salt marshes.  相似文献   

4.
Abstract: Common reed (Phragmites australis) forms dense stands with deep layers of residual organic matter that negatively affects plant diversity and possibly habitat use by wetland birds. We sought to determine whether seasonal relative abundance and species richness of birds varied among 3 habitat types in Great Lakes coastal wetland complexes recently invaded by common reed. We used fixed-distance point counts to determine species relative abundances and species richness in edge and interior locales within common reed, cattail (Typha spp.), and meadow marsh habitats of various sizes during 2 summers (2001 and 2002) and 1 autumn (2001) at Long Point, Lake Erie, Ontario, Canada. We found that total relative abundance and species richness of birds were greater in common reed habitat compared to cattail or meadow marsh habitats. However, we also found that relative abundance of marsh-nesting birds was greater in meadow marsh habitat than in cattail and common reed during summer. Lastly, we found that, irrespective of habitat type, habitat edges had higher total relative abundance and species richness of birds than did habitat interiors. Our results show that common reed provides suitable habitat for a diversity of landbirds during summer and autumn but only limited habitat for many marsh-nesting birds during summer. Based on these results, we recommend restoration of meadow marsh habitat through reduction of common reed in Great Lakes wetlands where providing habitat for breeding marsh-nesting birds is an objective. Managers also might consider reducing the size of nonnative common reed stands to increase edge effect and use by birds, possibly including wetland birds.  相似文献   

5.
Grassland birds are in steep decline, with population declines reported in 74% of North American grassland species in the past 50 years. Declines are particularly severe in the eastern United States where they are influenced by habitat loss and alteration due to urbanization, forest regrowth, and agricultural intensification. The United States National Park Service maintains civil war battlefields in the eastern United States as historical and cultural parks that may also provide habitat refuge for grassland birds within an increasingly urbanized matrix. To assess the conservation importance of battlefield parks and the role of park management in sustaining grassland birds, we surveyed for 2 declining grassland-breeding species, eastern meadowlark (Sturnella magna) and grasshopper sparrow (Ammodramus savannarum), at 242 points across 4 battlefield parks in Maryland, Virginia, and West Virginia, USA, from 2014–2019 and in 2021. We modeled the effects of park management activities (prescribed fire, agricultural leases, and delayed harvest) and habitat and landscape characteristics on breeding-season occupancy. There was support for the influence of local habitat features, landscape, and management. Breeding-season occupancy of both species was consistently higher in hayfields and pasture than in row crops, and both species responded positively to hay and crop harvest delays intended for grassland bird conservation. Prescribed fire within the past 2 years had a positive effect on occupancy of grasshopper sparrows but did not influence eastern meadowlarks. Eastern meadowlarks responded to land cover at multiple spatial scales that are influenced by land use within and outside the parks. Management activities that maintain the parks' cultural goals, including partnerships between national parks and private agricultural operators, are likely to provide valuable habitat for these 2 obligate grassland birds.  相似文献   

6.
ABSTRACT As human development continues in coastal areas, shoreline properties adjacent to expansive tidal marsh habitat are increasingly used for access to coastal waterways via long piers (>30 m) over marsh habitat. These tidal wetlands provide breeding and foraging habitat for many marsh birds, which may be affected by the human disturbance associated with long piers. Our objectives were to determine the effect of long piers over vegetated tidal marshes on the relative abundance and species richness of marsh birds. We completed combined passive and callback surveys in tidal marsh habitat at 22 sites with long piers and 24 sites without long piers, May-July 2005–2006 in Worcester County, Maryland, USA. Pier sites had lower relative abundance and species richness of obligate marsh birds than nonpier sites. Pier sites had a greater relative abundance of gulls, terns, herons, and egrets than nonpier sites. Pier sites had fewer species of herons and egrets than at nonpier sites. The presence of long piers had no affect on facultative marsh birds. Long pier density was negatively related to obligate marsh bird relative abundance and species richness, and facultative marsh bird species richness, whereas it was positively related to the relative abundance and species richness of gulls and terns. Herons and egrets relative abundance and species richness were not related to long pier density. Obligate marsh birds were negatively affected by long piers, whereas herons, egrets, gulls, and terns appeared to benefit from perching opportunities. Based on the negative effects of long piers on obligate marsh birds, management should focus on reducing the presence and density of long piers in tidal marshes by requiring the removal of existing long piers, or reducing or eliminating permits for construction of new long piers.  相似文献   

7.
We assessed diet selection, impact on vegetation, and explored habitat relationships with marsh birds of coypus (Myocastor coypus) in a steppe lagoon in Argentinean Patagonia. In two consecutive springs, abundance and spatial use of the coypus and nesting marsh birds were estimated by direct counts. The coypu was a selective consumer with seasonal variations in food items, and Myriophyllum sp. and Schoenoplectus californicus dominated its diet. Coypus and marsh birds showed a differential spatial use when rushes cover was high. However, when rushes cover decreased by coypu browsing, there was a similar use of space, and marsh birds were displaced to nest on the open water and other poorly protected areas of the rushes. Our results suggest that high abundances of coypu can have a detrimental effect on wetland ecosystems. Systematic monitoring and evaluation of their effects on wetlands in recently colonized areas is recommended.  相似文献   

8.
Floating bird nests occur ephemerally in many wetlands, providing resources for wildlife, but the species using such nests and their ecological roles are poorly studied. Grebes (Podicipedidae) construct floating nests anchored to vegetation. During 2010–2017 we studied the vertebrates using nests of the colonially-nesting western grebe (Aechmophorus occidentalis) and Clark’s grebe (A. clarkii) at Clear Lake, California. In addition to both grebe species using each other’s nests for copulation and egg dumping, we identified 47 other species of vertebrates using Aechmophorus grebe nests, including one fish, one amphibian, two turtles, one snake, 39 birds, and three mammals. Ecological roles of vertebrates using grebe nests included: egg dumping (one bird); predation on grebe eggs, chicks, or adults (four birds and three mammals); scavenging on broken grebe eggs (five birds); resting (one amphibian, three reptiles, and 15 birds); foraging for non-avian prey on nests (13 birds) or in adjacent water (five birds); and incidental destruction of grebe eggs (one fish and two reptiles) and nests (many species). Floating grebe nests undergo a process of ecological succession. Egg dumping, predation, and scavenging occur during early stages of nest development and maintenance. Once abandoned, older nests are used for resting or foraging for prey in nearby water. Decomposing nests are colonized by arthropods which are preyed upon by birds. Because floating bird nests increase food web complexity by attracting aquatic, semiaquatic, and terrestrial organisms at all trophic levels, protecting the engineers and their nests should be considered a conservation priority by wetland managers.  相似文献   

9.
We examined how geographic distribution of birds and their affinities to three geomorphic wetland types would affect the scale at which we developed indicators based on breeding bird communities for Great Lakes coastal wetlands. We completed 385 breeding bird surveys on 222 wetlands in the US portion of the basin in 2002 and 2003. Analyses showed that wetlands within two ecoprovinces (Laurentian Mixed Forest and Eastern Broadleaf Forest) had different bird communities. Bird communities were also significantly different among five lakes (Superior, Michigan, Huron, Erie, and Ontario) and among three wetland types (lacustrine, riverine, barrier-protected). Indicator values illustrated bird species with high affinities for each group (ecoprovince, lake, wetland type). Species with restricted geographic ranges, such as Alder and Willow Flycatchers (Empidonax alnorum and E. traillii), had significant affinities for ecoprovince. Ten bird species had significant affinities for lacustrine wetlands. Analyses on avian guild metrics showed that Lake Ontario wetlands had fewer long-distant migrants and warblers than other lakes. Numbers of short-distant migrants and total individuals in wetlands were higher in the Eastern Broadleaf Forest ecoprovince. Number of flycatchers and wetland obligate birds were not different among provinces, lakes, or wetland type. One potential indicator for wetland condition in Great Lakes wetlands, proportion of obligate wetland birds, responded negatively to proportion of developed land within 1 km of the wetland. We conclude that, although a guild approach to indicator development ameliorates species-specific geographic differences in distribution, individual species responses to disturbance scale will need to be considered in future indicator development with this approach.  相似文献   

10.
The key patch approach assumes that metapopulations in fragmented landscapes are likely to be viable with at least one “key” sub-population that is sufficiently large to ensure re-colonization of surrounding minor habitat patches. It is based on a minimum viable number of breeding pairs and within-breeding season dispersal distance, linked to size of the animal and longevity. It was tested using census data of 15 wetland bird species (bearded tit, bluethroat, great reed warbler, sedge warbler, Savi’s warbler, grasshopper warbler, spotted crake, water rail, common snipe, common teal, garganey, little bittern, night heron, great bittern and marsh harrier) in 14 wetland complexes of variable size (3–55 km2) spread across the Netherlands (distances ranging 4–156 km). First, for each species it was assessed whether a wetland harbored a key subpopulation, which was the case for the sedge warbler (7 key subpopulations), grass-hopper warbler (2), water rail (2), bearded tit, bluethroat, Savi’s warbler, common teal, garganey, great bittern and marsh harrier (all one key subpopulation).Together with the adjacent sub-populations present within breeding season dispersal distance, 10 out of the 15 studied species formed viable meta-populations. This was compared with the trend in the census data of 13 species for 1990–2000 and was found to correspond significantly (likelihood ratio test, P = 0.003): species without a viable meta-population had declined (2 out of 4) or remained stable (2 out of 4), whereas viable meta-populations had increased (6 out of 9) or remained comparatively stable (2 out of 9). One wetland complex, the Oostvaardersplassen, stood out in that it haboured key sub-populations for 9 out of the 15 species studied. Variation in quantity of specific habitat (area or perimeter marshland, woodland or open water) in a wetland complex was of limited importance explaining abundance patterns, since all covaried strongly with total area among the wetland complexes, with the exception of water perimeter. Apparently, these wetlands on peat harbour largely similar landscapes. Indeed, population sizes of most birds covaried strongly and in a PCA two distinct clusters of species were identified that shared high numbers of breeding pairs in the same, larger, wetland complexes, the first (3 species) including the great reed warbler, and the second (9 species) the water rail.  相似文献   

11.
ABSTRACT.   The decline in populations of several species of marsh birds in North America has prompted development of a monitoring protocol that involves the broadcast of conspecific calls to enhance detection of these secretive species. However, with a standardized protocol, temporal (seasonal) and geographic variation in responses to the broadcast of calls could lead to inadequate monitoring of migratory species with large ranges. Our objective was to examine temporal variation in the response of marsh birds to playback of conspecific calls in west-central and northern New York to determine if use of the current protocol would permit effective monitoring of their populations. From 11 April to 8 July 2005, we conducted 572 surveys at 143 survey points on 16 marshes and detected 663 individuals of our target species. Our results revealed more detections of American Bitterns ( Botaurus lentiginosus ) and Pied-billed Grebes ( Podilymbus podiceps ) early in our survey period, and more detections of Virginia Rails ( Rallus limicola ) and Least Bitterns ( Ixobrychus exil is) later in our survey period. Only 22% of Least Bitterns were detected before 28 May, whereas 76% of American Bitterns and 70% of Pied-billed Grebes were detected before 28 May. With the current recommended monitoring protocol, surveys are to be completed during a 44-day period that includes three 10-day sampling periods separated by 1 week. However, our results indicate that this protocol would lead to inadequate and inaccurate monitoring of marsh birds in New York. Given that the timing of peak detection of different species of marsh birds varies geographically, we recommend flexibility in the timing and duration of surveys so that surveys can be synchronized with location-specific peak-detection periods.  相似文献   

12.
Abstract Changes in the abundance, species richness and assemblage composition of vertebrates due to grazing by domestic stock were investigated in the semi‐arid woodlands of eastern Australia. Analyses were based on the differences found at 10 fenceline contrast sites. Two species of amphibians, 22 species of reptiles and two species of small mammal were captured in pit traps during the surveys. Kangaroos (red and eastern grey), sheep, goats and 66 species of birds were recorded along line transects. Analyses revealed that abundance of diurnal reptiles and species richness of diurnal reptiles and birds were significantly lower on heavily grazed sites than they were on lightly grazed sites. At a local scale, the gecko, Gehyra variegata, was more abundant where grazing was heavier, while Diplodactylus conspicillatus, Diplodactylus steindachneri and Rhynchoedura ornata responded to variables indirectly related to grazing intensity (kangaroo density, sheep and goat dung mass and sheep density, respectively). Birds more commonly sighted on lightly grazed areas than heavily grazed areas were the apostlebird, brown treecreeper, crested bellbird, grey butcherbird, hooded robin, jacky winter, little woodswallow, Australian magpie‐lark, mulga parrot, splendid wren, white‐browed treecreeper and yellow‐rumped thornbill. Birds more commonly sighted on heavily grazed areas than on lightly grazed areas were the Australian raven and chestnut‐crowned babbler. Most variation in species composition between sites was due to spatial separation and no regional‐level indicator species of grazing were evident. A combination of direct grazing‐related changes (e.g. loss of ground cover) and indirect effects of the pastoral industry (e.g. introduction of artificial sources of water) lead to changes in fauna at different scales of analysis across regions.  相似文献   

13.
T. J. Kwak  Joy B. Zedler 《Oecologia》1997,110(2):262-277
Carbon, nitrogen, and sulfur stable isotopes were used to characterize the food webs (i.e., sources of carbon and trophic status of consumers) in Tijuana Estuary and San Dieguito Lagoon. Producer groups were most clearly differentiated by carbon, then by sulfur, and least clearly by nitrogen isotope measurements. Consumer 15N isotopic enrichment suggested that there are four trophic levels in the Tijuana Estuary food web and three in San Dieguito Lagoon. A significant difference in multiple isotope ratio distributions of fishes between wetlands suggested that the food web of San Dieguito Lagoon is less complex than that of Tijuana Estuary. Associations among sources and consumers indicated that inputs from intertidal macroalgae, marsh microalgae, and Spartina foliosa provide the organic matter that supports invertebrates, fishes, and the light-footed clapper rail (Rallus longirostris levipes). These three producers occupy tidal channels, low salt marsh, and mid salt marsh habitats. The only consumer sampled that appears dependent upon primary productivity from high salt marsh habitat is the sora (Porzana carolina). Two- and three-source mixing models identified Spartina as the major organic matter source for fishes, and macroalgae for invertebrates and the light-footed clapper rail in Tijuana Estuary. In San Dieguito Lagoon, a system lacking Spartina, inputs of macroalgae and microalgae support fishes. Salicornia virginica, S. subterminalis, Monanthochloe littoralis, sewage- derived organic matter, and suspended particulate organic matter were deductively excluded as dominant, direct influences on the food web. The demonstration of a salt marsh–channel linkage in these systems affirms that these habitats should be managed as a single ecosystem and that the restoration of intertidal marshes for endangered birds and other biota is compatible with enhancement of coastal fish populations; heretofore, these have been considered to be competing objectives. Received: 24 April 1996 / Accepted: 24 October 1996  相似文献   

14.
Abstract: Shrubland birds are declining throughout the eastern United States. To manage scrub-shrub habitats for birds, managers need information on avian habitat relationships. Past studies have produced contradictory results in some cases and may be of limited generality because of site- and habitat-specific factors. We studied shrubland birds across 6 habitats in 3 New England states to provide more general information on habitat relationships than has been possible in past studies. Our study sites included all major scrub-shrub habitats in New England: wildlife openings, regenerating clear-cuts, beaver ponds, utility rights-of-way, pitch pine (Pinus rigida) woodlands, and scrub oak (Quercus ilicifolia) barrens and ranged from Connecticut to northern New Hampshire, with research conducted from 2002 to 2007. Using N-mixture models of repeated point counts, we found that 6 of 12 shrubland birds preferred areas with greater shrub cover. An additional 4 species appeared to prefer areas with lower-stature vegetation and greater forb cover. Eight of 10 bird species showed relationships with cover of individual plant species, with Spiraea spp., willows (Salix spp.), alders (Alnus spp.), and invasive exotics being the most important. We recommend that shrubland management for birds focus on providing 2 distinct habitats: 1) areas of tall (>1.5 m) vegetation with abundant shrub cover and 2) areas of lower (<1.5 m) vegetation with abundant forb cover but fewer shrubs.  相似文献   

15.
Distributions of individual bird species in 151 small woods (size range 0.02–30 ha) were investigated in 3 consecutive years during which the abundance of certain species varied markedly. Relationships between the probabilities of certain bird species breeding and woodland area were described using incidence functions derived from logistic regression analysis. In general, for species which were largely dependent on woodland and seldom occurred in other habitats (such as hedgerows and gardens), the probability of breeding approached 100% only for woods of 10 ha and more, whereas species with less stringent habitat requirements occurred in the majority of woods, including those of 1 ha and less. The sensitivity of incidence functions to changes in regional abundance and the size distribution of the study woods was examined. For some species, distribution patterns could not be distinguished from those expected if pairs had been distributed in proportion to woodland area (random placement), but the majority did not conform to random placement in at least 1 of the 3 years. This nonconformity was consistent across all 3 years for some species, such as wren (Troglodytes troglodytes), despite substantial fluctuations in population sizes between years, while for others, such as robin (Erithacus rubecula), distribution patterns changed with changes in regional abundance. The results suggested that some species, such as wren and blackbird (Turdus merula), preferred small woods, while other species, such as chiffchaff (Phylloscopus collybita), preferred large woods. For several other species, including robin, great tit (Parus major), long-tailed tit (Aegithalos caudatus) and marsh tit (P. palustris), small woods appeared to be sub-optimal under at least some conditions.  相似文献   

16.
Water level and water surface area fluctuations are important factors determining abundance of bird populations and bird assemblages structure in a wetland habitat. The water level and water surface area of the Marsh T?m?rd (West Hungary) changed drastically between 1998 and 2008, and the marsh dried out because of scarce rainfall in 2000 and 2001. A habitat restoration in winter 2001 repaired the waterholding capacity of the marsh. We analyzed changes in parameters of bird assemblages in investigated wetland area in relation of environmental factors. We used full redundancy analysis (RDA) on number of caugth migratory birds per year, species richness, diversity and evenness of bird assemblages to examine correlations among water level, water surface area and vegetation core. Species like water rail, common snipe, river warbler, Savi’s warbler, great reed warbler, reed warbler, marsh warbler, sedge warbler, reed bunting showed high and positive linear correlations with the water level and water surface area in the postbreeding period. Some wetland species, sedge warbler, Savi’s warbler and reed bunting as well as total number of caugth birds per year and total numbers of caugth species per year were clearly associated with thick marsh vegetation. According to our results the bird species composition of the wetland might have returned to the prerestoration levels and surface areas.  相似文献   

17.
A key component for biologists managing mobile species is understanding where and when a species occurs at different locations and scaling management to fit the spatial and temporal patterns of movement. We established an automated radio-telemetry tracking network to document multi-year movement in 2016–2018 of 3 endangered waterbirds among wetlands on Oʻahu, Hawaiʻi, USA: ʻalae ʻula or Hawaiian gallinule (gallinule; Gallinula galeata sandvicensis), ʻalae keʻokeʻo or Hawaiian coot (coot; Fulica alai), and aeʻo or Hawaiian stilt (stilt; Himantopus mexicanus knudseni), each with different ecological requirements. There were marked differences in the movement propensity of the species, with no movement among sites detected in gallinules, 31% of coots moving among wetlands, and very high levels of daily movement in stilts. A network analysis revealed strong evidence for fidelity among individual stilts to specific wetlands, indicating different groups of wetlands supported different birds. There was also strong evidence for patterns in daily and seasonal movement patterns of stilts. Our work indicates the importance of each wetland to the waterbirds they support, as each individual had strong fidelity to a single wetland. In addition, for Hawaiian coots and stilts, which were documented moving among multiple wetlands, a network of wetlands may be key for long-term persistence of these endangered species, and coordinated regional management of waterbirds as a shared resource could provide greater benefits to waterbirds than independent management of each wetland.  相似文献   

18.
Aim The aims of this work were (1) to study how well land‐cover and climatic data are capable of explaining distribution patterns of ten bird species breeding and/or feeding primarily on marshes and other wetlands and (2) to compare the differences between red‐listed and common marshland species in explanatory variables, and to study the predictability of their distribution patterns. Location Finland, northern Europe. Methods The data of the bird atlas survey carried out in 1986–89 using a 10 × 10 km uniform grid system in Finland were used in the analyses. Land‐cover data based on CORINE (Coordination of Information on the Environment) classification and climatic variables were compiled using the same 10 × 10 km grid. Generalized additive models (GAM) with a stepwise selection procedure were used to select relevant explanatory variables and to examine the complexity of the response shapes of the different species to each variable. The original data set was randomly divided into model training (70%) and model evaluation (30%) sets. The final models of common and red‐listed bird species richness were validated by fitting them to the model evaluation set, and the correlation between observed and predicted species richness was calculated. We assessed the discrimination ability of the binary models (single species) with the area under the curve (AUC) of a receiver operating characteristic (ROC) plot and the Kappa coefficient. Results Cover of marshland, shoreline length and mean temperature in April–June were significantly (P < 0.01) related to the common marshland species richness. Cover and clumping of marshland and mean temperature and precipitation in April–June were selected in the model of red‐listed marshland species richness. The level of discrimination in our single species models varied in ROC from fair to excellent (AUC values 0.70–0.95). Cover of marshland was included in all GAM models built for the target species, but clumping of marshland, shoreline length and cover of mires also appeared as important predictors in single species models. Seven species had statistically significant relationships with climatic variables in the multivariate GAMs. Cover of marshland was highest in squares in which the red‐listed bittern Botaurus stellaris, marsh harrier Circus aeruginosus and great reed warbler Acrocephalus arundinaceus and the water rail Rallus aquaticus were observed. Main conclusions Cover of marshland was the only variable which was included in all the models, reinforcing the close connection between the studied species and marshlands. Broad‐scale clumping of marshlands was important for the red‐listed species, probably due to the much lower population sizes of red‐listed species than those of common species. Land‐cover data produced in CORINE seems to be well suited for modelling the distribution patterns of marshland birds. Although climatic variables also strongly affect the studied marshland birds, habitat availability plays a crucial role in their occurrence. The distribution patterns of marshland birds at the scale of 10 × 10 km reflect the interplay between habitat availability and direct climatic variables.  相似文献   

19.
A comprehensive understanding of spatiotemporal ecology is needed to develop conservation strategies for declining species. The king rail (Rallus elegans) is a secretive marsh bird whose range historically extended across the eastern United States. Inland migratory populations have been greatly reduced with most remaining populations inhabiting the coastal margins. Our objectives were to determine the migratory status of breeding king rails on the mid‐Atlantic coast and to characterize home range size, seasonal patterns of movement, and habitat use. Using radiotelemetry, we tracked individual king rails among seasons, and established that at least a segment of this breeding population is resident. Mean (±SE) home range size was 19.8 ± 5.0 ha (95% kernel density) or 2.5 ± 0.9 (50% kernel density). We detected seasonal variation and sex differences in home range size and habitat use. In the nonbreeding season, resident male home ranges coincided essentially with their breeding territories. Overwintering males were more likely than females to be found in natural emergent marsh with a greater area of open water. Females tended to have larger home ranges than males during the nonbreeding season. We report for the first time the use of wooded natural marsh by overwintering females. Brood‐rearing king rails led their young considerable distances away from their nests (average maximum distance: ~600 ± 200 m) and used both wooded natural and impounded marsh. King rails moved between natural marsh and managed impoundments during all life stages, but the proximity of these habitat types particularly benefitted brood‐rearing parents seeking foraging areas with shallower water in proximity to cover. Our results demonstrate the importance of interspersion of habitat types to support resident breeders. Summer draining of impounded wetlands that are seasonally flooded for wintering waterfowl allows regrowth of vegetation and provides additional habitat at a critical time for wading birds.  相似文献   

20.
Some understory insectivorous birds manage to persist in tropical forest fragments despite significant habitat loss and forest fragmentation. Their persistence has been related to arthropod biomass. In addition, forest structure has been used as a proxy to estimate prey availability for understory birds and for calculating prey abundance. We used arthropod biomass and forest structural variables (leaf area index [LAI] and aerial leaf litter biomass) to explain the abundance of White‐breasted Wood‐Wrens (Henicorhina leucosticta), tropical understory insectivorous birds, in six forests in the Caribbean lowlands of Costa Rica. To estimate bird abundance, we performed point counts (100‐m radius) in two old‐growth forests, two second‐growth forests, and two selectively logged forests. Arthropod abundance was the best predictor of wood‐wren abundance (wi = 0.75). Wood‐wren abundance increased as the number of arthropods increased, and the estimated range of bird abundance obtained from the model varied from 0.51 (0.28 – 0.93 [95%CI]) to 3.70 (1.68 – 5.20 [95%CI]) within sites. LAI was positively correlated to prey abundance (P = 0.01), and explained part of the variation in wood‐wren abundance. In forests with high LAI, arthropods have more aerial leaf litter as potential habitat so more potential prey are available for wood‐wrens. Forests with a greater abundance of aerial leaf litter arthropods were more likely to sustain higher densities of wood‐wrens in a fragmented tropical landscape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号