首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Winter acclimatization in birds is a complex of several strategies based on metabolic adjustment accompanied by long-term management of resources such as fattening. However, wintering birds often maintain fat reserves below their physiological capacity, suggesting a cost involved with excessive levels of reserves. We studied body reserves of roosting great tits in relation to their dominance status under two contrasting temperature regimes to see whether individuals are capable of optimizing their survival strategies under extreme environmental conditions. We predicted less pronounced loss of body mass and body condition and lower rates of overnight mortality in dominant great tits at both mild and extremely low ambient temperatures, when ambient temperature dropped down to ?43 °C. The results showed that dominant great tits consistently maintained lower reserve levels than subordinates regardless of ambient temperature. However, dominants responded to the rising risk of starvation under low temperatures by increasing their body reserves, whereas subdominant birds decreased reserve levels in harsh conditions. Yet, their losses of body mass and body reserves were always lower than in subordinate birds. None of the dominant great tits were found dead, while five young females and one adult female were found dead in nest boxes during cold spells when ambient temperatures dropped down to ?43 °C. The dead great tits lost up to 23.83 % of their evening body mass during cold nights while surviving individuals lost on average 12.78 % of their evening body mass. Our results show that fattening strategies of great tits reflect an adaptive role of winter fattening which is sensitive to changes in ambient temperatures and differs among individuals of different social ranks.  相似文献   

2.
Understanding the density-dependent processes that drive population demography in a changing world is critical in ecology, yet measuring performance–density relationships in long-lived mammalian species demands long-term data, limiting scientists' ability to observe such mechanisms. We tested performance–density relationships for an opportunistic omnivore, grizzly bears (Ursus arctos, Linnaeus, 1758) in the Greater Yellowstone Ecosystem, with estimates of body composition (lean body mass and percent body fat) serving as indicators of individual performance over two decades (2000–2020) during which time pronounced environmental changes have occurred. Several high-calorie foods for grizzly bears have mostly declined in recent decades (e.g., whitebark pine [Pinus albicaulis, Engelm, 1863]), while increasing human impacts from recreation, development, and long-term shifts in temperatures and precipitation are altering the ecosystem. We hypothesized that individual lean body mass declines as population density increases (H1), and that this effect would be more pronounced among growing individuals (H2). We also hypothesized that omnivory helps grizzly bears buffer energy intake from changing foods, with body fat levels being independent from population density and environmental changes (H3). Our analyses showed that individual lean body mass was negatively related to population density, particularly among growing-age females, supporting H1 and partially H2. In contrast, population density or sex had little effect on body fat levels and rate of accumulation, indicating that sufficient food resources were available on the landscape to accommodate successful use of shifting food sources, supporting H3. Our results offer important insights into ecological feedback mechanisms driving individual performances within a population undergoing demographic and ecosystem-level changes. However, synergistic effects of continued climate change and increased human impacts could lead to more extreme changes in food availability and affect observed population resilience mechanisms. Our findings underscore the importance of long-term studies in protected areas when investigating complex ecological relationships in an increasingly anthropogenic world.  相似文献   

3.
Small birds at high latitudes accumulate fat during the day so that they can survive long and cold winter nights. The winter fattening model suggests that birds increase their minimum (morning) mass in cold weather, build up their mass during the day, and then rely on the energy reserves so accumulated until the morning. While data from mid and high latitudes support this model, little is known about the strategies of birds inhabiting lower latitudes (< 40°N). We use an 18-year data set to investigate whether the winter fattening model holds in a mid-latitude (32°N) population of the Clamorous Reed Warbler Acrocephalus stentoreus . We show that morning mass and fat score vary as predicted by the winter fattening model. In addition, adults appear to be better adapted to long and cold winter nights than first-year birds. A long-term trend of increased body mass may be attributable to character release following reduced interspecific competition.  相似文献   

4.
Reindeer herding in Sweden is a form of pastoralism practised by the indigenous Sámi population. The economy is mainly based on meat production. Herd size is generally regulated by harvest in order not to overuse grazing ranges and keep a productive herd. Nonetheless, herd growth and room for harvest is currently small in many areas. Negative herd growth and low harvest rate were observed in one of two herds in a reindeer herding community in Central Sweden. The herds (A and B) used the same ranges from April until the autumn gathering in October–December, but were separated on different ranges over winter. Analyses of capture-recapture for 723 adult female reindeer over five years (2007–2012) revealed high annual losses (7.1% and 18.4%, for herd A and B respectively). A continuing decline in the total reindeer number in herd B demonstrated an inability to maintain the herd size in spite of a very small harvest. An estimated breakpoint for when herd size cannot be kept stable confirmed that the observed female mortality rate in herd B represented a state of herd collapse. Lower calving success in herd B compared to A indicated differences in winter foraging conditions. However, we found only minor differences in animal body condition between the herds in autumn. We found no evidence that a lower autumn body mass generally increased the risk for a female of dying from one autumn to the next. We conclude that the prime driver of the on-going collapse of herd B is not high animal density or poor body condition. Accidents or disease seem unlikely as major causes of mortality. Predation, primarily by lynx and wolverine, appears to be the most plausible reason for the high female mortality and state of collapse in the studied reindeer herding community.  相似文献   

5.
We contrasted patterns of growth and accumulation of body reserves in autumn between two high-density (HD) white-tailed deer populations facing winters of different severity and length. Both populations occurred in the absence of effective predators and suffered from some forage competition based on reduced body masses. A third population living at low density (LD) and confronting long and severe winters (SW) served to distinguish the influence of food competition and winter severity on growth and body reserves. We estimated body components (water, protein, fat and ash) of deer during the first half of November and compared growth patterns between sexes and regions. HD-SW males continuted growth to an older age than HD males facing short and mild winters (MW) but females of both regions reached adult body mass at the same age. LD-SW deer exhibited a growth pattern similar to that of HD-SW animals but were the heaviest and the largest, suggesting that growth patterns are related to winter harshness (or length of the growing season) and that final body size is related to forage competition in summer. Sexual dimorphism became evident at an older age in the HD-SW population than in the HD-MW population, demonstrating that winter harshness does not affect immature males and females in the same manner. Fawns from the HD-SW population had proportionally longer legs and a higher percentage of body fat. Adaptations of immature deer to long and severe winters suggest that survival during the first winter represents the most critical step in the life span of northern white-tailed deer.  相似文献   

6.
The survival probability of an individual may be limited by density-dependent mechanisms and by environmental stochasticity, but can also be modified by individual characteristics. In our study, we investigated over-winter survival of subadults of an enclosed European rabbit Oryctolagus cuniculus population in a temperate zone habitat over the period 1992–2002. We: (1) selected for appropriate models to explain individual variation in over-winter survival and the animals autumn body mass, the latter was used as a measure of the individual pre-winter body condition; and (2) aimed to compare the sensitivity of the target variables on the realised variation of the factors considered. Model selection based on information theory revealed that individual over-winter survival was best explained by the combination of autumn body mass, winter temperature, population density and sex, where the probability of survival was higher in females than in males. According to this model, the probability of survival reacted most sensitively to variation in the autumn body mass and in winter temperature. Individual autumn body mass was best explained by the combination of the date of birth, population density, and weather conditions by means of the percentage of rainy days during the first 2 months after the animals had emerged above ground, where the autumn body mass was negatively related to the percentage of rainy days. The chosen model suggested that the autumn body mass reacted most sensitively to variation in the date of birth. Combining these models, we found that weather conditions during two different periods of time as well as population density, sex and the date of birth operated together to determine the probability of over-winter survival. In particular, the study points out the high impact of environmental stochasticity on over-winter survival: (1) by direct effects of winter temperature conditions, and (2) by the indirect action of weather conditions to which the animals were exposed during the early period of juvenile development.  相似文献   

7.
We study the usefulness of the haematocrit as a predictor of body condition in birds, using a captive population of the endangered species Northern Bald Ibis (Geronticus eremita). This population is 14% of the worldwide captive population, which is far greater than the known free-living population. The haematocrit, body mass and body condition index responded in the same sense to two different nutritional periods, and there was a statistically significant relationship between changes in condition index and haematocrit of individual birds between the two periods. We discuss the relationship of these parameters with subcutaneous fat and muscle mass, and analyse the individuals' nutritional status in each of the periods studied. The conclusion was that the haematocrit is sensitive to variations in body condition since it responds to mass-loss processes corresponding to phases of mobilization of fat reserves, a situation prior to the mobilization of muscle proteins when there is a manifest deterioration of the individual's aspect.  相似文献   

8.
The definition and measurement of body condition are central to many ecological and evolutionary studies, yet the fundamental issue of whether variation in condition is inherited genetically remains unresolved. Furthermore, confusion has been caused through diverse uses of the word 'condition' itself. In this paper, we introduce the terms 'broad-sense condition' and 'narrow-sense condition' in an attempt to reduce this confusion. Because of the difficulty of measuring condition, field biologists use the mass relative to body size as a convenient index of condition. Such indices have also been used to estimate die heritability of condition. Using data from a wild great tit Parus major population, we demonstrate that a condition index may still contain residual variance that is due to body size. Hence, using a condition index to study the heritability of condition can give misleading results because that residual variance may itself be heritable. To avoid this problem, direct measures of condition, such as reserve tissues, should be used. We provide the first heritability estimates of direct measures of condition of full-grown birds in a wild population by the regression of mean offspring (both in winter, and when breeding) on mean parent (when breeding) values of two reserve tissues, fat and pectoral muscle, which are independent of body-size. A great tit's fat and muscle reserves in winter were significandy correlated with their respective values when the birds bred. However there was no evidence that the level of fat reserves in winter resembled those of the parents (when breeding), more than expected by chance. Slight resemblances between parents and offspring were detected for muscle in winter and for fat reserves when breeding. Muscle size in the breeding season provided stronger evidence for the inheritance of condition.  相似文献   

9.
IDO IZHAKI  ASAF MAITAV 《Ibis》1998,140(2):234-243
Spring and autumn Palaearctic-African migration patterns of Blackcaps Sylvia atricapilla during stopover at Elat, Israel, showed that males appeared significantly earlier than females during spring but not during autumn migration, suggesting that in males there is a stronger drive to reaching breeding territories early. The difference in mean appearance dates between sexes in spring tended to be greatest in years when the males appeared earliest. Longer spread of passage (the dates between which the central 50% of individuals were captured) for each sex in spring was found in years with an early mean passage datebut was significant only for females. These observations suggest that the timing of Blackcap migration is governed not only by endogenous factors but also by exogenous factors, and when the environmental conditions are unfavourable, the differences in passage dates between sexes decrease and the passage lengths shorten. The early individuals (both males and females) that stopped over at Elat in spring were those with relatively small body size (as indicated by relatively short wings) and relatively large fat reserves and in good body condition (as indicated from fat score and body mass/wing-length ratio). No differences in body size between early and late transients were detected during the autumn migration, but late birds of both sexes carried larger fat reserves. These phenomena may be explained either by leap-frog migration or by differential fitness among wintering males and females or both, with only the fittest Blackcaps being capable of an early departure. These individuals probably face much less intensive intra- and interspecific competition with residents and other transients in stopover sites than do later transients.  相似文献   

10.
Summer diet, summer temperature, length of the growth season and animal density appeared to best explain annual and regional differences in calf and yearling body mass in moose from southeastern Norway. In general animals inhabiting steep, alpine landscapes had less body mass than animals using flat, low-altitude habitats. Autumn body mass of calves and yearlings decreased with increasing snow depth during the preceding winter and spring. However, calf body mass was more influenced by the summer range and less by the winter range than was body mass of yearlings. There was no indication that the effect of snow depth on autumn body mass was greater in moose living on poor than on good summer ranges. Body mass decreased with increasing competition for summer forage, while the winter range mainly had an density-independent effect. Habitat quality, expressed as regression lines between calf and yearling body mass and animal density (hunting yield), differed between regions. On ranges of medium and high altitude where birch (Betula spp.) rowan (Sorbus aucuparia) and bilberry (Vaccinium myrtillus) dominated moose summer diet, body mass decreased at a rapid rate with increasing animal density. Body mass decreased at a slower rate at low-altitude ranges and at high-altitude ranges where willow (Salix spp.) and forbs dominated the diet. Body mass of lactating cows decreased with increasing animal density, but animal density did not affect body mass of non-lactating cows. There was no indication that the decrease in autumn body mass with increasing moose density over the last 25 years has caused a decrease in animal condition (ability to survive the winter). The results are discussed in relation to the effect of summer and winter range on population regulation in moose. It is concluded that a density-dependent effect is apparent on the summer range even at low and intermediate population densities. On the winter range, on the other hand, density-dependence is likely to occur only at high levels of population density. Received: 4 February 1997 / Accepted: 1 February 1999  相似文献   

11.
《Ostrich》2013,84(1-2):67-69
This study was undertaken to understand the migratory strategies of the Dunlins (Calidris alpina) caught in Eilat, Israel, before and after they accomplish the crossing of the combined ecological barrier of the Sinai, Sahara and Sahel deserts. Between 1999–2001, a total of 410 adults and 342 juveniles were banded. The significant difference in mean wing length between birds caught in autumn and spring reflects the degree of abrasion of the outer primaries during over-wintering in Africa. Dunlins caught in Eilat in autumn and early winter had a mean wing length 1.4–1.9mm longer than in the spring. The rate of body mass increase was comparatively high and the mean body mass of the heaviest 10% of Dunlin at Eilat was 56.2g (SE ± 0.6, N = 80). The heaviest birds from Eilat carried on average about 10g of fat with a lipid index (fat mass as a percentage of total body mass) of 18%. These reserves allow a flight of approximately 1 000km, which is probably sufficient for continued migration to more southerly wintering grounds.  相似文献   

12.
Despite the survival value of high energy reserves during winter, animals often face energy deficits when entering winter. Compensatory growth in energy reserves during the winter period to buffer such deficits may increase winter survival and alleviate the need for costly compensatory mechanisms before or after winter when predation risk is much higher. However, such compensatory responses in energy reserves during winter have not been demonstrated under field conditions. We explored if Lestes eurinus damselfly larvae can compensate for suboptimal energy reserves during winter at 4°C when their ponds are covered with ice. In a field enclosure experiment, we demonstrated compensatory growth in terms of body mass and energy reserves in larvae whose energy status was previously manipulated in the laboratory. These results were supported by patterns in body mass and energy reserves over winter in two natural unmanipulated populations. Winter survival was high overall and not affected by compensatory growth. We hypothesize that the observed compensatory growth in energy reserves during winter may shape life history decisions in autumn and spring, and may make resource availability during winter as or more important than energy reserves before winter.  相似文献   

13.
Aim The annual and circadian rhythms and duration of activity of Eurasian badger Meles meles (Linnaeus 1758) were studied in a low‐density population inhabiting the primeval woodland in the European temperate zone. Results were compared with available data from the literature on seasonal changes in body mass and winter inactivity of badgers from across the Palaearctic region. Location Field work was carried out in Bia?owie?a Primeval Forest, eastern Poland. Biogeographical variation was reviewed based on twenty‐three localities in the Palaearctic region (from Western Europe to Central Siberia). Methods Thirteen badgers were radio‐collared in 1997–2001. Their circadian activity was sampled by 24‐h sessions of continuous radio‐tracking with location taken at 15‐min intervals. Annual activity was studied by radio‐tracking and inspections of setts. Earthworm (badgers’ main food) biomass was estimated in four types of habitats throughout the year. Results Badgers were nocturnal with one long bout of activity. Their rhythms of diel activity differed between spring and autumn, and between adult and subadult individuals. On average, badgers emerged from setts at 19:00 hours and returned to them at 03:42 hours. The highest level of activity was recorded between 20:00 and 03:00 hours. Duration of daily activity was, on average, 8.2 h day?1, but varied significantly between seasons. The seasonal changes were inversely related to the abundance of earthworms. Duration of activity also depended on daily temperature, especially in the cold season. In winter, badgers stayed inactive for an average of 96 days per year. In autumn, they built fat reserves and their body mass nearly doubled compared with the spring values. The literature review on annual cycle of activity and body mass changes in Eurasian badgers showed that fat storage and duration of winter sleep strongly depended on climate (best approximated by January mean temperature). In regions with warm climates, badgers were active year round and their body mass changed only slightly, while in regions with severe winters badgers increased their body mass twofold from spring to autumn, and stayed inactive for as long as 6 months per year. Main conclusion We propose that, in the temperate and boreal zones of the Palaearctic region, the ultimate determinant of biogeographical variation in badgers’ annual activity is the winter shortage of earthworms, which are the main component of badger diet.  相似文献   

14.
ABSTRACT The Trivers-Willard (1973) model suggests maternal control of offspring sex, in utero or by the end of parental investment, may be an adaptive advantage in some species. We tested for differential sex allocation using 11,408 known-sex fetal elk (Cervus elaphus) from biological collections and hunter harvest returns from 2 southwestern Montana, USA, elk populations (1961–2007). We included maternal and environmental condition covariates measured pre- and postconception and throughout pregnancy. Results suggested that adult female elk in southwest Montana did not differentially invest in male offspring when conditions were beneficial. We found evidence that, when the Northern Yellowstone elk herd was at low density, beneficial spring (May-Jun) growing conditions, as indexed by a local precipitation measure and a regional drought indicator, correlated with production of more female fetuses (1 SD increase in precipitation and 1 SD decrease in drought resulted in 6% and 5% more F fetuses, respectively). In the same herd, we found evidence that improved maternal condition, as indexed by kidney fat mass and heart fat mass, also correlated with production of more female fetuses (1 SD increase in kidney fat mass and heart fat mass resulted in 8% more F fetuses). When the same elk herd reached higher densities under different ecological conditions, no covariate was associated with a deviation in the 50:50 female-to-male sex ratio. Similarly, there was no association between covariates and fetal sex ratios in a nearby elk herd at high population density. In modeling, wildlife managers should consider factors that could alter sex ratios at birth, and also how biased sex ratios postpartum could affect population models.  相似文献   

15.
We followed seasonal and year-to-year population dynamics for a diverse rodent assemblage in a short-grass prairie ecosystem in southeastern Colorado (USA) for 6 yr. We captured 2,798 individual rodents (range, one to 812 individuals per species) belonging to 19 species. The two most common species, deer mice (Peromyscus maniculatus) and western harvest mice (Reithrodontomys megalotis), generally had population peaks in winter and nadirs in summer; several other murid species demonstrated autumn peaks and spring nadirs; heteromyids were infrequently captured in winter, and populations generally peaked in summer or autumn. Inter-annual trends indicated an interactive effect between temperature and precipitation. Conditions associated with low rodent populations or population declines were high precipitation during cold periods (autumn and winter) and low precipitation during warm periods (spring and summer). Severity of adverse effects varied by species. Heteromyids, for example, were apparently not negatively affected by the hot, dry spring and summer of 2000. Cross-correlations for the temporal series of relative population abundances between species pairs (which are affected by both seasonal and interannual population dynamics) revealed positive associations among most murids and among most heteromyids, but there were negative associations between murids and heteromyids. These results have important implications for those attempting to model population dynamics of rodent populations for purposes of predicting disease risk.  相似文献   

16.
Organisms should adopt a risk-sensitive reproductive allocation when summer reproductive allocation competes with survival in the coming winter. This trade off is shown through autumn female body mass, which acts as an insurance against unpredictable winter environmental conditions. We tested this hypothesis on female reindeer in a population that has experienced a time period of dramatic increase in abundance. Environmental conditions during winter were fairly stable (with the exception of 1 year). We conclude that increased population abundance (perhaps in interaction with winter environmental conditions) could have represented a worsening of winter environmental conditions as both autumn offspring and spring female body mass decreased during the course of the study. Moreover, we found that the cost of reproduction was related to environmental conditions as: (1) autumn body mass was larger for barren than for lactating females, and this difference was temporally highly variable; (2) lactating females produced smaller offspring than barren ones in the following year; and (3) reproductive output (offspring size) decreased over time. We also found evidence of quality effects as lactating females had a higher reproductive success in the following year. In sum, a worsening of winter conditions lead to: (1) decreased reproductive output; (2) lowered autumn body mass for lactating females; and (3) increased body mass for barren females. Since females reduce their reproductive allocation as winter conditions becomes more severe, we conclude that reindeer have adopted a risk-sensitive reproductive allocation.  相似文献   

17.
Long-term hoarding in the Paridae: a dynamic model   总被引:4,自引:3,他引:1  
Using stochastic dynamic programming we modeled the hoardingand foraging behavior of tits and chickadees, Pandas, that areresident in the boreal forest at high latitudes. Here autumnshave a rich supply of seeds and temperatures are relativelymild, while winters are cold with short days and a low foodsupply. We assumed that parids have a memory of limited durationand that forgotten seeds accumulate in a bank that adds to thegeneral food supply in the hoarder's territory. Our model predictsthat birds should start "high-intensity" hoarding in early autumn,but not before that. Because of mass-dependent costs the birdswill keep their fat levels low during the autumn. When winterarrives they will carry more body fat, both for the long winternights and to hedge against the large effects of weather variationsin winter. After increasing the fat level at the start of winter,fat should gradually increase even more, to compensate for thediminishing food supply. Most hoarding occurs in autumn as away of building up the supply of long-term stores. Remembered,or short-term caches, may hedge against stochastic events inthe environment. Even though conditions are not beneficial forhoarding in winter, the birds still stored in winter to maintainlarger short and long-term hoards if environmental variationincreased. Almost all time in winter that not was spent foragingwas spent perching, mainly to avoid predation  相似文献   

18.
Early arrival at the breeding grounds for migratory birds is associated with greater reproductive success. According to the condition-dependent arrival hypothesis, only those individuals in superior physiological condition are able to bear the costs (e.g., poor environmental conditions, limited food availability) of early arrival. Condition has usually been measured in terms of energy reserves or mass but other physiological measures of condition such as hematocrit and immune function have been gaining attention. We examined several measures of condition and their association with date of first capture in Gray Catbirds (Dumetella carolinensis) arriving at breeding grounds in northeastern Pennsylvania. Earlier arrivals had higher hematocrit and H/L ratios and lower lymphocyte counts. Arrival date was also negatively associated with fat score. Fat score was positively related to hematocrit, total number of leukocytes, and number of lymphocytes, but the other hematological parameters were not associated with traditional measures of condition (keel score, fat score, or a body condition index). Our results provide some support for the condition-dependent arrival hypothesis and suggest that there may be immunological differences between early- and late-arriving birds.  相似文献   

19.
Density dependence plays a key role in life-history characteristics and population ecology of large, herbivorous mammals. We designed a manipulative experiment to test hypotheses relating effects of density-dependent mechanisms on physical condition and fecundity of North American elk (Cervus elaphus) by creating populations at low and high density. We hypothesized that if density-dependent effects were manifested principally through intraspecific competition, body condition and fecundity of females would be lower in an area of high population density than in a low-density area. Thus, we collected data on physical condition and rates of pregnancy in each experimental population. Our manipulative experiment indicated that density-dependent feedbacks affected physical condition and reproduction of adult female elk. Age-specific pregnancy rates were lower in the high-density area, although there were no differences in pregnancy of yearlings or in age at peak reproduction between areas. Age-specific rates of pregnancy began to diverge at 2 years of age between the two populations and peaked at 6 years old. Pregnancy rates were most affected by body condition and mass, although successful reproduction the previous year also reduced pregnancy rates during the current year. Our results indicated that while holding effects of winter constant, density-dependent mechanisms had a much greater effect on physical condition and fecundity than density-independent factors (e.g., precipitation and temperature). Moreover, our results demonstrated effects of differing nutrition resulting from population density during summer on body condition and reproduction. Thus, summer is a critical period for accumulation of body stores to buffer animals against winter; more emphasis should be placed on the role of spring and summer nutrition on population regulation in large, northern herbivores.  相似文献   

20.
Life-history traits are influenced by environmental factors throughout the lifespan of an individual. The relative importance of past versus present environment on individual fitness, therefore, is a relevant question in populations that face the challenge of temporally varying environment. We studied the interacting effects of past and present density on body mass, condition, and survival in enclosure populations of the bank vole (Myodes glareolus) using a reciprocal transplant design. In connection with the cyclic dynamics of natural vole populations, our hypothesis was that individuals born in low-density enclosures would do better overwintering in low-density enclosures than in high-density enclosures and vice versa. Our results show that the effect of summer (past) density was strong especially on survival and body mass. The response of body mass to summer density was negative in both winter (present) density groups, whereas the response of survival probability was nonlinear and differed between the winter density groups. In particular, our data show a trend for higher overwintering success of individuals originating from the lowest summer densities in low winter density and vice versa. We therefore conclude that the capacity of individuals to respond to a change in density was constrained by the delayed density-dependent effects of environment experienced in the past. These effects have the potential to contribute to vole population dynamics. Possible mechanisms mediating the effects of past environment into present performance include both intrinsic and environmental factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号