首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human activity has altered 33–50% of Earth's surface, including temperate grasslands and sagebrush rangelands, resulting in a loss of biodiversity. By promoting habitat for sensitive or wide-ranging species, less exigent species may be protected in an umbrella effect. The greater sage-grouse (Centrocercus urophasianus; sage-grouse) has been proposed as an umbrella for other sagebrush-obligate species because it has an extensive range that overlaps with many other species, it is sensitive to anthropogenic activity, it requires resources over large landscapes, and its habitat needs are known. The efficacy of the umbrella concept, however, is often assumed and rarely tested. Therefore, we surveyed sage-grouse pellet occurrence and sagebrush-associated songbird abundance in northwest Colorado, USA, to determine the amount of habitat overlap between sage-grouse and 4 songbirds (Brewer's sparrow [Spizella breweri], sage thrasher [Oreoscoptes montanus], sagebrush sparrow [Artemisiospiza nevadensis]), and green-tailed towhee [Pipilo chlorurus]). During May and June 2013–2015, we conducted standard point count breeding surveys for songbirds and counted sage-grouse pellets within 300 10-m radius plots. We modeled songbird abundance and sage-grouse pellet occurrence with multi-scaled environmental features, such as sagebrush cover and bare ground. To evaluate sage-grouse as an umbrella for sagebrush-associated passerines, we determined the correlation between probability of sage-grouse pellet occurrence and model-predicted songbird densities per sampling plot. We then classified the sage-grouse probability of occurrence as high (probability >0.5) and low (probability ≤0.5) and mapped model-predicted surfaces for each species in our study area. We determined average songbird density in areas of high and low probability of sage-grouse occurrence. Sagebrush cover at intermediate scales was an important predictor for all species, and ground cover was important for all species except sage thrashers. Areas with a higher probability of sage-grouse occurrence also contained higher densities of Brewer's sparrows, green-tailed towhees, and sage thrashers, but predicted sagebrush sparrow densities were lower in these areas. In northwest Colorado, sage-grouse may be an effective umbrella for Brewer's sparrows, green-tailed towhees, and sage thrashers, but sage-grouse habitat does not appear to capture areas that support high sagebrush sparrow densities. A multi-species focus may be the best management and conservation strategy for several species of concern, especially those with conflicting habitat requirements. © The Wildlife Society, 2019  相似文献   

2.
Declines in the spatial extent of the sagebrush ecosystem have prompted the consideration of conservation efforts that view the greater sage-grouse (Centrocercus urophasianus; sage-grouse) as an umbrella species at landscape scales. Conservation strategies that focus on an umbrella species, however, may have unintended negative consequences for co-occurring species at finer scales. In North America, grassland and shrubland songbird populations are declining faster than other avian groups. Conservation of sage-grouse habitats may protect songbird habitats where distributions overlap. To assess the umbrella species concept at fine scales, we quantified nest-site selection for a sagebrush-obligate songbird, the Brewer's sparrow (Spizella breweri). We then compared the fine-scale habitat variables that influenced Brewer's sparrow nest-site selection with fine-scale nest-site selection for sage-grouse in the Powder River Basin region of northeastern Wyoming, USA. We modeled nest-site selection using conditional logistic regression for Brewer's sparrow (2016–2017) and logistic regression for sage-grouse (2004–2007). Both species selected nest sites with higher visual obstruction, shrub height, and branching density, although the selection for higher shrub height was stronger for sage-grouse. Brewer's sparrows selected nest shrubs with higher percentage of living foliage (vigor), and the opposite was shown for sage-grouse. At the nest site, based on the variables we measured, our results suggest that Brewer's sparrows and sage-grouse select for similar habitat attributes, with the exception of shrub vigor of the nest shrub. The stronger selection for more vigorous shrubs in Brewer's sparrows may be because they nest in shrubs, rather than on the ground under shrubs (as in sage-grouse). Most of the conservation objectives for protection of sage-grouse habitats appear to be beneficial or inconsequential for Brewer's sparrow. Local habitat management for sage-grouse as a proxy for conservation of other species may be justified if the microhabitat preferences of the species under the umbrella are understood to avoid unintentional negative effects. © 2019 The Wildlife Society.  相似文献   

3.
Vegetation treatments have been widely implemented in efforts to enhance conditions for wildlife populations. Yet the effectiveness of such efforts often lack rigorous evaluations to determine whether these practices are effective for targeted species. This is particularly important when manipulating wildlife habitats in ecosystems that are faced with multiple stressors. The sagebrush (Artemisia spp.) ecosystem has been altered extensively over the last century leading to declines of many associated species. Wyoming big sagebrush (A. tridentata wyomingensis) is the most widely distributed subspecies, providing important habitats for sagebrush-obligate and associated wildlife. Sagebrush often has been treated with chemicals, mechanical treatments, and prescribed burning to increase herbaceous forage species released from competition with sagebrush overstory. Despite many studies documenting negative effects of sagebrush control on greater sage-grouse (Centrocercus urophasianus) habitat, treatments are still proposed as a means of improving habitat for sage-grouse and other sagebrush-dependent species. Furthermore, most studies have focused on vegetation response and none have rigorously evaluated the direct influence of these treatments on sage-grouse. We initiated a 9-year (2011–2019) experimental study in central Wyoming, USA, to better understand how greater sage-grouse respond to sagebrush reduction treatments in Wyoming big sagebrush communities. We evaluated the influence of 2 common sagebrush treatments on greater sage-grouse demography and resource selection. We implemented mowing and tebuthiuron application in winter and spring 2014 and evaluated the pre- (2011–2013) and post-treatment (2014–2019) responses of sage-grouse relative to these management actions. We evaluated responses to treatments using demographic and behavioral data collected from 620 radio-marked female greater sage-grouse. Our specific objectives were to evaluate how treatments influenced 1) sage-grouse reproductive success and female survival; 2) sage-grouse nesting, brood-rearing, and female resource selection; 3) vegetation responses; and 4) forbs and invertebrates. Our results generally suggested neutral demographic responses and slight avoidance by greater sage-grouse in response to Wyoming big sagebrush treated by mowing and tebuthiuron. Neither mowing nor tebuthiuron treatments influenced nest survival, brood survival, or female survival. Selection for nest and brood-rearing sites did not differ before and after treatments. Females selected habitats near treatments before and after they were implemented; however, the strength of selection was lower after treatments compared with pre-treatment periods, which may be explained by a lack of response in vegetation and invertebrates following treatments. Perennial grass cover and height varied temporally yet did not vary systematically between treatment and control plots. Forb cover and species richness varied annually but not in relation to either treatment type. Perennial grass cover and height, forb cover, and forb species richness did not increase within mowed or tebuthiuron-treated areas that received 2 or 6 years of grazing rest compared with areas that received no grazing rest. Finally, forb and invertebrate dry mass did not differ between treated plots and control plots at mowing or tebuthiuron sites in any years following treatments. Results from our study add to a large body of evidence that sage-grouse using Wyoming big sagebrush vegetation communities do not respond positively to sagebrush manipulation treatments. Management practices that focus on the maintenance of large, undisturbed tracts of sagebrush will best facilitate the persistence of sage-grouse populations and other species reliant on the sagebrush steppe.  相似文献   

4.
Gunnison sage-grouse (Centrocercus minimus) is a species of special concern and is currently considered a candidate species under Endangered Species Act. Careful management is therefore required to ensure that suitable habitat is maintained, particularly because much of the species' current distribution is faced with exurban development pressures. We assessed hierarchical nest site selection patterns of Gunnison sage-grouse inhabiting the western portion of the Gunnison Basin, Colorado, USA, at multiple spatial scales, using logistic regression-based resource selection functions. Models were selected using Akaike Information Criterion corrected for small sample sizes (AICc) and predictive surfaces were generated using model averaged relative probabilities. Landscape-scale factors that had the most influence on nest site selection included the proportion of sagebrush cover >5%, mean productivity, and density of 2 wheel-drive roads. The landscape-scale predictive surface captured 97% of known Gunnison sage-grouse nests within the top 5 of 10 prediction bins, implicating 57% of the basin as crucial nesting habitat. Crucial habitat identified by the landscape model was used to define the extent for patch-scale modeling efforts. Patch-scale variables that had the greatest influence on nest site selection were the proportion of big sagebrush cover >10%, distance to residential development, distance to high volume paved roads, and mean productivity. This model accurately predicted independent nest locations. The unique hierarchical structure of our models more accurately captures the nested nature of habitat selection, and allowed for increased discrimination within larger landscapes of suitable habitat. We extrapolated the landscape-scale model to the entire Gunnison Basin because of conservation concerns for this species. We believe this predictive surface is a valuable tool which can be incorporated into land use and conservation planning as well the assessment of future land-use scenarios. © 2011 The Wildlife Society.  相似文献   

5.
Greater sage-grouse (Centrocercus urophasianus) at the western edge of the Dakotas occur in the transition zone between sagebrush and grassland communities. These mixed sagebrush (Artemisia sp.) and grasslands differ from those habitats that comprise the central portions of the sage-grouse range; yet, no information is available on winter habitat selection within this region of their distribution. We evaluated factors influencing greater sage-grouse winter habitat use in North Dakota during 2005–2006 and 2006–2007 and in South Dakota during 2006–2007 and 2007–2008. We captured and radio-marked 97 breeding-age females and 54 breeding-age males from 2005 to 2007 and quantified habitat selection for 98 of these birds that were alive during winter. We collected habitat measurements at 340 (177 ND, 163 SD) sage-grouse use sites and 680 random (340 each at 250 m and 500 m from locations) dependent sites. Use sites differed from random sites with greater percent sagebrush cover (14.75% use vs. 7.29% random; P < 0.001), percent total vegetation cover (36.76% use vs. 32.96% random; P ≤ 0.001), and sagebrush density (2.12 plants/m2 use vs. 0.94 plants/m2 random; P ≤ 0.001), but lesser percent grass cover (11.76% use vs. 16.01% random; P ≤ 0.001) and litter cover (4.34% use vs. 5.55% random; P = 0.001) and lower sagebrush height (20.02 cm use vs. 21.35 cm random; P = 0.13) and grass height (21.47 cm use vs. 23.21 cm random; P = 0.15). We used conditional logistic regression to estimate winter habitat selection by sage-grouse on continuous scales. The model sagebrush cover + sagebrush height + sagebrush cover × sagebrush height ( = 0.60) was the most supported of the 13 models we considered, indicating that percent sagebrush cover strongly influenced selection. Logistic odds ratios indicated that the probability of selection by sage-grouse increased by 1.867 for every 1% increase in sagebrush cover (95% CI = 1.627–2.141) and by 1.041 for every 1 cm increase in sagebrush height (95% CI = 1.002–1.082). The interaction between percent sagebrush canopy cover and sagebrush height (β = −0.01, SE ≤ 0.01; odds ratio = 0.987 [95% CI = 0.983–0.992]) also was significant. Management could focus on avoiding additional loss of sagebrush habitat, identifying areas of critical winter habitat, and implementing management actions based on causal mechanisms (e.g., soil moisture, precipitation) that affect sagebrush community structure in this region. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

6.
ABSTRACT Greater sage-grouse (Centrocercus urophasianus) are dependent on sagebrush (Artemisia spp.) for food and shelter during winter, yet few studies have assessed winter habitat selection, particularly at scales applicable to conservation planning. Small changes to availability of winter habitats have caused drastic reductions in some sage-grouse populations. We modeled winter habitat selection by sage-grouse in Alberta, Canada, by using a resource selection function. Our purpose was to 1) generate a robust winter habitat-selection model for Alberta sage-grouse; 2) spatially depict habitat suitability in a Geographic Information System to identify areas with a high probability of selection and thus, conservation importance; and 3) assess the relative influence of human development, including oil and gas wells, in landscape models of winter habitat selection. Terrain and vegetation characteristics, sagebrush cover, anthropogenic landscape features, and energy development were important in top Akaike's Information Criterion-selected models. During winter, sage-grouse selected dense sagebrush cover and homogenous less rugged areas, and avoided energy development and 2-track truck trails. Sage-grouse avoidance of energy development highlights the need for comprehensive management strategies that maintain suitable habitats across all seasons.  相似文献   

7.
Abstract: We evaluated 6 years of vegetation response following prescribed fire in Wyoming big sagebrush (Artemisia tridentata spp. wyomingensis) steppe on vegetation cover, productivity, and nutritional quality of forbs preferred by greater sage-grouse (Centrocercus urophasianus), and abundance of common arthropod orders. Habitat cover (shrubs and tall herbaceous cover [>18 cm ht]) was about 50% lower after burning compared to unburned controls because of the loss of sagebrush. Perennial grasses and an invasive annual forb, pale alyssum (Alyssum alyssoides), increased in cover or yield after fire. There were no increases in yield or nutritional quality of forb species important in diets of sage-grouse. Abundance of ants (Hymenoptera), a significant component in the diet of young sage-grouse, decreased after fire. These results suggest that prescribed fire will not improve habitat characteristics for sage-grouse in Wyoming big sagebrush steppe where the community consists of shrubs, native grasses, and native forbs.  相似文献   

8.
North American sagebrush (Artemisia spp.)-obligate birds are experiencing steep population declines due in part to increased disturbance, mainly human-caused, across their range. At the eastern edge of the sagebrush steppe, this issue may potentially be exacerbated because of natural disturbance by black-tailed prairie dogs (Cynomys ludovicianus). Our goal was to compare local and landscape models of habitat use by greater sage-grouse (Centrocercus urophasianus), Brewer's sparrow (Spizella breweri), and sage thrasher (Oreoscoptes montanus) with models including effects of natural (i.e., prairie dog) and anthropogenic disturbance. We used a combination of field data collection, and state and national datasets for the Thunder Basin National Grassland, eastern Wyoming, USA, to understand the factors that influence lek attendance by sage-grouse and habitat use by 2 passerines in this system. For all 3 species, models including big sagebrush (Artemisia tridentata) cover at local and landscape scales were the most competitive among univariate models, supporting the paradigm that sagebrush is key for these species. Models including anthropogenic disturbance (well density, road density) explained more variation than models of prairie dog disturbance alone for 2 of the 3 species, but long-term disturbance by prairie dogs did reduce abundance of Brewer's sparrows. Although long-term prairie dog disturbance has the potential to reduce sagebrush cover for sagebrush-obligate birds, such events are likely rare because outbreaks of plague (Yersina pestis) and lethal control on borders with private land reduce prairie dog disturbance. Conversely, anthropogenic disturbance is slated to increase in this system, suggesting potentially accelerated declines for sagebrush birds into the future. © 2020 The Wildlife Society.  相似文献   

9.
Defining boundaries of species' habitat across broad spatial scales is often necessary for management decisions, and yet challenging for species that demonstrate differential variation in seasonal habitat use. Spatially explicit indices that incorporate temporal shifts in selection can help overcome such challenges, especially for species of high conservation concern. Greater sage‐grouse Centrocercus urophasianus (hereafter, sage‐grouse), a sagebrush obligate species inhabiting the American West, represents an important case study because sage‐grouse exhibit seasonal habitat patterns, populations are declining in most portions of their range and are central to contemporary national land use policies. Here, we modeled spatiotemporal selection patterns for telemetered sage‐grouse across multiple study sites (1,084 sage‐grouse; 30,690 locations) in the Great Basin. We developed broad‐scale spatially explicit habitat indices that elucidated space use patterns (spring, summer/fall, and winter) and accounted for regional climatic variation using previously published hydrographic boundaries. We then evaluated differences in selection/avoidance of each habitat characteristic between seasons and hydrographic regions. Most notably, sage‐grouse consistently selected areas dominated by sagebrush with few or no conifers but varied in type of sagebrush selected by season and region. Spatiotemporal variation was most apparent based on availability of water resources and herbaceous cover, where sage‐grouse strongly selected upland natural springs in xeric regions but selected larger wet meadows in mesic regions. Additionally, during the breeding period in spring, herbaceous cover was selected strongly in the mesic regions. Lastly, we expanded upon an existing joint–index framework by combining seasonal habitat indices with a probabilistic index of sage‐grouse abundance and space use to produce habitat maps useful for sage‐grouse management. These products can serve as conservation planning tools that help predict expected benefits of restoration activities, while highlighting areas most critical to sustaining sage‐grouse populations. Our joint–index framework can be applied to other species that exhibit seasonal shifts in habitat requirements to help better guide conservation actions.  相似文献   

10.
Despite decades of field research on greater sage-grouse, range-wide demographic data have yet to be synthesized into a sensitivity analysis to guide management actions. We reviewed range-wide demographic rates for greater sage-grouse from 1938 to 2011 and used data from 50 studies to parameterize a 2-stage, female-based population matrix model. We conducted life-stage simulation analyses to determine the proportion of variation in population growth rate (λ) accounted for by each vital rate, and we calculated analytical sensitivity, elasticity, and variance-stabilized sensitivity to identify the contribution of each vital rate to λ. As expected for an upland game bird, greater sage-grouse showed marked annual and geographic variation in several vital rates. Three rates were demonstrably important for population growth: female survival, chick survival, and nest success. Female survival and chick survival, in that order, had the most influence on λ per unit change in vital rates. However, nest success explained more of the variation in λ than did the survival rates. In lieu of quantitative data on specific mortality factors driving local populations, we recommend that management efforts for greater sage-grouse first focus on increasing female survival by restoring large, intact sagebrush-steppe landscapes, reducing persistent sources of human-caused mortality, and eliminating anthropogenic habitat features that subsidize species that prey on juvenile, yearling, and adult females. Our analysis also supports efforts to increase chick survival and nest success by eliminating anthropogenic habitat features that subsidize chick and nest predators, and by managing shrub, forb, and grass cover, height, and composition to meet local brood-rearing and nesting habitat guidelines. We caution that habitat management to increase chick survival and nest success should not reduce the cover or height of sagebrush below that required for female survival in other seasons (e.g., fall, winter). The success or failure of management actions for sage-grouse should be assessed by measuring changes in vital rates over long time periods to avoid confounding with natural, annual variation. © 2011 The Wildlife Society.  相似文献   

11.
The identification of core habitat areas and resulting prediction maps are vital tools for land managers. Often, agencies have large datasets from multiple studies over time that could be combined for a more informed and complete picture of a species. Colorado Parks and Wildlife has a large database for greater sage-grouse (Centrocercus urophasianus) including 11 radio-telemetry studies completed over 12 years (1997–2008) across northwestern Colorado. We divided the 49,470-km2 study area into 1-km2 grids with the number of sage-grouse locations in each grid cell that contained at least 1 location counted as the response variable. We used a generalized linear mixed model (GLMM) using land cover variables as fixed effects and individual birds and populations as random effects to predict greater sage-grouse location counts during breeding, summer, and winter seasons. The mixed effects model enabled us to model correlations that may exist in grouped data (e.g., correlations among individuals and populations). We found only individual groupings accounted for variation in the summer and breeding seasons, but not the winter season. The breeding and summer seasonal models predicted sage-grouse presence in the currently delineated populations for Colorado, but we found little evidence supporting a winter season model. According to our models, about 50% of the study area in Colorado is considered highly or moderately suitable habitat in both the breeding and summer seasons. As oil and gas development and other landscape changes occur in this portion of Colorado, knowledge of where management actions can be accomplished or possible restoration can occur becomes more critical. These seasonal models provide data-driven, distribution maps that managers and biologists can use for identification and exploration when investigating greater sage-grouse issues across the Colorado range. Using historic data for future decisions on species management while accounting for issues found from combining datasets allows land managers the flexibility to use all information available. © 2013 The Wildlife Society.  相似文献   

12.
Mapping suitable habitat is an important process in wildlife conservation planning. Species distribution reflects habitat selection processes occurring across multiple spatio‐temporal scales. Because habitat selection may be driven by different factors at different scales, conservation planners require information at the scale of the intervention to plan effective management actions. Previous research has described habitat selection processes shaping the distribution of greater sage‐grouse (Centrocercus urophasianus; sage‐grouse) at the range‐wide scale. Finer‐scale information for applications within jurisdictional units inside the species range is lacking, yet necessary, because state wildlife agencies are the management authority for sage‐grouse in the United States. We quantified seasonal second‐order habitat selection for sage‐grouse across the state of Utah to produce spatio‐temporal predictions of their distribution at the southern periphery of the species range. We used location data obtained from sage‐grouse marked with very‐high‐frequency radio‐transmitters and lek location data collected between 1998 and 2013 to quantify species habitat selection in relation to a suite of topographic, edaphic, climatic, and anthropogenic variables using random forest algorithms. Sage‐grouse selected for greater sagebrush (Artemisia spp.) cover, higher elevations, and gentler slopes and avoided lower precipitations and higher temperatures. The strength of responses to habitat variables varied across seasons. Anthropogenic variables previously reported as affecting their range‐wide distribution (i.e., roads, powerlines, communication towers, and agricultural development) were not ranked as top predictors at our focal scale. Other than strong selection for sagebrush cover, the responses we observed differed from what has been reported at the range‐wide scale. These differences likely reflect the unique climatic, geographic, and topographic context found in the southern peripheral area of the species distribution compared to range‐wide environmental gradients. Our results highlight the importance of considering appropriateness of scale when planning conservation actions for wide‐ranging species.  相似文献   

13.
Sagebrush (Artemisia spp.) constitutes the majority (>99%) of sage-grouse (Centrocercus spp.) winter diets. Thus, identification and protection of important winter habitats is a conservation priority. However, not all sagebrush may be alike. More information is needed regarding sage-grouse sagebrush winter dietary preferences for application to management. The objective of our research was to determine if chemical analysis of fecal pellets could be used to characterize winter sage-grouse diets as a substitute for more invasive methods. We collected and analyzed fecal pellets and sagebrush samples from 29 different sage-grouse flock locations in northwestern and southcentral Utah. Using gas chromatography, we were able to identify crude terpene profiles that were unique to Wyoming sagebrush (A. tridentata wyomingensis) and black sagebrush (A. nova). We subsequently used the profiles to determine sagebrush composition of sage-grouse fecal pellets, thus reflecting sage-grouse winter diets. This technique provides managers with a tool to determine which species or subspecies of sagebrush may be important in the winter diets of sage-grouse populations. © 2011 The Wildlife Society.  相似文献   

14.
Greater sage-grouse (Centrocercus urophasianus) is a landscape-level species that requires large tracts of intact sagebrush (Artemisia spp.). Loss of functional habitat resulting from increased demand for energy generation, transmission, and distribution within greater sage-grouse habitats in the western United States has the potential to negatively affect this species. We monitored 346 radio-marked female greater sage-grouse from 2009 to 2014 to evaluate the potential effects of 27-m-tall, 230-kilovolt (kV) wood-pole, H-frame transmission lines on greater sage-grouse habitat selection and demography. We modeled the effect of the transmission lines in 2 different study areas simultaneously using consistent habitat data. Previous research in our study areas suggested that the effect of transmission lines was potentially confounded by other habitat features. We accounted for these potential confounding effects by estimating habitat suitability before estimating the effect of transmission lines. We combined habitat selection and demography results to estimate habitat function relative to transmission lines and inform management recommendations. Overall, we found evidence that transmission lines had a negative effect on greater sage-grouse habitat selection and survival within our study areas over 6 years, but the magnitude of this effect varied by habitat suitability and proximity to occupied leks. The effect of transmission lines on habitat function extended 1.0 km from a transmission line in habitats within 3.1 km of an occupied lek compared to 0.50 km from a transmission line in habitats beyond 3.1 km from occupied leks. Based on these results, we suggest future power line placement relative to sage-grouse nesting, brood-rearing, and summer habitats consider potential effects to sage-grouse habitat selection and demography. Effects can be minimized by incorporating design features that discourage avian predator perching and siting power lines in habitats with lower suitability and, in our study area, habitats beyond 3.1 km from occupied leks. © 2019 The Wildlife Society.  相似文献   

15.
Understanding population structure is important for guiding ongoing conservation and restoration efforts. The greater sage-grouse (Centrocercus urophasianus) is a species of concern distributed across 1.2 million km2 of western North America. We genotyped 1499 greater sage-grouse from 297 leks across Montana, North Dakota and South Dakota using a 15 locus microsatellite panel, then examined spatial autocorrelation, spatial principal components analysis, and hierarchical Bayesian clustering to identify population structure. Our results show that at distances of up to ~240 km individuals exhibit greater genetic similarity than expected by chance, suggesting that the cumulative effect of short-range dispersal translates to long-range connectivity. We found two levels of hierarchical genetic subpopulation structure. These subpopulations occupy significantly different elevations and are surrounded by divergent vegetative communities with different dominant subspecies of sagebrush, each with its own chemical defense against herbivory. We propose five management groups reflective of genetic subpopulation structure. These genetic groups are largely synonymous with existing priority areas for conservation. On average, 85.8 % of individuals within each conservation priority area assign to a distinct subpopulation. Our results largely support existing management decisions regarding subpopulation boundaries.  相似文献   

16.
In northern Europe, a long history of land use has led to profound changes within forest ecosystems. The white-backed woodpecker (Dendrocopos leucotos) is one of several specialised forest species whose populations have declined. Conservation management directed at this species’ habitat has made it a de facto umbrella species for conservation of the biodiversity associated with forests rich in deciduous trees and dead wood. We assessed empirically the value of the white-backed woodpecker as an indicator and umbrella species in central Sweden. Occurrence of the woodpecker in breeding bird atlas squares (5 × 5 km2) indicated high species richness of forest birds, particularly species of special conservation concern, which included on average 13% more species in squares with than without the woodpecker. The number of red-listed cryptogam species expected to benefit from conservation actions directed at white-backed woodpecker habitats was higher in squares where the woodpecker bred compared to where is was absent. However, no such pattern was found for red-listed beetles, a group with very few records in the studied squares. White-backed woodpecker occurrence was positively associated with the current area of deciduous and mixed forest of high conservation value. Considering its indicator value, its specialised habitat requirements and its potential as a communication tool, using the white-backed woodpecker as an umbrella species may provide a coarse filter for the conservation of several other deciduous forest species. However, focusing solely on white-backed woodpecker habitat may not provide for the conservation of all such species, which stresses the need for a suite of complementary planning approaches.  相似文献   

17.
Abstract: Loss of quality brood rearing habitat, resulting in reduced chick growth and poor recruitment, is one mechanism associated with decline of greater sage-grouse (Centrocercus urophasianus) populations. Low chick survival rates are typically attributed to poor-quality brood rearing habitat. Models that delineate suitability of sage-grouse nesting or brood rearing habitat at the landscape scale can provide key insights into the relationship between sage-grouse and the environment, allowing managers to identify and prioritize habitats for protection or restoration. We used Southwest Regional Gap landcover types to identify early and late greater sage-grouse brood rearing in east-central Nevada. We conducted an Ecological Niche Factor Analysis to 1) examine the effect these landcover types and other ecogeographical variables have on sage-grouse selection of brood rearing habitat, and 2) generate landscape-scale suitability maps. We also evaluated if incorporating a fitness component (brood survival) in landscape spatial analyses of habitat quality influenced our assessment of habitat suitability. Because 36% of our 6,500-km2 study area was identified as early brood rearing habitat, we believe this habitat may not be limiting greater sage-grouse populations in east-central Nevada, USA, at least in wet years. We found strong selection for particular landcover types (e.g., higher elevation, moist sites with riparian shrubs or montane sagebrush) during late brood rearing. Late brood rearing habitat on which broods were successfully reared represented only 2.8% of the study area and had a restricted distribution, suggesting the potential that such habitat could limit sage-grouse populations in east-central Nevada.  相似文献   

18.
Habitat loss is the most prevalent threat to biodiversity in North America. One of the most threatened landscapes in the United States is the sagebrush (Artemisia spp.) ecosystem, much of which has been fragmented or converted to non‐native grasslands via the cheatgrass‐fire cycle. Like many sagebrush obligates, greater sage‐grouse (Centrocercus urophasianus) depend upon sagebrush for food and cover and are affected by changes to this ecosystem. We investigated habitat selection by 28 male greater sage‐grouse during each of 3 years after a 113,000‐ha wildfire in a sagebrush steppe ecosystem in Idaho and Oregon. During the study period, seeding and herbicide treatments were applied for habitat restoration. We evaluated sage‐grouse responses to vegetation and post‐fire restoration treatments. Throughout the 3 years post‐fire, sage‐grouse avoided areas with high exotic annual grass cover but selected strongly for recovering sagebrush and moderately strongly for perennial grasses. By the third year post‐fire, they preferred high‐density sagebrush, especially in winter when sagebrush is the primary component of the sage‐grouse diet. Sage‐grouse preferred forb habitat immediately post‐fire, especially in summer, but this selection preference was less strong in later years. They also selected areas that were intensively treated with herbicide and seeded with sagebrush, grasses, and forbs, although these responses varied with time since treatment. Wildfire can have severe consequences for sagebrush‐obligate species due to loss of large sagebrush plants used for food and for protection from predators and thermal extremes. Our results show that management efforts, including herbicide application and seeding of plants, directed at controlling exotic annual grasses after a wildfire can positively affect habitat selection by sage‐grouse.  相似文献   

19.
Connectivity of animal populations is an increasingly prominent concern in fragmented landscapes, yet existing methodological and conceptual approaches implicitly assume the presence of, or need for, discrete corridors. We tested this assumption by developing a flexible conceptual approach that does not assume, but allows for, the presence of discrete movement corridors. We quantified functional connectivity habitat for greater sage-grouse (Centrocercus urophasianus) across a large landscape in central western North America. We assigned sample locations to a movement state (encamped, traveling and relocating), and used Global Positioning System (GPS) location data and conditional logistic regression to estimate state-specific resource selection functions. Patterns of resource selection during different movement states reflected selection for sagebrush and general avoidance of rough topography and anthropogenic features. Distinct connectivity corridors were not common in the 5,625 km2 study area. Rather, broad areas functioned as generally high or low quality connectivity habitat. A comprehensive map predicting the quality of connectivity habitat across the study area validated well based on a set of GPS locations from independent greater sage-grouse. The functional relationship between greater sage-grouse and the landscape did not always conform to the idea of a discrete corridor. A more flexible consideration of landscape connectivity may improve the efficacy of management actions by aligning those actions with the spatial patterns by which animals interact with the landscape.  相似文献   

20.
ABSTRACT We studied nest survival of greater sage-grouse (Centrocercus urophasianus) in 5 subareas of Mono County, California, USA, from 2003 to 2005 to 1) evaluate the importance of key vegetation variables for nest success, and 2) to compare nest success in this population with other greater sage-grouse populations. We captured and radiotracked females (n = 72) to identify nest sites and monitor nest survival. We measured vegetation at nest sites and within a 10-m radius around each nest to evaluate possible vegetation factors influencing nest survival. We estimated daily nest survival and the effect of explanatory variables on daily nest survival using nest-survival models in Program MARK. We assessed effects on daily nest survival of total, sagebrush (Artemisia spp.), and nonsagebrush live shrub-cover, Robel visual obstruction, the mean of grass residual height and grass residual cover measurements within 10 m of the nest shrub, and area of the shrub, shrub height, and shrub type at the nest site itself. Assuming a 38-day exposure period, we estimated nest survival at 43.4%, with percent cover of shrubs other than sagebrush as the variable most related to nest survival. Nest survival increased with increasing cover of shrubs other than sagebrush. Also, daily nest survival decreased with nest age, and there was considerable variation in nest survival among the 5 subareas. Our results indicate that greater shrub cover and a diversity of shrub species within sagebrush habitats may be more important to sage-grouse nest success in Mono County than has been reported elsewhere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号